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1 Introduction to Mathematical Proofs
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1. Mathematical Proofs

e conditional statements

e sufficient and necessary conditions
e methods of proofs

e disproving statements

e proofs of quantified statements

Statements

a statement is a declarative sentence that is true or false but not both

examples:

e if  is an integer, then 2z is an even integer

the following sentences are not statements

e Bangkok is a lovely city (it's a matter of opinion)
e 2x—3=14 (we do not know what x is)
Mathematical Proofs 1-2

Conditional statements

for statements P and (), a conditional statement is the statement:
If P, then @

and is denoted by P = @ (also stated as P implies Q)

example: 'if students obtain a score higher than 80 then they will get an A’

truth table
P = (@ is logically equivalent to

PIQ|P=0Q
T(T| T s Pva@
T|F| F o -Q= P
FIT| T
FIF| T

beware ! P = @ is NOT logically equivalent to @ = P

Mathematical Proofs 1-3
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Biconditional statements
the conjunction of a conditional statement and its converse:
P=Qnr@=P)
is called the biconditional of P and @), which is expressed as
P if and only if @

and denoted by P < @
truth table

examples:
PlQ|PeQ P e
T T e x=2ifand only if 3z =6
T|F F o |z| =4 if and only if 22 = 16
F|T F
F|F T

P & @ is true only when P and @ have the same truth values

Mathematical Proofs 1-4

Sufficient and Necessary conditions

consider a (true) conditional statement: P = Q, we say

e P is sufficient for @
e () is necessary for P

e Ponlyif Q
example: if z = —3 then |z] =3 (a true conditional statement)

e 'P is sufficient for Q)" means

the truth of x = —3 is sufficient for concluding the truth of |z| =3

e 'Ponlyif @ and 'Q is necessary for P’ have the same meaning:

x = —3 is true only under the condition that |z| = 3 (because if |z| # 3
then x = —3 can't be true)
Mathematical Proofs 15
however, |z| = 3 is not a sufficient condition for x = —3

(because if |x| = 3 then z can be either 3 or —3)

i.e., the converse of 'if z = —3 then |z| = 3" is false

consider a (true) biconditional statement: P < @, we say

P is sufficient and necessary for )

example: |z| = 2 if and only if 2% = 4 (a true biconditional statement)

e saying |z| = 2 is equivalent to saying ¥? = 4

Mathematical Proofs 1-6
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more examples:

e being at least 18 years old is necessary for applying a driver license
i.€.,

— if you're a driver, everyone knows you must be at least 18 years old
— if you're younger than 18 then you can't have a driver license

e if a person holds the title "Miss Thailand’ then that person must be 1)
female 2) adult and 3) unmarried

i.€e.,

— stating that "Jenny is Miss Thailand’ is sufficient to know that she is
female and she must be old enough (an adult)

— being unmarried is a necessary condition for being Miss Thailand
because if a woman is married, she can't apply for this position

Mathematical Proofs 1-7

Mathematical terminology

e an axiom is a math statement that is self-evidently true w/o proof
e a definition is an agreement as to the meaning of a particular term

e a proof is a sequence of math arguments demonstrating the truth of
given results

e a theorem or a proposition is any mathematical statement that can be
shown to be true using accepted logical and mathematical arguments

e a lemma is a true mathematical statement that was proven mainly to
help in the proof of some theorem

e a corollary is used to refer to a theorem that is easily proven once some
other theorem has been proven

Mathematical Proofs 18

Direct proofs

a direct proof of P = () typically consists of these steps:

1. start from assuming P is true then

2. develop a set of logical arguments to conclude Q

example: show that if z,y € R then 22 + 32 > |zy|
Proof. let z,y € R and consider (|z| — |y|)?

(2l = 1yD? = |2 + [yl* — 2|y
since the LHS is nonnegative, it follows that
(Jzl = yl)? = 2® +y* — 2fay| > 0
and hence 2% + y* > 2|zy| > |ay| ]

Mathematical Proofs 19
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Proof by contrapositive

a contrapositive proof of a statement P = () uses the fact that
P = @ s logically equivalent to =@ = —P
so we can use a direct proof to show that =) = —P is true

example: let = € R. show that if 22 + 22 < 0 then 2 < 0

Proof. we will show that if 2 > 0 then z2 + 22 > 0
e if z > 0 then obviously 2z > 0
2

e 1~ is always nonnegative

therefore, the sum of 22 and 2z is nonnegative, finishing the proof O

Mathematical Proofs 1-10

Proof by contradiction
idea: —(P = @) is equivalent to P A =@, so if we do as follows:

1. assume P is true (accept all the hypotheses) and @ is false (negate the
conclusion)

2. try to prove that this leads to a contradiction

then we have shown that =(P = Q) is false or that P = @ is true
example: show that if n is an even integer then so is n?
Proof. assume n is even but n? is not

since n is even, we can express n = 2k where k is some positive integer
n? = (2k)? = 4k* = 2(2k?)
2

since 2k is also an integer, n? must be also even, which is a contradiction

Mathematical Proofs 1-11

Proof by induction

principle of mathematical indunction states that

the statement P(n) is true for all n € N if

1. P(1) is true

2. for each k € N, if P(k) is true then P(k + 1) is also true
example: show that Y i =n(n+1)/2forn=1,2,...
Proof. let P(n) be the statement > i =n(n+1)/2

e P(1)is true because 1 =1-(1+1)/2
e assume P(k) is true and show that P(k + 1) is true:

n+1 n
di=nt1+d i=n+l+nn+1)/2=(n+1)(n+2)/2
i=1 i=1

Mathematical Proofs 1-12
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Disproving statements

a conjecture is any math statement that has not been proved or disproved

disproving a conjecture requires only a single example to show the
conjecture is false

such example is called a counterexample

example: (z+y)? =22+ forall 2,y € R (conjecture)

x =1,y =1 is a counterexample that disproves the conjecture because
(1+1)2=4#4124+12=2

(because the conjecture says the identity holds for all x,y, we just gave a
value of z,y that disproves it)

Mathematical Proofs 1-13

example: let A be a square matrix. if A2 =17 then A=1or —1I

the conjecture is false because if we consider
01
=[]

then we can verify that

NEIEET

hence, A% = I does not necessarily imply that A=1 or A= —1

but A could be other matrices (at least the counterexample we just gave)

Mathematical Proofs 1-14

Quantifiers

e the quantifying clause 'for every, for all, for each’ is denoted by V
e the quantifying clause 'there exists, there is some’ is denoted by 3

e r € .S means 'z is a member of set S" or 'z belongs to S’
examples:
o for every positive real number z, 23 — 222 + 2 > 0

VzeR, 2® -2z +2>0

o there exists a real number z such that 22 — 2z =4

Jz, 22— 2z =4

Mathematical Proofs 1-15
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Proofs of quantified statements

statements containing 'for some’ or 'there exists’
example: prove or disprove '3A € R**?, det(4) =1

to prove that it's true, we just need to come up with an example of A:

A= {_11 (1)} and show that det(A) =1

hence, the statement is true
example: prove or disprove ‘Iz € R, 2% + 222 +1 =0’
ifz € R, then2* >0and 22 >0, so z* +222+1>1

2% 4 222 + 1 can't be 0 for any = € R, so the statement is false
e proving that the statement is true is typically (but not always) simple

e disproving the statement may require some effort

Mathematical Proofs 1-16

statements containing 'for all’ or 'for any’
example: prove or disprove 'Vz,y € R, | + y| < |z| + |y|’
(z+9)* = 2® +y* + 2zy < [2” + y|* + 2lzy| = (Ja| + [y])?

so the statement is true
example: prove or disprove 'AB = BA for any square matrices A, B’

disproving it is easy because we can just give an example of A, B:

11 1 -1
el el ]
11 1

and show that AB = {2 0} # BA = {0 711} (so the statement is false)

e proving the statement is true may require some effort

e disproving the statement is typically easy (by giving a counterexample)

Mathematical Proofs 1-17

Common mistakes
example: show that for any a € R, 4 € R™*", det(aA) = |a|" det A
one may show as follows

a 2«
—a 3«

A= {_11 g} = det(A) =5and det(ad) = ‘ = 50a°

so det(aA) = a?det(A) as desired

the above argument cannot be a proof because we just showed for one
particular value of A

in fact, we have to show that the statement is true for all square matrices

Mathematical Proofs 1-18
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example: show that for any 7,y € R, (z+y)? <2(z%+y?)

if one writes an argument like this:
P2y +yt <207+ 2% = 2P +yP -2y >0 = (2—y)>?>0
then it can't be a proof because:

e we can't start a proof from the result we're going to prove !
e each step of argument must be explained with logical reasoning
e a good proof must be clear by itself; always explain with details

e the lastly obtained result must conclude what you want to prove

Mathematical Proofs 1-19

example of proof: for any z,y € R, (x — y)? is always nonnegative
e expanding (v — y)? gives

0< (z—y)?=a%—2zy+9°
o add 2% + 22y + y* on both sides

22+ 2zy + y? < 227 + 297

e complete the square and we finish the proof

(x+y)* <22 +y°)

Mathematical Proofs 1-20
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2. System of Linear Equations

e linear equations
o elementary row operations

e Gaussian elimination

2-1

Linear equations

a general linear system of m equations with n variables is described by

a1121 + a19T2 + - -+ a1, = by

211 + a2y + -+ -+ agpT, = by

A1 %1 + Q2T + - 4 Gy, = by

where a;j, b; are constants and w1, 2, ..., 2, are unknowns

e equations are linear in x1,29,..., T,

e existence and uniqueness of a solution depend on a;; and b;

System of Linear Equations 22

Example: solving ordinary differential equations

given y(0) = 1,y(0) = —1,(0) = 0, solve
Y +6j+ 119+ 6y =0
the closed-form solution is
y(t) = Cre ' + Coe™ 2 4 Cye %
C1,C5 and C3 can be found by solving a set of linear equations

1 = y0) = Ci1+Cy+Cy
-1 = g(0) = —-C;—20,—-3Cs
0 = 7./(0) = (C14+4Cy+9Cs

System of Linear Equations 23




System of linear equations

Example: linear static circuit

Ry R R

“f\/\/\/n;
14 2 1l 13
4 2R, 2R

given V, Ry, Ra, ..., R5, find the currents in each loop

by KVL, we obtain a set of linear equations

VvV = (Rl -+ R4)i1 — Ryis
0 = —Ryi1+ (RQ + Ry + Rs)iz — Rsi3
0 = —Rsiz+ (Rs+ Rs)is

System of Linear Equations

2.4
Example: polynomial interpolation
fit a polynomial
p(t) = a1 + xot + x3t> + -+, t"

through n points (t1,91), .-, (tn, Yn)
problem data (parameters): t1,...,tn, Y1, -, Yn
problem variables: find z1,...,x, such that p(¢;) = y; for all ¢
System of Linear Equations 2.5

write out the conditions on z:

p(ty) = a1+ xaty + a3t + -+ Int?fl = %
pts) = mitasta+astd+ - +auty ' = oy
p(tn) = x1+x2l, + 13t721 +o+ wnt:lil = Yn

System of Linear Equations
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Special case: two variables

Examples:
211]1 — T2 = —1 2.’L’1 — X2 = —1 2:L'1 — T2 = —1
41‘1 — 2I2 = -2 T+ X2 = -1 41‘1 - 21‘2 = =2
E2] E2) E2)
T 1 E
(a) no solution (b) one solution (c) infinitely many solutions

e no solution if two lines are parallel but different interceptions on xs-axis

e many solutions if the two lines are identical

System of Linear Equations 27

Geometrical interpretation
the set of solutions to a linear equation
121 + Qoo + -+ ApTy, = b

can be interpreted as a hyperplane on R"

2r) —x9+ax3=1

a solution to m linear equations is an intersection of m hyperplanes

System of Linear Equations 2.8

Existence and uniqueness of solutions

existence:

e no solution

e a solution exists

uniqueness:

— the solution is unique
— there are infinitely many solutions

every system of linear equations has zero, one, or infinitely many solutions

there are no other possibilities

System of Linear Equations 29
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System of linear equations

no solution

T +xe = 1 ;; erl;z - 11
201 + 2wy = etz =
Ty + 210 0 T — 29 _ 2
unique solution
o . - r1+xy = 0
;1:1 tL; B (1] 21 +x5 = —1
1 2= Tr1 — I = 72
infinitely many solutions
Ttz = 1 T-rpt2ey = 1
21 + 22y = 2 —TLh s = !
1 2 311 —2w0+ 323 = 3

System of Linear Equations 2-10
Elementary row operations
define the augmented matrix of the linear equations on page 2-2 as
air  aiz o ai, by
a1 azy ccr G b
Am1  Gm2 - Gmn bm
the following operations on the row of the augmented matrix:
1. multiply a row through by a nonzero constant
2. interchange two rows
3. add a constant times one row to another
do not alter the solution set and yield a simpler system
these are called elementary row operations on a matrix
System of Linear Equations 2-11
example:
o1+ 3w2 4225 = 2 augmented matrix 1322
—x1+ro+ax3 = —1 N —1 1 1 —1
201 —x9 —2x3 = 3 2 -1 -2 3
add the first row to the second (Rq + Ry — Rs)
1+ 3x0+2x3 = 2 1 3 2 2
4o + 323 =1 = 0 4 3 1
21’1—{1}2—2.’1}3 = 3 2 -1 -2 3
add —2 times the first row to the third (—2R; + R3 — R3)
xr + 3.’1}2 + 2.’1}'3 = 2 1 3 2 2
dx9 + 3z3 = 1 = 0 4 3 1
—Txy— 6z = -1 0 -7 -6 -1
2-12

System of Linear Equations
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multiply the second row by 1/4 (R2/4 — R5)

T1+3x0+ 2205 = 2 13 2 2
za+3zs = L = |0 1 3/4 1/4
—Txy — 613 = -1 0o -7 -6 -1

add 7 times the second row to the third (TR2 + R3 — R3)

x1 + 3.’L‘2 + 2.’L‘3 = 2 1 3 2 2
zo + 3y = % = |0 1 3/4 1/4
—3u3 = 2 0 0 —3/4 3/4
multiply the third row by —4/3 (—4R3/3 — R3)
T+ 3x2+2x3 = 2 1 3 2 2
w3z = 1 = |0 1 3/4 1/4
T3 = -1 00 1 -1
System of Linear Equations 2-13

add —3/4 times the third row to the second (R — (3/4)R3 — R2)

xr + 3.’1}2 + 2{1}3 = 2 1 3 2 2
T = 1 = 01 0 1
T3 = -1 00 1 -1
add —3 times the second row to the first (Ry — 3Ry — Ry)
T +2x3 = —1 1 0 2 -1
To = 1 - 01 0 1
T3 = -1 00 1 -1
add —2 times the third row to the first (R — 2Ry — Ry)
Ty = 1 1 0 0 1
ro = 1 = 01 0 1
r3 = —1 00 1 -1
System of Linear Equations 2-14

Gaussian Elimination

e a systematic procedure for solving systems of linear equations

e based on performing row operations of the augmented matrix

Definition: a matrix is in row echelon form if

1. a row does not consist entirely of zeros, then the first nonzero number
in the row is a 1 (called a leading 1)

2. all nonzero rows are above any rows of all zeros

3. In any two successive rows that do not consist entirely of zeros, the
leading 1 in the lower row occurs farther to the right than the leading 1
in the higher row

System of Linear Equations 2-15
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examples:
1 4 -3 5 1 10 012 5 0
01 3 0, 01 0f, 001 -1 0
00 1 2 0 00 000 0 1

Definition: a matrix is in reduced row echelon form if
e it is in a row echelon form and

e every leading 1 is the only nonzero entry in its colum

examples:
01 -2 0 1
O I P 00 0 1 3
0 0|’ 00 1 -1 00 0 00
00 0 0O
System of Linear Equations 2-16

Facts about echelon forms

1. every matrix has a unique reduced row echelon form
2. row echelon forms are not unique

3. all row echelon forms of a matrix have the same number of zero rows

4. the leading 1's always occur in the same positions in the row echelon

forms of a matrix A

those positions are callled the pivot positions of A

a column that contains a pivot position is called a pivot column of A.

System of Linear Equations 2-17

Inspecting a solution

e simplify the augmented matrix to the reduced echelon form

e read the solution from the reduced echelon form

1 0 00
01 30 = 0-23=1 (no solution)
000 1
! 0 -2
1 0 —-1| = z1=-2, z9=-1, z3=>5 (unique solution)
001 5
1 0 2
11 — 21 =2, z2=1 (unique solution)
0 0 0

System of Linear Equations 2-18
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another example

10

01 -1 1 I;j-&-fzg = —12
00 2 — T3 =
Definition:

e the corresponding variables to the leading 1's are called leading
variables

e the remaining variables are called free variables

here 1, x5 are leading variables and x3 is a free variable

let x3 =t and we obtain
Ty =—-3—-2, xo=t+1, ax3=1

(many solutions)

System of Linear Equations 219
1 -5 1 4
0 0 0 0| = a1—baataz=4
0 0 00

x1 is the leading variable, xo and z3 are free variables

let x5 = s and x3 = t we obtain

1 = bs—t+4
To = S (many solutions)
Tr3 = t

by assigning values to s and ¢, a set of parametric equations:

ry = bs—t+4
Trog = S
x3 = 1

is called a general solution of the system

System of Linear Equations 220

Gaussian-Jordan elimination

e simplify an augmented matrix to the reduced row echelon form
e inspect the solution from the reduced row echelon form
e the algorithm consists of two parts:

— forward phase: zeros are introduced below the leading 1's

— backward phase: zeros are introduced above the leading 1's

example:
x1 + 2o + 2I3 = 8 1 1 2 8
—r;—2r9+3x3 = 1 = |-1 -2 3 1
3.7)1 - 7.732 + 41‘3 = 10 3 -7 4 10

System of Linear Equations 2-21
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use row operations

R1+R2*)R2 73R1+R3*>R3 (71)R24}R2
1 1 2 8 1 1 2 8 1 1 2 8
0 -1 5 9 0 -1 5 9 o 1 -5 -9
3 =7 4 10 0 —-10 -2 -14 0 —-10 -2 -—-14

11 2 8 11 2
01 -5 -9 01 =5 -9
0 0 =52 —104 0 0 1 2

(a row echelon form)

we have added zero below the leading 1's (forward phase)

System of Linear Equations 222

continue performing row operations

5R3+ Ry -+ Ry —Ro+ Ry — Ry —2R3+R1%R1

3

11 2 8 10 2 7 1 00 3
01 01 01 01 01 01
00 1 2 00 1 2 00 1 2

(reduced echelon form)

we have added zero above the leading 1's (backward phase)

the system has a unique solution

I1:3, 1‘2:1, 1‘3:2

System of Linear Equations 2-23

Homogeneous linear systems

Definition:

a system of linear equations is said to be homogeneous if b;'s are all zero

1171 + 1222 + -+ + a1y, = 0
2121 + 222 + -+ + ap®, = 0
A1 T1 + Q22 + -+ @, = 0
e 1] =x9=---=2x, =0 is the trivial solution
o if (x1,x2,...,2,) is a solution, so is (axy, axs,...,az,) for any a € R

e hence, if a solution exists, then the system has infinitely many solutions
(by varying «)

System of Linear Equations 2-24
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more properties

e the last column of the augmented matrix is entirely zero

e the zero columns do not alter under any row operations, so the linear
systems corresponding to the reduced echelon form is homogeneous

e if the reduced row echelon form has r nonzero rows, then the system
has n — r free variables

e a homogeneous linear system with more unknowns than equations has
infinitely many solutions

System of Linear Equations 2:25
example
T1 — To + 2x3 — x4 = 0 1 -1 2 =10
—x1 +2x9 —4as+24 = 0 -1 2 -4 1 0
3z — 314 =0 3 0 0 -3 0
the reduced echelon form is
10 0 -1 0
01 -2 0 0 N r1—x4 = 0
00 O 0 0

define x3 = s, x4 = t, the parametric equation is
xy=t, x2=28, x3=35, x4=1
there are two nonzero rows, so we have two (n — 2 = 2) free variables

System of Linear Equations 226

MATLAB commands

rref (A) produces the reduced row echelon form of a matrix A

> A=1[-1241;0121;2365]

A =
-1 2 4 1
0 1 2 1
2 3 6 5

>> rref (A)

ans =
1 0 0 1
0 1 2 1
0 0 0 0

System of Linear Equations 2-27
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Exercises

1. Consider the system of linear equations:

3rx1 —4axot+x3+3x4 = by
—x1 —3x9 —4x3 —4xy = by
—2x1 +4wy —2w3 — 4wy = b3
—x1+4x0 —x3—3x4 = by

and denote b = (b1, ba, b3, bs). In this problem, you are about to solve the linear equations for seven
values of b. You should not resolve the equations every time the new vector b is given. Propose an
efficient way to find the solutions without repeating the process of performing elementary row operations.

(a) Denote the standard unit vectors

e = €y =

o O O =
o = o o
_ o O o

Solve the linear equations with b = e; for ¢+ = 1,2, 3,4. If the linear system has a solution for all
the four choices of b, refer to the those solutions as X1, X2, X3, X4.

(b) Consider the matrix
3 -4 1 3
-1 -3 -4 -4
-2 4 -2 -4
-1 4 -1 -3

A=

How does A relate to the augmented matrix of the linear system ? From the solutions X; in part
a), construct the following matrix

B = [Xl X9 X3 X4] .

Compute BA and explain what you found.

(c) Explain how you would apply the result in part b) fo solve the linear system with the following values
of b.
b=(5,5,-4,3), b=(20,17,—18,16), b= (—3,15,6,3).

2. Given the following five data points (z;,y;), ¢ = 1,2,...,5 as follows.
(—2,-5.1), (~1,-0.5), (0,0.5), (1,0.9), (2,1.3)

These points are plotted in Figure E In practice, we wish to explain a relationship between x; and
y; through a function y = f(x) Therefore, the goal is build a curve f(x) that exactly passes these
points (if possible) or the curve should be as close to these data points as possible. In this problem, we
specifically choose a polynomial function of order 4:

_ _ 2 3 4
y = f(x) =ap + a1z + a2x” + azz” + agz”.
(a) Explain if we can find the above polynomial that passes the given five points exactly. If it is possible,
give the expression of f(z).
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_92 -1.5 -1 -0.5 0 0.5 1 1.5 2

Figure 2.1: Fitting a 4th-order polynomial to five data points.

(b) If one more data point is added, are we still able to find a 4th-order polynomial that passes all the six
points ? Note that in this case, we have 6 data points, but only have 5 parameters to be identified.
Do you think it depend on the value of the additional point ? Justify your answer.

(c) Verify the part b) with (x,ys) = (3,1) and (x6,ys) = (3,1.3).

3. True/False questions. For each of the following statements, either show that it is true, or give a specific
counterexample if it is false.

(a) Consider the system of two equations.
5u+ 2logv =16, —u—3logv =14

By introducing some new variables, we can use row operations to solve this system.

(b) The system of equations:
(@-2)(y-5 =3, Gx/y=5-a

is linear in x and y.

(c) Every system of two equations with two unknown variables has a unique solution.

(d) (1) 8 is a reduced row echelon matrix.
[0 1 3 4]

(e) [0 0 1 O is areduced row echelon matrix.
10 0 0 0]
[0 1 3 0]

(f) 10 0 O 1] is areduced row echelon matrix.
10 0 0 0]

(g) Every equation of the form a1x1 + asxo = b has at least one solution for any nonzero a1, as, b.
(h) For any nonzero A € R™*™ and b € R™, if m > n then the system Ax = b has no solution.

(i) For any A € R™*", the system Ax = 0 always has infinitely many solutions.



22 2 System of linear equations

(j) An augmented matrix for the equation a1y + asxe = b is

alb
Ll
(k) If
2 8 0|0
00 010
0 6 =310

is an augmented matrix of a system of linear equations, the solution set is all the vectors that are
multiple of (—4,1,2).

4. Consider a system of linear equations with variables x1, X2, x3 and x4.

1+ ars + a2x3 + a3x4 =0
xr1 + bl’g + b2$3 + b31’4 =0
2 3 (21
1+ cro+crs+ccry =0

I —+ dxg —+ d2$3 + d31'4 = 0
The coefficients a, b, ¢ and d are all nonzero. Moreover, any two coefficients are not equal, i.e.,

a#b, a#c, a#d, b#*c, b#d, cH#d.
(a) Reduce the augmented matrix for the system (E) fo its reduced echelon form. Explain how you use
the assumption on the coefficients during performing row operations.
(b) Explain whether the system (E) has a nontrivial solution.

(c) Discuss the existence and uniqueness of solutions to the following system. Justify your answer
without solving the equations.

T +axot+ax3+Ts = 2
£L'1+2(E2+4$3+8’I4 = 21
Ty —Tot+x3—24 = 0

Ty —3x9 +9x3 — 27Tz, = T4
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3. Vectors and Matrices

e review on vectors

e matrix notation

e special matrices

e matrix operations

e inverse of matrices
e elementary matrices
e determinants

e linear equations in matrix form

31
Vector notation
n-vector x:
1
X9
x=|"
':L"!L
e also written as @ = (z1,22,...,%y)
e set of m-vectors is denoted R™ (Euclidean space)
e 1;: ith element or component or entry of =
e 1 is also called a column vector
ey=[y1 y2 -+ yn]iscalled a row vector
unless stated otherwise, a vector typically means a column vector
Vectors and Matrices 3.2

Special vectors

zero vectors: x = (0,0,...,0)
all-ones vectors: = = (1,1,---,1) (we will denote it by 1)

standard unit vectors: ¢, has only 1 at the kth entry and zero otherwise

1 0 0
€] = 0 N €9 — 1 s €3 = 0
0 1

o

(standard unit vectors in R?)

unit vectors: any vector u whose norm (magnitude) is 1, i.e.,

lull & y/uf +u3+-- +ud =
example: u = (1/v/2,2/v6,—1/v/2)

Vectors and Matrices 33




3

Matrices

25

Vector operations

scalar multiplication of a vector = with a scalar «

ary
axT
ax= |72

ALy

addition and subtraction of two n-vector z,y

1+ Y1 T1— Y
t4y= IzJErlh 7 c—y= I2?y2
Tn + Yn Tn — Yn

Vectors and Matrices

34
Geometrical interpretation
for n < 3: x is a point with coordinates z;
example: = = (4,0), y = (2,2)
L5y 0.75z + L5y
0.752z = {
Vectors and Matrices 3-5

Inner products

definition: the inner product of two n-vectors x,y is

Ty + T2y2 + -+ Tpln
also known as the dot product of vectors z,y
notation: 27y

properties []

o (ax)Ty = a(zTy) for scalar
o (z+y)Tz=aT2+y"2

o Ty =yTz

Vectors and Matrices
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Euclidean norm

lzl = /a3 + 234 -+ 22 =VaTlz

properties

e also written ||z|2 to distinguish from other norms
o |lax| = |af||z|| for scalar «
o lo+ gl < 1zl + Iyl (triangle inequality)

e ||z|]| >0and ||z|| =0 only if 2 =0
interpretation

o ||z|| measures the magnitude or length of x

e ||z — y|| measures the distance between z and y

Vectors and Matrices 37

Matrix notation

an m X n matrix A is defined as

arl ai2 s Qip
a21 22 e a2n

A= . . . , or A= [”fij]mxn
Am1  Gm2 .- Gmp

e a;; are the elements, or coefficients, or entries of A

e set of m x n-matrices is denoted R™*"

e A has m rows and n columns (m, n are the dimensions)
e the (i, ) entry of A is also commonly denoted by A;;

e A is called a square matrix if m =n

Vectors and Matrices 3.8

Special matrices

zero matrix: A =0

0 0 0
0 0 0
A= : 0
0 0 0
a;; =0,fori=1,...,m,j=1,...,n
identity matrix: A =1
10 0
0 1 0
0 0 1

a square matrix with a;; = 1,a;; = 0 for i # j

Vectors and Matrices 39
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diagonal matrix:

aj 0 0
0 0 ay,

a square matrix with a;; = 0 for i # j
triangular matrix:

a square matrix with zero entries in a triangular part

upper triangular lower triangular
ail aiz o Ain a; 0 - 0
0 a ea as1  a e 0
A=]" 2 . m|q= |®2 22
0 0 st Opn Ap1  Ap2 QAnn
aj;=0fori>j a;;=0fori<j

Vectors and Matrices

3-10
Addition and scalar multiplication
addition of two m x n-matrices A and B
ayp +bir ap+biz ... an +biy
A+ DB= a2 + ba1  an + b2 - Q2n + b2
Am1 + bml aAm2 + bm2 <o Qmn + bmn
scalar multiplication of an m x n-matrix A with a scalar 3
“8(1111 6&12 e ﬁaln
BA = qul 6722 o Ba_zn
Baml ﬁaTILQ v ﬁarnn
Vectors and Matrices 3-11
Multiplication

product of m x r-matrix A with r X n-matrix B:
,
(AB)ij = aibij + aizbaj + - -+ + iy = Z ik bij
k=1

dimensions must be compatible: # of columns in A = # of rows in B

e (AB);; is the dot product of the i*" row of A and the j™ column of B
e AB # BA in general | (even if the dimensions make sense)
e there are exceptions, e.g., AI = [ A for all square A

e A(B+C)=AB+ AC

Vectors and Matrices 312
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Matrix transpose

the transpose of an m x n-matrix A is

ajp a2y

Am1
AT — a2 a22 Am2
A1p  A2n Amn
properties []
e AT isnxm
° (AT)T =A
o (aA+B)'=aAT+ BT, ac€R

o (AB)T = BTAT
e a square matrix A is called symmetric if A = AT, i.c., aij = aj;

Vectors and Matrices

Block matrix notation

example: 2 x 2-block matrix A

=[5 5]

for example, if B,C, D, E are defined as

2 1 017
B:{g 8}, C:[l : 1}, D=0 1], E

=[-4 1 —1]
then A is the matrix
21 0 1 7
A=13 8 1 9 1
01 —4 1 -1
note: dimensions of the blocks must be compatible
Vectors and Matrices 3.14

Column and Row partitions

write an m X n-matrix A in terms of its columns or its rows

by
bT
A=la1 ay an] = |2
o
e a; for j =1,2,...,n are the columns of A
o bl fori=1,2,...,m are the rows of A

example:

121
A_Lgo}

the column and row vectors are

alzm, azzm, agzm, =121, vJ=[4 9 0

Vectors and Matrices
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Matrix-vector product

product of m x n-matrix A with n-vector x

a1121 + @122 + ...+ A1y
a2101 + a222 + ... + A2, Ty

Axr =
Am1T1 + Gm2T2 + ...+ AmnTn
e dimensions must be compatible: # columns in A = # elements in x
if A is partitioned as A = [(Ll as - an}, then

Az = a131 + a2 + - - + apy

e Az is a linear combination of the column vectors of A

e the coefficients are the entries of =

Vectors and Matrices 3-16

Product with standard unit vectors

post-multiply with a column vector

0
ail a1 - A1n 0 Al
a a @ : sk
Ae = |71 %2 n il = 2k = the kth column of A
Am1l Am2 .. Omnp i Amk
0
pre-multiply with a row vector
aip a2 A1n
a1 a2 az
efA = [0 0 Lo 0] |7 -
m1  Am2 Amn
= lar k2 arp] = the kth row of A
Vectors and Matrices 3-17
Trace

Definition:

trace of a square matrix A is the sum of the diagonal entries in A

tr(A) = ayn +an+ -+ ann

example:
2 1 4
A=10 -1 5
3 4 6

traceof Ais2—-14+6=7
properties [J

o tr(AT) = tr(A)

o tr(aA+ B) = atr(A) + tr(B)
e tr(AB) = tr(BA)

Vectors and Matrices 318
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Inverse of matrices

Definition:

a square matrix A is called invertible or nonsingular if there exists B s.t.

AB=BA=1

e B is called an inverse of A

e it is also true that B is invertible and A is an inverse of B

e if no such B can be found A is said to be singular
assume A is invertible

e an inverse of A is unique

e the inverse of A is denoted by A~!

Vectors and Matrices

3-19

assume A, B are invertible

Facts O

o (aA)~!' = a 1A~ for nonzero a

o AT is also invertible and (A7)~ = (A~)7
e AB s invertible and (AB)™! = B~1A~!

e (A+B) ' #£A 4+ B!

Vectors and Matrices

Inverse of 2 x 2 matrices

the matrix

is invertible if and only if
ad —bc# 0

and its inverse is given by

1 d —b
-1 _
A _adfbc{*c (l}

example:
12 1 o 1[3 -1
SIS I B

Vectors and Matrices
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Elementary matrices

Definition: a matrix obtained by performing a single row operation on the
identity matrix I,, is called an elementary matrix

examples:

[1 0 0]
010 add k times the first row to the third row of I3
[k 0 1]

1 0] . .

0 k multiply a nonzero k with the second row of I
[1 0 0]
0 01 interchange the second and the third rows of I3
010

an elementary matrix is often denoted by F

Vectors and Matrices 3-22

Inverse operations

row operations on E that produces I and vice versa

I —-FE

E—1T

add & times row i to row j
multiply row i by k # 0
interchange row i and j

add —k times row i to row j
multiply row i by 1/k
interchange row i and j

1 00 1 0 0|1 00 1 00
E = (01 0] = 0 1 0{f{0 1 0of=1(0 10
k0 1 =k 0 1] [k 0 1 0 0 1
B - 1 0 . 1 o]t o] [1 o0
-0k 0 1/k| [0 k| |0 1
1 0 (1 0 o]t 0 0 100
E = [0 0 1] = |00 1/|0 0 1|=1(0 10
0 1 0 1 0] [0 1T O 0 0 1
Vectors and Matrices 3-23
Facts [J
e every elementary matrix is invertible
e the inverse is also an elementary matrix
from the examples in page 3-23
[1 0 0 [1 0 0
E = (010 = E'=|[0 10
k0 1 |-k 0 1
) [t o0
E-="lo & = =10 1k
[1 0 (1 00
E = |00 1] = E'={0 01
10 1 0 10

Vectors and Matrices
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Row operations by matrix multiplication

assume A is m x n and E is obtained by performing a row operation on I,,,
E'A = the matrix obtained by performing this same row operation on A
example:
3

1 2
A=10 1 -1
11 0

e add —2 times the third row to the second row of A

0 1 2 3
-2 EA=|-2 -1 -1

o = O

Vectors and Matrices 3-25

e multiply 2 with the first row of A

200 2 4 6
E=10 1 0f EA=|0 1 -1
001 11 0
e interchange the first and the third rows of A
0 01 11 0
E=1|0 1 0 EA=|0 1 -1
1 00 1 2 3
Vectors and Matrices 3.26

Inverse via row operations

assume A is invertible

e A is reduced to I by a finite sequence of row operations
Ey, By, ..., By

such that
By EyBA=1

e the reduced echelon form of A is I

e the inverse of A is therefore given by the product of elementary matrices

ATY=E, - EyE,

Vectors and Matrices 3-27
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example: write the augmented matrix [A | I]

=N
O N
== W
o
o = O
o

and apply row operations until the left side is reduced to I

R+ Ry R 0 0 L 20
Rt R R 1 2 1/0 1 0
S 3 0 -2 3|0 -1 1
1 2 1]0 1 0
Ry < Ry 0 0 1|1 -2 0
0 -2 3|0 -1 1
1 2 10 1 0
—3R2+Rg—>R3 0 0 1 1 -2 0
0 -2 0|-3 5 1
Vectors and Matrices 3-28
12 110 1 0
R3/(—2) = R3 00 1|1 =2 0
01 0/3 -3 -
12 1]0 1 0
Ry Ry 010 3% -3 -1
00 1]/1 =2 0
10 11-3 6 1
—2Ry+ Ry — Ry 0102 -2 -1
0011 -2 0
1 00[-4 8 1
—R3+R1—>R1 010 % bl *%
0011 -2 0
the inverse of A is
-4 8 1
3 5 1
2 2 2
1 -2 0
Vectors and Matrices 3-29

Invertible matrices

0 Theorem: for a square matrix A, the following statements are equivalent

1. Ais invertible
2. Az = 0 has only the trivial solution (z = 0)
3. the reduced echelon form of A is I

4. A is expressible as a product of elementary matrices

Vectors and Matrices
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Inverse of special matrices

diagonal matrix

aj 0 0
0 0 a,

a diagonal matrix is invertible iff the diagonal entries are all nonzero
(1“7&0 7,':1,2,‘..,71

the inverse of A is given by

1Jay, 0 - 0
g |0 a0
0 - 0 1/ay,

the diagonal entries in A™! are the inverse of the diagonal entries in A

Vectors and Matrices 3-31

triangular matrix:

upper triangular lower triangular
air @iz - Qln a7 0 - 0
0 ax - a a a o0
A= " ?z . e - ?1 .22
0 0 R ) an1  Ap2 ot Opp
aij:()forizj aij:(]fOI”L-Sj

a triangular matrix is invertible iff the diagonal entries are all nonzero
(L”7é07 VZ‘:LQ,....,TL
more is true ...

e product of lower (upper) triangular matrices is lower (upper) triangular

e the inverse of a lower (upper) triangular matrix is lower (upper)
triangular

Vectors and Matrices 3.32

symmetric matrix: A = AT
O

e for any square matrix A, AA” and AT A are always symmetric
e if A is symmetric and invertible, then A~' is symmetric

e if A is invertible, then AAT and AT A are also invertible

Vectors and Matrices 3-33
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Determinants

the determinant is a scalar value associated with a square matrix A
commonly denoted by det(A) or |A]

determinants of 2 x 2 matrices:

a b

det L d

]:ad—bc

determinants of 3 x 3 matrices: let A = {a;;}

det A = a11a20a33+012a23031+013021032 o

- ((1,31&22(113—5—(1,32(1,23(1,1 1+a33a21(1,12)

Vectors and Matrices 3-34

for a square matrix of any order, it can be computed by

e cofactor expansion

e performing elementray row operations

Vectors and Matrices 3-35

Minor and Cofactor

Minor of entry a;;: denoted by M;;

e the determinant of the resulting submatrix after deleting the ith row
and jth column of A

Cofactor of entry a;;: denoted by Cj;
o Cyj = (-1)")My;

example:

=—4, Cy= (1)) =4

Vectors and Matrices 3-36
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Determinants by Cofactor Expansion
Theorem: the determinant of an n x n-matrix A is given by
det(A) = alelj + anCQj + -+ an]-an

and
det(A) = anCiy + ai2Ciz + - - - + ainCin

regardless of which row or column of A is chosen

example: pick the first row to compute det(A)

3 1 =2
A = 5 0 2 ) det(A):a11011+a12012+a13013
1 -1 2
0 2 5 2 5 0
det(A) = 3(—1)* 1 5 ‘+1(71)‘s L 5 ‘72(71)4 71‘
= 312+ (=1)®) —2(1)(-5) =8
Vectors and Matrices 3-37

Basic properties of determinants

Olet A, B be any square matrices

o det(A) = det(A”T)
e if A has a row of zeros or a column of zeros, then det(A4) =0

o det(A+ B) # det(A) + det(B) !
determinants of special matrices:

e the determinant of a diagonal or triangular matrix is given by the
product of the diagonal entries

o det(l)=1

(these properties can be proved from the def. of cofactor expansion)

Vectors and Matrices 3-38

Oanother basic properties; suppose the following is true
e A and B are equal except for the entries in their kth row (column)

e (' is defined as that matrix identical to A and B except that its kth row
(column) is the sum of the kth rows (columns) of A and B

then we have
det(C') = det(A) + det(B)

example:
1 0 1 1 0 1 1 01
A=12 1 1|, B=1|2 1 1 c=1(2 11
1 2 -1 3 0 2 4 2 1

Vectors and Matrices 3-39
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Determinants under row operations

e multiply k£ to a row or a column

kair  kais  kais ain a2 a3
a1 aze a3 | =k| az ax a3
a3y a32 ass aszp az2 asg

e interchange between two rows or two columns

azy Q2 G23 apy aiz2 a3
aip @iz Qi3 | = —| G21 @G22 a23
asy a3z a33 asy azz2 33

e add k times the ith row (column) to the jth row (column)

a11 + ka1t aip + kasa a1z + kags a1l a2 a3
a21 22 az3 = | G21 @22 asz3
a3y a32 ass azy azz 33
Vectors and Matrices 3-40

(the proof of determinants under row operations is left as an exercise )

example: B is obtained by performing the following operations on A

Ro+3Ry -+ Ry, R3<+ Ry, —4R; — Ry

2 3 =2
A=[3 1 0| = det(B)=(-4)-(-1) 1-det(A)
-3 -3 3

the changes of det. under elementary operations lead to obvious facts [
o det(ad) = o det(4), a#0

e If A has two rows (columns) that are equal, then det(A) =0

Vectors and Matrices 3-41

Determinants of elementary matrices

let B be obtained by performing a row operation on A then

B=FA and det(B)=det(EA)

[k 0 0]

E = |0 1 0|, det(B)=kdet(A) (det(E)=k)
0 1
0 1 0

E = |1 0 0|, det(B)=—det(A) (det(E)=—1)
01
- o]

E = |0 1 0|, det(B)=det(A) (det(E) =1)
0 0 1]

conclusion: det(EA) = det(E) det(A)

Vectors and Matrices 3-42
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Determinants of product and inverse

Olet A, B be n X n matrices
e Ais invertible if and only if det(A4) # 0
o if A is invertible, then det(A~!) = 1/det(A)

o det(AB) = det(A) det(B)

Vectors and Matrices

343
Adjoint
the adjoint of A is the transpose of the matrix of cofactors from A
011 C(21 e C’rLl
ad](A) — C212 6222 . C:LZ
Cln CZn e Cnn
if A is invertible then 1
A7t = dj(A
det(a) A
Proof.
e the cofactor expansion using the cofactors from different row is zero
a;i1Ck1 + a;2Cr2 + ... + ainCrn = 0, fori#k
o Aadj(A) =det(A)-TI
Vectors and Matrices 3-44

Linear equation in matrix form

the linear system of m equations in n variables

anxy +appry + -t at, = b

2121 + G22%2 + - + a2y, = bo

Am1T1 + Qa2 + -+ Qpp®n = bm

in matrix form: Az = b where
ail a2 N AT T bl
a a c.oa T b

O I R e B
aTVLl a/TYLZ e a")’l’L ITL bT’L

Vectors and Matrices
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Applications

a set of linear equations Az = b (with A m x n) is
e square if m=n (A is square)

ann axz| [a1] _ [bn]
a1 G| |T2 by

e underdetermined if m <n (A is fat)

X1 »b
{an @12 a13} e 1}

o] =
as1 G az ba
T3 -
e overdetermined if m > n (A is skinny)
air ai2| . by
T1| b
az1 a2 = 2
T b
asi  asz 3
Vectors and Matrices 3-46

Cramer’s rule

consider a linear system Ax = b when A is square

if A is invertible then the solution is unique and given by
xr=A""

each component of  can be calculated by using the Cramer’s rule

Cramer’s rule

B g 1
1Al 1Al ’ |A]

where A; is the matrix obtained by replacing b in the jth column of A

(its proof is left as an exercise)

Vectors and Matrices 3-47
example:
3 1 =2 2
A=15 0 2|, b=]1
1 -1 2 2

since det(A) = 8, A is invertible and the solution is

1 2 0 2 2 1
r=A"t=-|-8 8 —16| |1| =|-5
815 4 —5]|2] |-2
using Cramer's rule gives
1 2 1 =2 1 3 2 =2 1 3 1 2
n=g 1 2 |, T2=3 51 2 T3=3g 5 0 1
2 -1 2 1 2 2 1 -1 2
which yields
r1=1, ®a=-5H, x3=-2

Vectors and Matrices 3-48
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Matrices

MATLAB commands

some commonly used commands for working with matrices

e eye(n) produces an identity matrix of size n

e zeros(m,n) creates a zero matrix of size m X n
e inv(A) finds the inverse of A

e det (A) finds the determinant of A

e trace(A) finds the trace of A

to solve Ax = b when A is square use

e A\b (compute A~1b)

Vectors and Matrices
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Exercises
1. Let A be a square matrix of size n X n. Prove the following statements.

(a) If B is the matrix that results when a single row or single columns of A is multiplied by a scalar
k, then det(B) = k det(B).

(b) If B is the matrix that results when two rows or two columns of A are interchanged, then
det(B) = — det(A).

(c) If B is the matrix that results when a multiple of one row of A is added to another row or when a
multiple of one column is added fo another column, then det(B) = det(A).

Your proof must be valid for any A.

2. If A and B are square matrices of the same size, then prove that

det(AB) = det(A) det(B).

3. Let v1,v2,...,V, be vectors in R™. Prove that the equation

a1v1 + oV + - - + v, =0

has only the solution a; = aig = - -+ = ¢, = 0 (ayi’s are scalar) if and only if the determinant of
V= [vl Vg +e- vn]
is NOT zero.
4. A square matrix is called skew-symmetric if AT = —A.

(a) Give examples of 3 X 3 and 2 X 2 skew-symmetric matrices.
(b) If A is skew-symmetric, prove that A~ lis skew-symmetric.

(c) If A and B are skew-symmetric matrices, then so are AT, A+ B, A — B, and kA for any scalar
k.

(d) If A is skew-symmetric, what is det(A) ? Verify your result with the examples in part a).
5. Without directly evaluating the determinant, show that

sina cosa  sin(a+ 9)
sinf8 cosfB sin(f+46) | =0.
siny cosvy sin(y+9)
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4. Vector spaces

definition

linear independence

basis and dimension

coordinate and change of basis

range space and null space

rank and nullity

41
Vector space

a vector space or linear space (over R) consists of
e asetV
e avectorsum +: VxV =V
e a scalar multiplication : R xV — V
e a distinguished element 0 € V
which satisfy a list of properties
Vector spaces 4-2
exrt+ycV VeyeV (closed under addition)
exty=y+a Ve,yeV (4 is commutative)
e (x+y)+z=z+(y+2) Vo,y,z€V (4 is associative)
e 0+z=x VeV (0 is additive identity)

e VxeVI(—x)eVst z+(—x)=0  (existence of additive inverse)

az €V forany o € R (closed under scalar multiplication)

o (af)x = afz), Vo, B € RVx €V (scalar multiplication is associative)

e a(z+y) =axr+ay, Va e RVz,y eV (right distributive rule)
o (a+pf)r=azx+ay Vo, €R Yz eV (left distributive rule)
e lzx =z VeV (1 is multiplicative identity)

Vector spaces 4-3
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Vector spaces

notation

e (V,R) denotes a vector space V over R

e an element in V is called a vector

Theorem: let u be a vector in V and k a scalar; then

e Qu=0 (multiplication with zero gives the zero vector)
e k0=0 (multiplication with the zero vector gives the zero vector)
o (—lu=-u (multiplication with —1 gives the additive inverse)

o ifku=0,thenk=0o0oru=20

Vector spaces 44

roughly speaking, a vector space must satisfy the following operations

1. vector addition
z,yeV = xz4+yeV

2. scalar multiplication

forany a €R, z€V = azxeV

the second condition implies that a vector space contains the zero vector
0eV

in otherwords, if V is a vector space then 0 € V

(but the converse is not true)

Vector spaces 45

examples: the following sets are vector spaces (over R)
e R"
* {0}

e R™ Xn

C™*™: set of m x n-complex matrices

e P,: set of polynomials of degree <n
Po={p(t) | p(t) =ao+art+-- +ant"}
e S": set of symmetric matrices of size n

o C(—00,00): set of real-valued continuous functions on (—o0, o)

o C™(—00,00): set of real-valued functions with continuous nth
derivatives on (—00, 00)

Vector spaces 4-6
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O check whether any of the following sets is a vector space (over R)

)
e oo fi] ner]

o {p(z) € Py | p(x) = a1z + axa® for some ay,az € R}

Vector spaces 4-7

Subspace

e a subspace of a vector space is a subset of a vector space which is
itself a vector space

e a subspace is closed under vector addition and scalar multiplication
examples:

e {0} is a subspace of R"
o R™*" is a subspace of C"*"
o {2 €R?| 21 =0} is a subspace of R

o {zc R? |2y = 1} is not a subspace of R?

1 4| (0 0] . 2x2
° {{73 2} , {0 0}} is not a subspace of R

e the solution set {z € R" | Az = b} for b # 0 is a not subspace of R"

Vector spaces

examples: two hyperplanes; one is a subspace but the other one is not

201 —3wa+x3 =0 (yellow), 21 —3za+ x5 =20 (grey)

black = red + blue

r=(-3,-2,0) & y = (1,—1,—5) are on the yellow plane, and so is z +y
x=(-3,-2,20) & y = (1,—1,15) are on the grey plane, but z + y is not

Vector spaces 49
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Linear Independence

Definition: a set of vectors {vq,v,...,v,} is linearly independent if
a1y +agvg + - o, =0= a1 =ay=---=a, =0
equivalent conditions:
e coefficients of ajvy + agvg + - - - + @y vy, are uniquely determined, i.e.,
a1v1 + Qovs + -+ QpUy = Brog + Bovas + -+ Bpon
implies a, = ), for k =1,2,....,n

e no vector v; can be expressed as a linear combination of the other
vectors

Vector spaces 410
examples:
11 3]
e |2| |1 areindependent
_1_ L d
1] [31 [-1]
e |21 |1{,| O | areindependent
_1_ _0_ L 1 ]
1] [3] [-1] [4
e |21 |1{,] 0 ,|2]| arenot independent

1 0 1 0

1 3 2
e |21 |1{,|—1] are not independent
_1_ L d _71_
Vector spaces 411

Linear span

Definition: the linear span of a set of vectors

{v1,v2,...,0,}
is the set of all linear combinations of v,..., v,
Span{'UhU?: s 7vn} = {al'Ul + agvz + -+ apvy ‘ Q1. ..,0n € R}

example:

1 0/ [0 1] [0 O]]. . .
span { {0 0} , L 0} , {O 1} } is the set of 2 X 2 symmetric matrices

Fact: if vy,..., v, are vectors in V, span{vy,...,v,} is a subspace of V

Vector spaces 4-12




4

Vector spaces

47

Basis and dimension

Definition: set of vectors {v1,vs,++ ,v,} is a basis for a vector space V if
o {v1,v9,...,v,} is linearly independent
e V =span {vi,va,...,Un}

equivalent condition: every v € V can be uniquely expressed as
V=001 + Uy

Definition: the dimension of V), denoted dim(V), is the number of
vectors in a basis for V

Theorem: the number of vectors in any basis for VV is the same

(we assign dim{0} =0 )

Vector spaces 4-13

examples:

e {e1,€ea,e3} is a standard basis for R? (dim R® = 3)
-1 0 . . 2 . 2

° 3| ol (52 basis for R (dimR* = 2)

o {1,4,t%} is a basis for P, (dim Py = 3)

1 0f (0 1| |0 O] [0 Of]. . 2X2 [ 1 P2X2
. {{0 0}.[0 0},{1 0},{0 1}}|sabaS|sforR (dim R**% = 4)

° 1 cannot be a basis for R*  why ?

1 1] |2 . 5 5
° {L} R {0} s { 3 ]} cannot be a basis for R why 7

Vector spaces

Coordinates

let S = {v1,vo,...,v,} be a basis for a vector space V

suppose a vector v € V can be written as
V= a1U1 + gV + -+ + anvy,
Definition: the coordinate vector of v relative to the basis .S is
[v]s = (a1, a2, ...,an)

e linear independence of vectors in S ensures that ay's are uniquely
determined by S and v

e changing the basis yields a different coordinate vector

Vector spaces
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Geometrical interpretation

new coordinate in a new reference axis

Vector spaces 4-16

examples:
o S ={ej,ea,e3}, v=1(-2,4,1)

v=—2e1 +4des+ leg, [v]s=(-2,4,1)
o 5= {(_1727 0)7 (3707 0)‘ (_27 17 1)}’ v= (_2747 1)

3 -2
o +1] 14, [U]S = (3/271/271)
0 1

—_
no
N =

o S ={1,t,t2}, v(t) = =3 + 2t + 42
o(t)=—=3-1+2-t+4-12, [v]s=(-3,2,4)
o S={1,t— 1,82 +1t}, v(t) = -3+ 2t + 4t?
v(t)==5-1=2-(t—1)+4- (2 +1t), [v]s= (-5 —2,4)

Vector spaces 417

Change of basis

let U = {uy,...,un} and W = {wy,...,w,} be bases for a vector space V

a vector v € V has the coordinates relative to these bases as
Wl = (a1,a2,...,a,), [vlw = (b1,ba,...,by)
suppose the coordinate vectors of wy, relative to U is
[wilu = (e, C2ks - - - Cnke)

or in the matrix form as

i1 €2 -+ Cin

Co1 C22 +++ C2p

[wr wy - wy]=[ur uy e owy] | .
Cnl Cp2 " Cpp

Vector spaces 4-18
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the coordinate vectors of v relative to U and W are related by

ay ci1 €12 - Cin by by
Az | _ |Ca1 C22 -+ Copn b2 Sy P b2
Qn Cnl Cn2 **° Cnn bn bn

e we obtain [v]y by multiplying [v]w with P
e P is called the transition matrix from W to U
e the columns of P are the coordinate vectors of the basis vectors in W

relative to U

Theorem [

P is invertible and P~ is the transition matrix from U to W

Vector spaces 419

example: find [v]y, given

() G0} (B -]

first, find the coordinate vectors of the basis vectors in W relative to U

2 1] |1 —1]|ci1 cr2
1 0] |1 1| |ecoa e22

from which we obtain the transition matrix

I A

and [v]y is given by

Vector spaces 420

Nullspace

the nullspace of an m X n matrix is defined as

N(A)={z e R"| Az =0}

e the set of all vectors that are mapped to zero by f(z) = Az
e the set of all vectors that are orthogonal to the rows of A

o if Az =D then A(z+ z) =0 for all z € N(A)

e also known as kernel of A

e N(A) is a subspace of R" O

Vector spaces 4-21
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{z| Az =0b} {z|Az=0}

T+ 2z
A
2 -1 -3
z
A=|-4 2|, b=16
-6 3 9
x
o N(A) ={z| 2z, —x2 =0}
e the solution set of Az =bis {z | 221 — x2 = —3}

e the solution set of Az = b is the translation of N (A)

Vector spaces 4-22

Zero nullspace matrix

e A has a zero nullspace if N'(A) = {0}
e if A has a zero nullspace and Ax = b is solvable, the solution is unique

e columns of A are independent

0 equivalent conditions: A € R™*"

e A has a zero nullspace
e A is invertible or nonsingular

e columns of A are a basis for R"

Vector spaces 423

Range space
the range of an m x n matrix A is defined as
R(A) ={y € R" | y = Ax for some z € R" }
e the set of all m-vectors that can be expressed as Ax
e the set of all linear combinations of the columns of A = [a1 e an]
R(A) ={y |y =x1a1 + x200 + - - - + zpa,, 2 €R"}
e the set of all vectors b for which Az = b is solvable

e also known as the column space of A

e R(A) is a subspace of R™ O

Vector spaces 4-24
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Full range matrices

A has a full range if R(4) = R™

[Jequivalent conditions:
e A has a full range
e columns of A span R™

e Ax = b is solvable for every b

o N(AT) = {0}

Vector spaces 425

Bases for R(A4) and N (A4)
A and B are row equivalent matrices, i.e.,
B=FE, - EyE A
Facts [

e elementary row operations do not alter N'(A)

e columns of B are independent if and only if columns of A are

e a given set of column vectors of A forms a basis for R(A) if and only if
the corresponding column vectors of B form a basis for R(B)

Vector spaces 426

example: given a matrix A and its row echelon form B:
-1 2 4 1 1 0 0 1
A=1|0 1 2 1|, B=|[0 1 2 1
2 36 5 00 00
basis for N(A): from {z | Az =0} = {z | Bz = 0}, we read
r14+x4=0, x2+2x34+24=0

define w3 and x4 as free variables, any z € N/(A) can be written as

T —XTy 0 —1
x| | —2w3— 4| -2 -1
xr = zs| s =x3 1 + x4 0
Ty T4 0 1

(a linear combination of (0,—2,1,0) and (—1,—-1,0,1)

Vector spaces 4-27
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0 -1
hence, a basis for N'(A) is 712 I)l and dim N (A) =2
0 1

basis for R(A): pick a set of the independent column vectors in B (here
pick the 1st and the 2nd columns)

the corresponding columns in A form a basis for R(A):

-1

N O
—_

dimR(A) =2

Vector spaces 4-28

O conclusion: if R is the row reduced echelon form of A

e the pivot column vectors of R form a basis for the range space of R

e the column vectors of A corresponding to the pivot columns of R form
a basis for the range space of A

e dimR(A) is the number of leading 1's in R

e dim N (A) is the number of free variables in solving Rz = 0

Vector spaces 4-29

Rank and Nullity
rank of a matrix A € R™*" is defined as
rank(A) = dimR(A)
nullity of a matrix A € R™*" is
nullity (4) = dim N (A)
Facts [J
e rank(A) is maximum number of independent columns (or rows) of A
rank(A4) < min(m,n)

e rank(A) = rank(A7)

Vector spaces 4-30
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Full rank matrices

for A € R™*" we always have rank(A) < min(m,n)

we say A is full rank if rank(A) = min(m,n)

e for square matrices, full rank means nonsingular (invertible)
o for skinny matrices (m > n), full rank means columns are independent

e for fat matrices (m < n), full rank means rows are independent

Vector spaces 431

Rank-Nullity Theorem
for any A € R™*",

rank(A) + dimN(A) =n

Proof:

e a homogeneous linear system Az = 0 has n variables

e these variables fall into two categories

— leading variables
— free variables

e # of leading variables = # of leading 1's in reduced echelon form of A
= rank(A)

e # of free variables = nullity of A

Vector spaces 432

MATLAB commands

e rref (A) produces the reduced row echelon form of A

> A=1[-1241;0121;23 6 5]

A =
-1 2 4 1
0 1 2 1
2 3 6 5
>> rref (A)
ans =
1 0 1
1 2 1
0 0 0

e rank(A) provides an estimate of the rank of A

Vector spaces 4-33
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e null(A) gives normalized vectors in a basis for A/(A)

>> A

A =
1 -3 2
2 -6 4
3 -9 6

>> U = null(A)
U =
-0.8729 -0.4082

-0.4364 0.4082
-0.2182 0.8165

(and we can verify that AU = 0)

Vector spaces
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Exercises
1. Let  and ¥ be any two vectors in R"™. We say = and y are orthogonal if xTy =0, ie.,
T1Y1 + Toy2 + -+ TpYn = 0.
Define S a set of all vectors in R™ that are orthogonal to the hyperplane
H={x eR"|a1z1 + asza + -+ + apz, = b}.

In other words, if € S then 27y = 0 for all y € H. Show that S is a subspace of R™. Find a basis
for S and its dimension.

2. Let
-1 0 3

5 7 -8

A= 4 2 -10

1 3 0

and define V as a set of vectors b for which Ax = b is solvable.

(a) Show that V is a vector space. Find a basis for V and determine its dimension.
(b) What is the rank and nullity of A ?

(c) Find a basis for the row space of A.

3. Determine whether each of the following sets is a subspace. If one is, find a basis and its dimension.

(@ §={(1,2),(3,1),(0,0)}.

) S={zeR" |z +z, =0}

) S={Aer¥>3| AT = —A}.

(d) Given A € R™*™ and b € R™ (b is nonzero). Let S be the set of all vectors y € R™ obtained by

y=Ax+b

for any z € R".
) S={pePr,|plx)=a+arz+ -+ aa™ witha; +as + -+ a, = 0}.
) S={perP,|plx)=ar+arx+ - +a,z™ witha; =1}.
) S={z eR"|a’z > 0}, for some fixed a € R™.
(hy S={AeRrR™"| A% = A}.
) S={AER™™ | a;1 +agw+ -+ apn, =0}
) S ={p € P, |adl the roots of p(x) are 0}.
) S ={A € 38" | all the eigenvalues of A are nonnegative}.
) S =span{(1,2,0,1),(0,0,1,3), (—4, —8,1,—1), (2,4, -3, -7), (1,2, -1, -2)}.
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5. Linear Transformation

linear transformation

matrix transformation

kernel and range

isomorphism
e composition

inverse transformation

Transformation

let X and Y be vector spaces
a transformation 7" from X to Y, denoted by
T:X Y
is an assignment taking z € X toy=T(x) €Y,
T:X—=Y, y=T()

e domain of T, denoted D(T') is the collection of all z € X for which T’
is defined

e vector T'(x) is called the image of x under T'

e collection of all y = T'(z) € Y is called the range of T', denoted R(T')

Linear Transformation 5-2

example 1 define T': R® = R? as

Y1 = —x1+ 2xp + 43
Y2 = —Tz+9z3

where z € R® and y € R?
example 2 define 7 : R®* = R as

y = sin(xy) + a3 — xzs
where 2 € R® and y € R

example 3 general transformation 7': R” — R™

vy = filzn 2, 2)
Y2 = faz1,22,. .., 20)
Ym = f’m.(xla Zo,. .. 7-r'n)
where fi, fa, ..., fm are real-valued functions of n variables

Linear Transformation 53
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5 Linear

transformations

Linear transformation

let X and Y be vector spaces over R

Definition: a transformation 7': X — Y is linear if

o T(x+2)=T(x)+T(z), Vr,yeX

o T'(ax)=aT(x), VreX,VaeR

(additivity)

(homogeniety)

Linear Transformation

54

Examples
O which of the following is a linear transformation ?

e matrix transformation 7' : R" — R™

T(z) = Az, A€R™"

o affine transformation 7': R — R™

T(z) = Az +b, AeR™" beR™

e T:P,— Pn+1
T(p(t)) = tp(t)

eT:P,—P,
T(p(t)) =p(t+1)

Linear Transformation
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e T: Rm,><71, _ R71,><m,' T(X) — XT
o T:R™™ 4R, T(X)=det(X)
o T:R™™ SR, T(X)=tr(X)

« TiR' SR, T()=|al £ VA3t Tl

e T:R"=R", T(z)=0

denote F'(—o0,o0) the set of all real-valued functions on (—oo, c0)

o T:Cl(—00,00) = F(—00,00)

o T:(C(—00,00) = C(—00,00)

7(7) = [ fas

Linear Transformation

5-6
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Examples of matrix transformation

T:R"—R™
T(x)=Ax, AeR™"

zero transformation: 7 : R" — R™
T(x)=0-2=0
T maps every vector into the zero vector
identity operator: 7 : R" — R"
Tx)=1I,-x==x
T maps a vector into itself

Linear Transformation 57

reflection operator: 7' : R" — R"

T maps each point into its symmetric image about an axis or a line

Linear Transformation 5-8

projection operator: 7 : R” — R"

T maps each point into its orthogonal projection on a line or a plane

T2 T2

Linear Transformation 5-9
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rotation operator: 7 : R" — R"
T maps points along circular arcs

T2

A

— (w1, wy)

Tz \ T rotates x through an angle 6
A (21, 22)

x &1

w=T(z) = {cosf) —sin 0}

sinfl  cos@

Linear Transformation 5-10

Image of linear transformation

let V and W be vector spaces and a basis for V is
S = {1)1,’027 cee 7/Un}

let T':V — W be a linear transformation

the image of any vector v € V under T' can be expressed by
T(v) = a1T(v1) + a2T(ve) + - - + a, T (vy)
where ay,as, ..., a, are coefficients used to express v, i.e.,

v = ai1v; + agv2 + -+ apvy

(follow from the linear property of T')

Linear Transformation 5-11

Kernel and Range

let T: X — Y be a linear transformation from X to Y
Definitions:

kernel of T is the set of vectors in X that 7" maps into 0

ker(T)={z € X | T(xz) =0}

range of 7" is the set of all vectors in Y that are images under T°
R(I)={yeY|y=T(z), z€X}
Theorem [J

e ker(7T) is a subspace of X
e R(T) is a subspace of Y’

Linear Transformation 5-12
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matrix transformation: 7: R" — R™, T(z) = Az

o ker(T) = N(A): kernel of T is the nullspace of A

e R(T) = R(A): range of T is the range (column) space of A
zero transformation: 7: R" - R™, T(z)=0

ker(T) =R", R(T) = {0}
identity operator: T:V —V, T(x)=z

ker(T) ={0}, R(T)=V
differentiation: T : C!(—c0,0) — F(—00,00), T(f) = [

ker(T') is the set of constant functions on (—o0, 00)

Linear Transformation 5-13

Rank and Nullity
Rank of a linear transformation T': X — Y is defined as

rank(T) = dim R(T)

Nullity of a linear transformation 7': X — Y is defined as
nullity (7') = dimker(T)
(provided that R(T') and ker(T') are finite-dimensional)
Rank-Nullity theorem: suppose X is a finite-dimensional vector space

rank(T) + nullity (T') = dim(X)

Linear Transformation 5-14

Proof of rank-nullity theorem

assume dim(X) =n

e assume a nontrivial case: dimker(T) =r where 1 <7 <n

o let {vy,va,...,v,} be a basis for ker(T")
o let W ={vy,v2,...,0} U{vpy1,Vr42,...,0,} be a basis for X
e we can show that

S= {T(UT+1)7 s 7T(Un)}
forms a basis for R(T)  (.". complete the proof since dim S =n —r)
span S = R(T)

e for any z € R(T'), there exists v € X such that z = T'(v)
e since W is a basis for X, we can represent v = a1v1 + -+ + QpU,

e we have z = o, 11T (Vp41) + -+, T(v,) (7 v1,...,0, € ker(T))

Linear Transformation 5-15
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S is linearly independent, i.e., we must show that
a1 T (V1) + -+, T(v) =0 = a1 =-=a,=0
e since 7' is linear
1T (Vpg1) + -+ T (v) = T(Qrg1Vr41 + - - + @puy) =0
o this implies ;41041 + - - + v, € ker(T)
Q1 Vpg1 + 0+ QU = Qv + QU + -+ Uy
e since {v1,...,Vp, Vrt1,...,Un} is linear independent, we must have

alz‘--:ar:ar+1:...:o¢n:0

Linear Transformation

One-to-one transformation

a linear transformation 7': X — Y is said to be one-to-one if
Vr,z € X Tx)=T(z) — x=z2

e T never maps distinct vectors in X to the same vector in Y

e also known as injective tranformation

0 Theorem: T is one-to-one if and only if ker(T") = {0}, i.e.,
Tx)=0 =— z=0

o for T(z) = Ax where A € R™*",

T is one-to-one <= A is invertible

Linear Transformation

Onto transformation
a linear transformation 7': X — Y is said to be onto if

for every vector y € Y, there exists a vector z € X such that
y=T(x)

e every vector in Y is the image of at least one vector in X

e also known as surjective transformation
0O Theorem: T is onto if and only if R(T) =Y

0 Theorem: for a linear operator T': X — X,

T is one-to-one if and only if T is onto

Linear Transformation
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0 which of the following is a one-to-one transformation 7
e T:P, > R"!

T(p(t)) = T(ap + art + - - - + a,t") = (ap, a1, ..., ay)

e T:P,— Pn+1
T(p(t)) = tp(t)

° T . Rm><n N R7L><HL’ T(X) — XT
o T:R™™ %R, T(X)=tr(X)

o T: (0 (~00,00) = F(—00,00), T(f)=f

Linear Transformation 5-19

Matrix transformation
consider a linear transformation 7' : R — R™,

T(z) = Ax, A€ R™"
0 Theorem: the following statements are equivalent

e 7' is one-to-one
e the homonegenous equation Az = 0 has only the trivial solution (x = 0)

e rank(A) =n
0 Theorem: the following statements are equivalent

e T is onto
e for every b € R™, the linear system Az = b always has a solution

e rank(A) =m

Linear Transformation 5-20

Isomorphism

a linear transformation 7' : X — Y is said to be an isomorphism if

T is both one-to-one and onto

if there exists an isomorphism between X and Y, the two vector spaces are
said to be isomorphic

[0 Theorem:

e for any n-dimensional vector space X, there always exists a linear
transformation 7' : X — R" that is one-to-one and onto (for example, a
coordinate map)

e every real n-dimensional vector space is isomorphic to R"

Linear Transformation 5-21
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examples of isomorphism
eT:P, R

T(p(t)) =T(ag+ art + - - + ant™) = (ag, a1, ..., an)

Rn+1

a; ag o
T (Ll:s aJ) = (a1, a2, a3, a4)

is isomorphic to R*

P,, is isomorphic to

e T:R*? 4 R?

R2><2

in these examples, we observe that

e 7" maps a vector into its coordinate vector relative to a standard basis

e for any two finite-dimensional vector spaces that are isomorphic, they
have the same dimension

Linear Transformation 5-22

Composition of linear transformations

let Ty : U — V and Ty : V — W be linear transformations
the composition of T5 with Tj is the function defined by
(T 0 Th)(u) = To(T1(u))

where u is a vector in U

T2 o T]

Theorem O if T1,T5 are linear, so is Th o T}

Linear Transformation 5-23

example 1: 77 : P; = Py, Ty : Py — Py
Tu(p(t)) = tp(t), To(p(t)) = p(2t +4)
then the composition of T with 77 is given by

(T2 0 Th)(p(t)) = Ta(Ta(p(t))) = Ta(tp(t)) = (2t + 4)p(2t + 4)

example 2: T':V — V is a linear operator, I : V — V is identity operator
(Tol)(v)=T{I(v))=T(), (IoT)w)=I(T(v))="T(v)

hence, Tol =T and [oT =T

example 3: 7} : R" — R™, T, : R™ — R" with
Ti(z) = Az, Ty(w)= Bw, AeR™" BeR™™
then Ty 0T, = AB and T 0o T} = BA

Linear Transformation 5-24
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Inverse of linear transformation

a linear transformation 7' : V — W is invertible if there is a
transformation S : YW — V satisfying

SOT:]\; and TOS:]W

we call S the inverse of 7" and denote § = T~!

T
w = T(u)
@ - T T(w)=u Yuel
v R(T) T(T Y w)) =w Yw e R(T)
Facts:

e if T is one-to-one then 7' has an inverse

o T~ R(T) — Vis also linear a

Linear Transformation 5-25

example: 7 : R" — R"
T(x1,22,...,&n) = (@121, a2T2, . . ., Anly)
where ap #0 for k=1,2,...,n
first we show that T is one-to-one, i.e., T(z) =0 = 2 =0
T(x1,...,20) = (@121, ..., apx,) = (0,...,0)
this implies agzp =0 for k=1,...,n
since ai # 0 for all k, we have z = 0, or that T' is one-to-one

hence, T is invertible and the inverse that can be found from
T HT(z)) ==z
which is given by
T_l(wl7 Wa, ..., wy) = ((1/an)wy, (1/ax)ws, ..., (1/an)wy,)

Linear Transformation 5-26

Composition of one-to-one linear transformation
if Ty :U —V and Ty : V — W are one-to-one linear transformation, then
e T5 0T is one-to-one
o (TooT) ' =T oTyt
example: 77 : R" - R", T5:R" —R"

Ty(w1,22,...,2,) = (@171,02%2,...,0,2,), ap #0,k=1,...,n

To(w1,22,. .., 2n) (2,23, ..., Tn, 1)
both T3 and T5 are invertible and the inverses are

T wr, wa, . wy) = (1 a)wi, (1/ag)wa, . . ., (1/an)wy)

Tgl(wl7w27~~~7wrz) = (wn7w1>---7wn—l)

Linear Transformation 5-27
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from a direct calculation, the composition of 77" with 75! is

(T o Ty Yy (w) T (W, wiy .oy wy—1)

= ((1/a1)wn, (1/ag)ws, ..., (1/ayw,—1))
now consider the composition of Ty with T3
(Ty o Th)(x) = (agwa, ..., Gpln, a121)
it is clear to see that

(TroT)o (T oTy Yy =1

Linear Transformation 5-28

Matrix representation for linear transformation

let T':V — W be a linear transformation

T
v w
o Ttw) V' is a basis for V
dimyY =n
coordinate ari coordinate
mep repren;en?e)(fion map W is a basis for W
v ? ()] dimW =m
R" R™

how to represent an image of 7" in terms of its coordinate vector ?

Problem: find a matrix A € R™*" that maps [v]y into [T'(v)]w

Linear Transformation 5-29

key idea: the matrix A must satisfy
Ay = [T(v)]w, forall veV

hence, it suffices to hold for all vector in a basis for V

suppose a basis for V is V. = {vy,va,...,0,}
Alnn] = [T(v1)],  Alvo] = [T(v2)], ..., Alvn] = [T(vn)]

(we have dropped the subscripts that refer to the choice of bases V, W

A is a matrix of size m X n, so we can write A as
A= [(1!1 az ... an]

where ay's are the columns of A

the coordinate vectors of v's are simply the standard unit vectors

[v1i] = €1, [vo] =€2, ..., [vn]=en

Linear Transformation 5-30
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hence, we have
Alv] = a1 = [T(v)],  Alvs] = a2 = [T(v2)], -+, Alva] = an = [T'(vn)]
stack these vectors back in A

A=[[T()] [T(v2)] -+ [T(va)]]

e the columns of A are the coordinate maps of the images of the basis
vectors in V

we call A the matrix representation for T relative to the bases V' and
W and denote it by
[Tlw,v

e a matrix representation depends on the choice of bases for V and W

special case: T : R" — R™, T'(z) = Bz we have [T] = B relative to the
standard bases for R™ and R"

Linear Transformation 5-31

example: 7 :V — W where

14 P, with abasis V ={1,t}
W = P; withabasis W ={t—1,t}

define T'(p(t)) = p(t + 1), find [T7] relative to V and W
solution.

find the mappings of vectors in V' and their coordinates relative to W'
= —1-(t— 1-t
T(v)=T(t) = t+1 = —1-(t—1)+2-¢
hence [T'(v1)]w = (—=1,1) and [T'(v2)lw = (—1,2)

Ty = ([0l ) =[5 5)]

Linear Transformation 5-32

example: given a matrix representation for 7' : Py — R?

=[5 5 5]

relative to the bases V = {2 — ¢,¢ + 1,¢> — 1} and W = {(1,0), (1,1)}
find the image of 6¢2 under T

solution. find the coordinate of 6t relative to V by writing
612=ay-(2—t)+ag-(t+1)+az- (> —1)

solving for ay, g, cr3 gives

no

[6t2]v =12

(=2}

Linear Transformation 5-33
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from the definition of [T7:
e [

then we read from [T(6t2)]yy that

T(6t%) = 8- (1,0) +30- (1,1) = (38, 30)

Linear Transformation 5-34

Matrix representation for linear operators

we say 7" is a linear operator if 7" is a linear transformation from V to V

e typically we use the same basis for V, says V = {v1,va,...,0n}

e a matrix representation for T’ relative to V' is denoted by [T]y where

[Ty =[ [T()] [T(2)] ... [T(va)]]

Theorem [

e T is one-to-one if and only if [Ty is invertible

o [Ty =([Th)™!
what is the matrix (relative to a basis) for the identity operator ?

Linear Transformation 5-35

Matrix representation for composite transformation

if Ty :U —V and Ty : V — W are linear transformations
and U, V, W are bases for U, V, W respectively

then
[Ty 0 Thlwu = [Telwv - [Th]vu

example: T : U =V, Ty : V = W
U=Py, V=Py W=P;3
U={1t}, V={1t3}, W={1t}
Ty (p(t)) = Ti(ao + ait) = 2ag — 3aqt
Tu(p(t)) = 3tp(t)

find [T2 o T]]

Linear Transformation 5-36
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solution. first find [T1] and [T%]

‘ 2 0

Ty(1) = 2 = 2:1+0-t+0-¢2 _

Ti(t) = -3t = 0-1-3-t+0-£2 1= 8 03
(1) = 3t = 0-143-140-240-6 g 8 8
Tty = 32 = 0-140-143-2+0-82 = [T = 03 0

2 — 3 . . L2 .43
T(t?) = 32 = 0-140-1+0->+3-¢ 00 3
next find [T% o T1]

0 0

(TyoT))(1) = Ta(2) = 6t |60
(TyoTV)(t) = To(-3t) = —92 [BeTil= |y g

0 0
easy to verify that [Ty o T1] = [T5] - [T1]
Linear Transformation 5-37
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Exercises
1. For each of the following transformations, determine if it is a linear transformation.
(@) T : Py — Py
T(ap + a1z + azx?) = (ag — az) + (ao + 2a1 + az)x + (3ag — az)z>.

It T is linear, ind ker(T") and its dimension.
) T:R?> > R?
T(.’El,xg,l'g) = (6%1 —+ T — 3%3,41’1 —+ T — .’Eg).

It T is linear, ind R(T") and its dimension.

2. Let T': R™ — R™ be a transformation given by
T(x1,22,...,Zn) = (nZp, (n — V)zp_1,...,323,0,0)

T sorts the entries of x in the opposite order, and scale the kth term by k. The last two entries of T(m)
are assigned to be zero.

(a) Show that T is a linear transformation. Hence, 1" can be represented by T'(xz) = Ax. Determine
what A is.
(b) 1s T one-to-one ? If not, ind a basis for ker(T") and its dimension.

(c) Find a basis for R(T) and verify the dimension (rank-nullity) theorem.

3. Let T : R"*™ — R be a linear transformation defined by
T(A) =17 A1.

(a) Find dim ker (7).
(b) For n =3, find a basis for ker(T).

4. Let T : P — P9 be a fransformation given by
T(ag + a1z + asx?) = (ag — az) + (ap + 2a;1 + az)zx + (3ag — ag)x>.

(a) Show that T' is a linear operator.
(b) Is T" an isomorphism ?

() Let V. ={1,2,2%} and W = {—22 + 1,22 + 1,322} be the two bases for Po. Find the matrix
representation of 7" relative to V' and W, [T]w,y. In other words, let p be any vector in Py. The
matrix [Ty, maps [p]v to [T'(p)]w-

(d) Find the matrix representation of T" relative to V' and V/, [T]V’V. In other words, we use the same
basis for Py. Is the result the same as in part (c) ? Why ?

(e) Does the inverse of T exist ? If yes, find T~ 1.
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6 Eigenvalues and eigenvectors
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6. Eigenvalues and Eigenvectors

o definition
e important properties
e similarity transform

e diagonalization

Definition
A € Cis called an eigenvalue of A € C"*" if
det(\ — A) =0
equivalent to:
o there exists nonzero x € C" s.t. (A — A)z =0, i.e.,
Ax = \x

any such z is called an eigenvector of A (associated with eigenvalue \)

Eigenvalues and Eigenvectors 6-2

Computing eigenvalues

e X(\) =det(A] — A) is called the characteristic polynomial of A

e X(\) =0 is called the characteristic equation of A

the characteristic equation provides a way to compute the eigenvalues of A

5 3
=5
X(A)f‘ Ag5 Af4 ’:/\2—>\—2:0

solving the characteristic equation gives

A=2,-1

Eigenvalues and Eigenvectors 63
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Computing eigenvectors

for each eigenvalue of A, we can find an associated eigenvector from
M—-A)zx=0

where x is a nonzero vector

for A in page 6-3, let's find an eigenvector corresponding to A = 2

(M — A)z = {763 233} Bj =0 = a1+22=0

the equation has many solutions, so we can form the set of solutions by

e o 1] -m{ 1]

this set is called the eigenspace of A corresponding to A = 2

Eigenvalues and Eigenvectors 6-4

Eigenspace
eigenspace of A corresponding to A is defined as the nullspace of AT — A
N(AT — A)
equivalent definition: solution space of the homogeneous system

M —-A)x=0

e an eigenspace is a vector space (by definition)
e (0 is in every eigenspace but it is not an eigenvector

e the nonzero vectors in an eigenspace are the eigenvectors of A

Eigenvalues and Eigenvectors 6-5

from page 6-4, any nonzero vector lies in the eigenspace is an eigenvector
T
of A, e.g., x = [71 1}

same way to find an eigenvector associated with A = —1

(M — Az = {‘6 ‘3] {“} —0 = 2 ta=0

6 3 To
so the eigenspace corresponding to A = —1 is
el -om(2])
211 2
and z = [1 72]T is an eigenvector of A associated with A = —1

Eigenvalues and Eigenvectors 66
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Properties

o if Aisn xnthen X())is a polynomial of order n
e if Ais n x n then there are n eigenvalues of A

e even when A is real, eigenvalues and eigenvectors can be complex, e.g.,

20 1
A:E ’21} A=|=6 —2 0
19 5 -4

e if A and A\ are real, we can choose the associated eigenvector to be real
e if A is real then eigenvalues must occur in complex conjugate pairs
e if z is an eigenvector of A, so is ax for any a € C, a # 0

e an eigenvector of A associated with A lies in N (A — A)

Eigenvalues and Eigenvectors 6-7

Scaling interpretation

assume A is real

if v is an eigenvector, effect of A on v is simple: just scaling by A

Aw v A>0 v and Av point in same direction

/ z A <0 wvand Av point in opposite directions

y

Av [\l >1 Av larger than v

[Al <1 Awv smaller than v

Eigenvalues and Eigenvectors 6-8

Important facts

denote A(A) an eigenvalue of A

o \NaA) =aA(A) forany a € C

e tr(A) is the sum of eigenvalues of A

e det(A) is the product of eigenvalues of A

e A and A7 share the same eigenvalues O
o MAT) = \(4) O

o A(A™) = (A(A))™ for any integer m

e A is invertible if and only if A = 0 is not an eigenvalue of A O

Eigenvalues and Eigenvectors 69
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Matrix powers
the mth power of a matrix A for a nonnegative integer m is defined as
m
Am=1]4A
k=1
(the multiplication of m copies of A)
and A° is defined as the identity matrix, i.c., A =T

[ Facts: if X\ is an eigenvalue of A with an eigenvector v then

e \" is an eigenvalue of A™

e v is an eigenvector of A™ associated with A"

Eigenvalues and Eigenvectors 6-10

Invertibility and eigenvalues
A is not invertible if and only if there exists a nonzero x such that
Axr =0, or Ax=0-zx
which implies 0 is an eigenvalue of A
another way to see this is that
Ais not invertible <= det(A) =0 <= det(0-I—A)=0
which means 0 is a root of the characteristic equation of A

conclusion [ the following statements are equivalent

e A is invertible
o N(A) ={0}

e )\ =0 is not an eigenvalue of A

Eigenvalues and Eigenvectors 6-11

Eigenvalues of special matrices

diagonal matrix:

d 0 - 0
p=|? =Y
0 0 - d,
eigenvalues of D are the diagonal elements, i.e., A\ = dy,da, ..., d,
triangular matrix:
upper triangular lower triangular
air @iz - Qlp a1 0 -+ 0
U= () a.22 cee Ao I a?l a.22 o 0
0 0 - apn Upl Ap2  *  Gpn
eigenvalues of L and U are the diagonal elements, i.e., A = a11,...,0nn

Eigenvalues and Eigenvectors 612
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Similarity transform

two n X n matrices A and B are said to be similar if
B=T"'AT
for some invertible matrix T'

T is called a similarity transform

Oinvariant properties under similarity transform:

o det(B) = det(A)
e tr(B) =tr(A)

e A and B have the same eigenvalues

det(A — B) = det(\T'T — T~ 'AT) = det(\ — A)

Eigenvalues and Eigenvectors 613

Diagonalization
an n X n matrix A is diagonalizable if there exists 1" such that
T'AT =D
is diagonal
e similarity transform by 7" diagonalizes A

e A and D are similar, so the entries of D must be the eigenvalues of A

A0 -0
PEUE
0 0 - A

e computing A* is simple because A*¥ = (TDT~1)* = TDFT—!

Eigenvalues and Eigenvectors 6-14

how to find a matrix 7" that diagonalizes A ?

suppose {v1,...,v,} is a linearly independent set of eigenvectors of A
A’Ui:)\i’Ui = 1,...,77,

we can express this equation in the matrix form as

A0 0
A[vl Vg e Un}:[vl Vg e Un} 0 )\:2 0
0 0 An
define T' = [1)1 Vg +e- ’Un] and D = diag(Ay,...,\,), so
AT =TD
since T' is invertible (v1, ..., v, are independent), finally we have
T'AT =D

Eigenvalues and Eigenvectors 615
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conversely, if there exists T' = [v] vn] that diagonalizes A
T7YAT = D = diag(\1, ..., \n)

then AT =TD, or
A”U,L':Aﬂ)“ iil,...77l

so {v1,...,v,} is a linearly independent set of eigenvectors of A

conclusion: A is diagonalizable if and only if

n eigenvectors of A are linearly independent

(eigenvectors form a basis for C")

e a diagonalizable matrix is called a simple matrix

e if A is not diagonalizable, sometimes it is called defective

Eigenvalues and Eigenvectors 6-16

Example
find T that diagonalizes
4 0 1
A=12 3 2
1 0 4
the characteristic equation is
det(A — A) = A% — 11A2 4+ 39\ — 45 = 0

the eigenvalues of A are A =5,3,3

an eigenvector associated with A\; =5 can be found by

1 0 -1 [= o=y =0
G-IT-Ax=|-2 2 =2| |z =0 = z9 — 223 =0
-1 0 1 T3

3 is a free variable
. . T
an eigenvector is v; = [1 2 1}

Eigenvalues and Eigenvectors 6-17

next, find an eigenvector associated with Ay = 3

-1 0 -1 X1
1 +23=0
BI-Ax=|-2 0 —2| |z =0 = e
-1 0 -1 |a3 o, x3 are free variables
the eigenspace can be written by
0 -1 0 -1
r|x=x9 |1| +23]| 0 = span 11,10
0 1 0 1

hence we can find two independent eigenvectors
-1

0
vo= (1|, w3=10
0 1

corresponding to the repeated eigenvalue \o = 3

Eigenvalues and Eigenvectors 618
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6 Eigenvalues and eigenvectors

easy to show that vy, ve, v3 are linearly independent
we form a matrix 7" whose columns are vy, vy, v,

0 —1
1 0

1
T:[’Ul V2 1)3]: 2
10 1

then v1, vy, v3 are linearly independent if and only if T is invertible
by a simple calculation, det(7') = 2 # 0, so T is invertible

hence, we can use this 7" to diagonalize A and it is easy to verify that

T AT =

o O ot
o w o

0
0
3

Eigenvalues and Eigenvectors 6-19

Not all matrices are diagonalizable

example: A = {8 (1)}

characteristic polynomial is det(A — A) = s2, so 0 is the only eigenvalue

eigenvector satisfies Ax =0 -z, i.e.,

0 1 T To = 0
00 |e| =0 = - ,
L2 w1 is a free variable

. T
so all eigenvectors has form = = {01} where 1 # 0

thus A cannot have two independent eigenvectors

Eigenvalues and Eigenvectors 6-20

Distinct eigenvalues

Theorem: if A has distinct eigenvalues, i.e.,
N #Nj, 1F]

then a set of corresponding eigenvectors are linearly independent

which further implies that A is diagonalizable

the converse is false — A can have repeated eigenvalues but still be
diagonalizable

example: all eigenvalues of I are 1 (repeated eigenvalues) but I is diagonal

Eigenvalues and Eigenvectors 6-21
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Proof by contradiction: assume the eigenvectors are dependent
(simple case) let Az, = A\gzg, k=1,2

suppose there exists oy, s # 0

a1 + Qore = 0 (1)

multiplying (1) by A:  ag A1 + asdaza =0
multiplying (1) by A1 aq\iz1 + asdjze =0
subtracting the above from the previous equation
az(Aa — M)z =0
since A1 # A9, we must have as = 0 and consequently a; = 0
the proof for a general case is left as an exercise

Eigenvalues and Eigenvectors

Eigenvalues of symmetric matrices

Ais an n x n (real) symmetric matrix, i.e., A = AT
x* denotes Z1 (complex conjugate transpose)

Facts 0

e y*Ay is real for all y € C"
e all eigenvalues of A are real
e eigenvectors with distinct eigenvalues are orthogonal, i.e.,
)\_7' 75 )\k- — l;rlk =0
e there exists an orthogonal matrix U (UTU = UU” = I) such that

A=UDUT

(symmetric matrices are always diagonalizable)

Eigenvalues and Eigenvectors

MATLAB commands
[V,D] = eig(A) produces a diagonal matrix D of eigenvalues and a full
matrix V whose columns are the corresponding eigenvectors
>> A =[5 3;-6 -4];
>> [V,D] = eig(A)
vV =

0.7071  -0.4472
-0.7071 0.8944

0 -1
A1 =2 and A2 = —1 and the corresponding eigenvectors are

v = [0.7071 0.7071]7, vy = [~0.4472 0.8944]"

note that the eigenvector is normalized so that it has unit norm

Eigenvalues and Eigenvectors

6-24
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6

Eigenvalues and eigenvectors

power of a matrix: use ~ to compute a power of A

>> A°3
ans =
17 9
-18 -10
>> eig(A~3)
ans =
8
-1

>> V*D"3*inv (V)
ans =
17 9
-18 -10

agree with the fact that the eigenvalue of A% is A3 and A% = TD3T~!

Eigenvalues and Eigenvectors
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Exercises

1. True/False questions. For each of the following statements, either show that it is true, or give a specific

counterexample.

(@)
(b)
()
(d)
()
(f)

)

(9

3. Let

Find

If A is real, then A is real.

If one of the eigenvalues of A is complex, then A must be complex.

A and AT share the same eigenvalues.

A and AT share the same eigenvector corresponding to the same eigenvalue.
I + A is always invertible, even if A is not invertible.

If A is similar to B, then 21 4+ 3A is similar to 21 + 3B.

If (A1, 1) and (A2, 22) are any two eigenvalue/eigenvector pairs of A, then A1+ Az is an eigenvalue
of A, associated with an eigenvector x1 + o.

If A is diagonalizable, then there exists a unique matrix 1" such that T AT is diagonal.

If A and B are similar invertible matrices, then A=Y and B! are similar.

4
0 _3} then 2 and —3 are eigenvalues of A.

If one of the eigenvalues of A is zero, then A is not row equivalent to the identity matrix.

2
If A is similar to {

If A is invertible, then A is diagonalizable.

-5 -3 3
A=1]2 0 -2
-4 -4 2

Find all the eigenvalues and corresponding eigenvectors of A.
Is A invertible ? Justify your answer. If A is invertible, find the eigenvalues of 5A~1L.
Find the eigenvalues of (A + 31)(A — 2I).

Determine if A diagonalizable and justify your answer. If A is diagonalizable, use the diagonalization
technique to compute A2 + A — 61.

A= {_12 ﬂ

M =det[(34A —I)*°(4A+ )T (—A +2I)71].



UNN 7

Functions of Square Matrices

Y

agUszasAnsiSougvaailovluunide
Yo a wa co a o o | <o @ v
> Sanfleuuazamdndivesieituiug v numsngdagSd Wuianduwruin 1Wudu

» Aunsadszgnaldinaila diagondlization wieldnquiuniadiadeniiadu (Cayley-Hamilton Theorem) lunsun
Waiduroaunsndagsale

> Ansaudduniseuwusadodadu (linear ordinary differential equations) daenisUszandldauieiduvo
nsndagsale



7

Functions of Square Matrices

83

7. Function of square matrices

matrix polynomial

rational function

Cayley-Hamilton theotem
e infinite series
e matrix exponential

e applications to differential equations

EE202 - EE MATH 1l Jitkomut Songsiri

7-1
Matrix Power
the mth power of a matrix A for a nonnegative m is defined as
m
am =T[4
k=1
and define A =1
property: A”AS = ASA” = ATt
a negative power of A is defined as
A" = (Afl)n
n is a nonnegative integer and A is invertible
Function of square matrices 7-2

Matrix polynomial

a matrix polynomial is a polynomial with matrices as variables

p(A) = aol + a1 A+ +a, A"
2 1
for example A = {O 71}

01 0
2 -3
o1

Fact O any two polynomials of A commute, i.e., p(A)g(A) = q(A)p(A)

-ronsse = of s 2Jof 2]

Function of square matrices
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7 Functions of Square Matrices

similarity transform: suppose A is diagonalizable, i.e.,
A=TAT <= A=TAT™!

where 7= [v; -+ wy], i.e., the columns of T" are eigenvectors of A
then we have AF = TAFT—1

thus diagonalization simplifies the expression of a matrix polynomial

P(A) = apl +a1A+ - +a, A"
= (Z()TT71 + alTAT71 4+ .+ (Z”TA"T71
= Tp(M)T?
where
p(A1) 0 0
0 A 0
p(A) = pi%a)
0 0 p(An)
Function of square matrices .

eigenvalues and eigenvectors [J

if A and v be an eigenvalue and corresponding eigenvector of A then
e p()) is an eigenvalue of p(A)

e v is a corresponding eigenvector of p(A)

Av=X v = Aw=Xv=>\v .- = Akv=1\"
thus
(aol + a1 A+ -+ anA™)v = (agv + a1 A + - - + ap A" )v

which shows that

Function of square matrices 7-5

Rational functions

f(z) is called a rational function if and only if it can be written as

where p(z) and ¢(z) are polynomial functions in 2 and ¢(z) # 0

we define a rational function for square matrices as

f(4) = oA 2 p(A)g(A)" = ¢ H(A)p(A)

provided that ¢(A) is invertible

Function of square matrices 7-6
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eigenvalues and eigenvectors [J

if A and v be an eigenvalue and corresponding eigenvector of A then
e p(A)/q(A) is an eigenvalue of f(A)
e v is a corresponding eigenvector of f(A)
both p(A) and ¢(A) are polynomials, so we have
p(A)o =p(Nv, (A = g(A)v

and the eigenvalue of q(A)~tis 1/q(\), i.e., ¢(A)~tv = (1/q(\)v

thus

which says that f()) is an eigenvalue of f(A) with the same eigenvector

Function of square matrices 77
4 2

example: f(z) = (x+1)/(x —5) and A = 15

detOM —A)=0=A-4H(A=5)—2=X2 -9\ +18=0
the eigenvalues of A are \;y =3 and A\, =6

—1

AN -l |5 21 2 16

s =@na-sn =3 A =5
the characteristic function of f(A) is

det(M — f(A) =0=A—1)(A—4) —18=A2 -5\ —-14=0
the eigenvalues of f(A) are 7 and —2
this agrees to the fact that the eigenvalues of f(A) are
FA) =M =1D/(M=5)==2, f(A)=N-1)/(A2—=5)=7
Function of square matrices 7-8
Cayley-Hamilton theorem
the characteristic polynomial of a matrix A of size n x n
X(N) =det(M — A)
can be written as a polynomial of degree n:
X)) = A"+ a, A" g+ ag
0 Theorem: a square matrix satisfies its characteristic equation:
X(A) = A"+ a1 A" A+l =0

result: for m > n, A™ is a linear combination of A* k=0,1,...,n— 1.
Function of square matrices 7-9
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example 1: A = Ll) g} the characteristic equation of A is

XA =A-1)A=3)=A—-4\+3=0
the Cayley-Hamilton states that A satisfies its characteristic equation
X(A) =A% —4A+31=0
use this equation to write matrix powers of A

A? = 4A-3]
A3 = 442 -34
At = 1347 - 124

134 — 121
40A — 391

4(4A - 31) — 3A
13(44 — 31) — 124

powers of A can be written as a linear combination of I and A

Function of square matrices 7-10

example 2: with A in page 7-10, find the closed-form expression of A*

for k > 2, A¥ is a linear combination of I and A4, i.e.,
Ak = (1()] + (1114

where a, aq are to be determined

multiply eigenvectors of A on both sides

Ak/lh = ((,Yol + CM]A)’Ul = )\If = o+ )\1
Ak’Uz = (a()[ + (YlA)Uz = )\)2C = ap + 0&1)\2

substitute Ay = 1 and Ay = 3 and solve for ag, @y

L VT BN 33k 3k -1
3 71 3] | WTTH T MT

3—3k  3k_1 1 3k—1
5 T A*{o 3k

[BEE

Function of square matrices 7-11

Computing the inverse of a matrix
A is a square matrix with the characteristic equation
A+ an X" 4+ ad +ag =0
by the C-H theorem, A satisfies the characteristic equation
A" 4an, AV 4 a1 A+ agl =0
if A is invertible, multiply A~! on both sides
A" a, ATt a4 apAT =0

thus the inverse of A can be alternatively computed by

1
A7l = - (A" a1 AP tagd)
0

Function of square matrices 7-12




7

Functions

of Square Matrices

87

2 -4 -4
example: given A= |1 —4 —5| find A7!
1 4 5

the characteristic equation of A is
det(A\ — A) =A% —3X2 +10A -8 =0

0 is not an eigenvalue of A, so A is invertible and given by

1
ATt = g(A273A+1OI)
0 2 2
1
= 7/ 73
4 -6 2

compare the result with other methods

Function of square matrices 7-13

Infinite series

Definition: a series Z;O:O ay, converges to S if the partial sum
n
AN
Sn = Z ag
k=0
converges to S as n — oo

example of convergent series:

1 1 1

l4=d4gog... = 2
+ 3 + 1 + A +
1 1 1
l—=—4+———4+ ... = log(2
gtz =77 0g(2)
Function of square matrices 7-14

Power series

a power series in scalar variable z is an infinite series of the form

oo
= E ak,zk
k=0

example: power series that converges for all values of z

22 58
=142+ +3‘+
22 24 28

cos(z)zlf§+ﬂfa+'“
. _ 2 B T

Sm(z)_z_ﬁ—i_ﬁ_ﬁ—i_“
72 Z4 76

h(z) =1 .
cosh(2) toatata™t
23 5 T

blnh()—2+3'+ +7'+ =

Function of square matrices 7-15
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Power series of matrices

let A be matrix and A;; denotes the (i, j) entry of A

Definition: a matrix power series

oo

S,

k=0
converges to S if all (i,7) entries of the partial sum

n
Sn £ Z akAk
k=0

converges to the corresponding (7, j) entries of S as n — oo

Fact Oif f(2) = > 5o, arz" is a convergent power series for all z then

f(A) is convergent for any square matrix A

Function of square matrices 7-16

Matrix exponential

generalize the exponential function of a scalar

— IL’Z .’L'B
e’ = +I+§+§+---

to an exponential function of a matrix

define matrix exponential as

A2 A3 OCA](‘
A _ i e i
=T+ Attt =Y

for a square matrix A

the infinite series converges for all A

Function of square matrices 7-17

example: A = Ll) (1)}

find all powers of A
2 (11 3 (11 kL _
A _{0 O}’ A° = 0 ol A=A fork=2,3,...

so by definition,

never compute e by element-wise operation !
11

A {eo eo}

€ €

Function of square matrices 7-18
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Eigenvalues of matrix exponential
if A and v be an eigenvalue and corresponding eigenvector of A then

e ¢\ is an eigenvalue of e

e v is a corresponding eigenvector of e

since e can be expressed as power series of A:
A2 A3
A e —_— —_— e
e —I+A+2! +3! +

multiplying v on both sides and using A¥v = \¥v give

et :v+Av+%+%+-”
2 3
:(1+A+%+%+~-)v

= g’\'u

Function of square matrices 7-19

Properties of matrix exponential

el =1

o ATB LA B
e if AB = BA, i.e., A and B commute, then eAT5 = ¢4 .8

° (eA)—l —e A

Othese properties can be proved by the definition of e”

Function of square matrices 7-20

Computing ¢ via diagonalization
if A is diagonalizable, i.e.,
T7IAT = A = diag(Ai, Aa, ..., A\n)
where \.'s are eigenvalues of A then e” has the form
et =Tl
e computing e® is simple since A is diagonal
e one needs to find eigenvectors of A to form the matrix 7'

e the expression of ¢4 follows from

_ il _ Agp—1
C T = o T
k=0 k=0 k=0

2 AR SN(TAT-YH S TAFT!
A —
2 k!

e if A is diagonalizable, so is e

Function of square matrices 7-21
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1 10
example: compute f(A) =e? given A= [0 2 1
0 00
the eigenvalues and eigenvectors of A are
1 1 1
/\1:1,1)1: 0 N /\2:2,1)2: 1 ) /\3:(),1)3: -1
0 0 2

form T = [v1 vz w3 and compute e = Te T !

11 1]fe 0 0]t -1 -1 e e2—e (e2—2e+1)/2
eA=10 1 —1[]0 ¢ 0| |0 1 1/2| =0 ¢ (e*—1)/2
00 2[00 0 10 0 1/2 0 0 1
Function of square matrices 7-22
Computing e¢” via C-H theorem

e? is an infinite series
A2 A3
)Af —_— —_— e
e =T+ A+ o] + 3 +

by C-H theorem, the power AF can be written as
AP =gl + A+ +an 1A, k=n,n+1,...
(a polynomial in A of order < n — 1)
thus e can be expressed as a linear combination of I, A, ..., A*~1
e =aogl + A+ +ap_1 AL

where ay,'s are coefficients to be determined

Function of square matrices 7-23

this also holds for any convergent power series f(A) = > 7 ar A"
flA) =aol + A+ +a, A" !
(recursively write A* as a linear combination of I, A, ..., A"~! for k > n)
multiplying an eigenvector v of A on both sides and using v # 0, we get
FO) =apl +atA+ -+ a,  A"1

substitute with the n eigenvalues of A

f(/\l) 1 )\1 e )\'f'il [e™)
F2)| _ |1 A oo At ay
F( ) 1T An oo AV o

Fact [0 if all \i's are distinct, the system is solvable and has a unique sol.

Function of square matrices 7-24
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Vandermonde matrix

a Vandermonde matrix has the form

S VR ,\711*1
[P VD o

(with a geometric progression in each row)

[0 one can show that the determinant of V' can be expressed as

det(V)= [ v-2)

1<i<j<n

hence, V is invertible as long as \;'s are distinct

Function of square matrices 7-25
example: compute f(A) = e given
1 1 0
A=10 2 1
00 0
the eigenvalues of A are A =1,2,0 (all are distinct)
form a system of equations: f(\;) = g + a1 \; + (yg/\f fori=1,2,3
el 11 17 [ap
el =11 2 22| |y
e 1 0 0 g
which has the solution
=1, ay=2—¢e2/2-3/2, ar=—e+e%/2+1/2
Function of square matrices 7-26
substituting ag, aq, g in
e = apl + A + apA?
gives
1 0 0 1 1 0 1 3 1
e = ap|0 1 0l 4a1 |0 2 1| +ay|0 4 2
0 0 1 0 0 0 00 0
ag + o + as ay + 3as (o)
= 0 ap + 2aq + das a1 + 209
0 0 (&%)
e e2—e (e2—2e+1)/2
= (0 ¢ (e2-1)/2
0 0 1
(agree with the result in page 7-22)
Function of square matrices 7-27
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Repeated eigenvalues

A has repeated eigenvalues, i.e., \; = \; for some i, j

goal: compute f(A) using C-H theorem

however, we can no longer apply the result in page 7-24 because

e the number of independent equations on page 7-24 is less than n

e the Vandermonde matrix (page 7-25) is not invertible

cannot form a linear system to solve for the n coefficients, ag,...,an_1

Function of square matrices 7-28

solution: for the repeated root with multiplicity r

get r — 1 independent equations by taking derivatives on f(\) w.r.t A

fO) = aotad+-+a, A
df (A
% = ap+2m A+ + (n—1Da,_ A" 2
A" (A
(lrffl()\) = (r—=Dayp_y+-+@n—r)(n—=2)(n—1)a,  \"717"
Function of square matrices 7-29

example: compute f(A) = cos(A) given

11
A= 10 1
0 0

N OO

the eigenvalues of A are \y = 1,1 and Ay =2

by C-H theorem, write f(A) as a linear combination of A*, k=0,...,n —1
F(A) = cos(A) = ag + a1 A + ap A®

the eigenvalues of A must also satisfies this equation
F(A) =cos(A) = ag+ aq A + as\?

the derivative of f w.r.t A is given by

F'(A) = =sin(A) = a1 + 202

Function of square matrices 7-30
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thus we can obtain n linearly independent equations:

f(A) T A M [ cos(1)

' 11 17 Jao
f/()\l) =10 1 2)\1 o | = | — sin(l) =10 1 2 aq
f()\z) 1 )\3 Ag (6] COS(2) 1 2 4 [e%)]

which have the solution

ap 2sin(1) 4 cos(2)

a1 | = [2cos(1) — 3sin(1) — 2cos(2)

Qs —cos(1) + sin(1) + cos(2)
substitute v, a1, ap to obtain f(A)

f(A) =cos(A) = aol + a1 A+ axA?
cos(1) —sin(1) 0
= 0 cos(1) 0
0 0 cos(2)
Function of square matrices 7-31
Applications to ordinary differential equations
we solve the following first-order ODEs for ¢ > 0 where z(0) is given
scalar: z(t) € R and a € R is given
z(t) = ax(t)
solution: z(t) = e*z(0), for t > 0
vector: z(t) € R" and A € R"*" is given
&(t) = Ax(t)
deAt
solution: z(t) = e?*x(0), for t > 0 (use = Aeft = eAtA)
a

Function of square matrices 7-32

Applications to difference equations

we solve the difference equations for t = 0, 1,... where z(0) is given

scalar: z(t) € R and a € R is given
z(t+1) = ax(t)

solution: z(t) = a'z(0), for t =0,1,2,...

vector: z(t) € R" and A € R"*" is given
z(t+1) = Az(t)
solution: z(t) = A'z(0), for t =0,1,2,...

Function of square matrices 7-33
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example: solve the ODE
§i(t) — g(t) — 6y(t) =0, y(0)=1,9(0)=0

solution: define

|I>
—
<. @
PN
4~
=
=

)
oty & (M0 2
x(t) |:I2(t)
write the equation into the vector form &(t) = Ax(t)

it) = Bgﬂ = {y(t)%ti)iy(t)}

the initial condition is

Function of square matrices 7-34

thus it is left to compute e
0 1
=[5 ]
the eigenvalues and eigenvectors of A are
1 1
A =-2 0 = [72] s Ae=3,va= L]
all eigenvalues are distinct, so A is diagonalizable and

At — TeMTL, T:[v1 1;2]7 A:{’\l 0]

0 Ao
a [1 1]fe? 0]1[3 -1
T2 3]0 etl5l2 1

Function of square matrices 7-35

the closed-form expression of eA? is

Ar 1 3672t + 2€3t _672t + efit
T T 5 |—6e 2t 4 6e?t 2e 2t 4 3e3t

the solution to the vector equation is

3672t +2€3t 7672t+€3t 1
JL(t) = eAtl‘(O) = Lﬁe—m 463t 262 4 363t |0
{ 32 4 2¢3t }

—6e™% + 6e*

[

hence the solution y(t) can be obtained by

Function of square matrices 7-36
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example: solve the difference equation
y(t+2) —y(t+1) = 6y(t) =0, y(0)=1y(1)=0
solution: define
w0 & [20] 2 ,edy)
write the equation into the vector form z(t + 1) = Ax(¢)

. 1) o (t+1)
=+ 1) 2J‘Luin+®@}

{Ml(f)zsf)xz(t)} = [2 ﬂ (t)

I
—
< <
==
=

the initial condition is

Function of square matrices 7-37

thus it is left to compute A*
0 1
=[5 ]
the eigenvalues and eigenvectors of A are

Al =2, v = {_12} , Ae=3, ;2= B}

all eigenvalues are distinct, so A is diagonalizable and

tr— A0
A'=TNT™, T=[vg vy, A:{O AJ
g [ [t 0] 1
-2 3 0 35102 1
Function of square matrices 7-38
the closed-form expression of At is
- 11 2(3")+3(-2) 3t— (=2)t
5 [2(3tH1) 4 3(—2)t+1 3+l (—9)tH
fort =0,1,2,...

the solution to the vector equation is

N at 1 203 +3(=2) 3 (2 11
z(t) = A'z(0) = 5 {2(3t+1) T e R o (72)#1} {0}
_ l{ 2(3") +3(-2)" }
- 5 2(3t+1)+3(72)t+1

y(t) = 21(t) = % (23 +3(-2)"), t=0,1,2,...

Function of square matrices 7-39
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MATLAB commands

e expm(A) computes the matrix exponential e

e exp(A) computes the exponential of the entries in A
11 A _|e e—1

example from page 7-18, A = {0 0} , et = {O 1 }

>> A=[1 1;0 0];

>> expm(A)
ans =

2.7183 1.7183

0 1.0000

>> exp(A)
ans =

2.7183 2.7183

1.0000 1.0000
Function of square matrices 7-40
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Exercises

1. Given

b

Il
o o
— o

Answer the following questions.

(a) Is A diagonalizable ? Explain in details.

T
(b) For any integer k > 3, find AFw where w = [0 0 1]
whose entries are functions of k.

Express your answer as a vector

2. Use a matrix exponential to solve the system of differential equations:

j?l(t> = —3331(t> + Jig(t) + I3(t),
ia(t) = a1(t) — 3aa(t) + 23(D),
3(t) = x1(t) + z2(t) — 3z3(t)

where 21(0) = 1,22(0) = 0,23(0) = —1. Show your calculation in details. Check the expression of
the matrix exponential of this system with MATLAB by using the command:

>> syms t 7 to define 't' as a symbolic variable
>> expm(A*t) % to compute the matrix exponential
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8. Complex Numbers

e sums and products

e basic algebraic properties
e complex conjugates

e exponential form

e principal arguments

e roots of complex numbers

e regions in the complex plane

8-1

Introduction

we denote a complex number z by

z=x+jy

Complex Numbers 82

Sum and Product

consider two complex numbers
21 =21+ jy1, 22 = T2+ jyo

the sum and product of two complex number are defined as:

o 21+ 20 = (1 + x2) + j(y1 + y2) addition
o 2120 = (X122 — Y1Y2) + J (Y122 + T1Y2) multiplication
example:

(=34 5)(1 — 2j) = 7+ j11

Complex Numbers 83
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Algebraic properties

o z; = 25 <= Re(z1) = Re(22) and Im(z;) = Im(22)
e 21 t+2z=2+2

o (z1+22) + 23 =2+ (22 + 23)

o zi1(z0+ 23) = 2122 + 2123

o —z=—x—Jjy

o 27l = z j
TR ]m2+yz

Complex Numbers

equality
commutative
associative
distributive

addtive inverse

multiplicative inverse

Complex conjugate and Moduli &

modulus (or absolute value): |z| = /22 + y?

complex conjugate: z =z — jy

o |z122| = |21]|22]

o |21+ 29| < 2| + |22l
o |21 4 22| > [Jz1] — |2]|
e 2 +2=721+%

® Z1Zy =21 22

. (“) — i £0
4) Z9

e Re(z) = (2+2)/2 and Im(z) = (z — 2)/2j

Complex Numbers

triangle inequality

Argument of complex numbers

Imaginary
z=x+jy xr=rcosf, y=rsind
7777777777 z =r(cosf + jsinf)
r
r=lzl
4 . Real 0 =tan"(y/z) & argz
(called an argument of z)

principal value of arg z denoted by Arg z is the unique 6 such that -7 <0 <7

argz = Argz 4+ 2nm, (n=0,£1,42,...)

example: Arg(71+j)=3f., argz=%+2n7r, n=0,%1,...

Complex Numbers
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Polar representation

Euler’s formula ¥
76

e’ = cosf + jsinf

a polar representation of z = = + jy (where z # 0) is
z=rel
where r = |z| and 0 = arg z
example:
(=1+47) =23/ = /2 dGT/4F20m) - — 0,41,

(there are infinite numbers of polar forms for —1 + j)

Complex Numbers 87
let 21 = r1 €791 and 25 = rq €992
properties &
o 2120 = 11y €7(01102)
o A1 je1-60)

zZ92 T2
ozl =130

T
o 2=y eind n=0,%£1,...
de Moivre’s formula &
(cosO + jsinh)" = cosnf + jsinnd, n=0,+1,£2,...
Complex Numbers 88
example: prove the following trigonometric identity
cos 30 = cos® 0 — 3 cos O sin® 0
from de Moivre's formula,
cos30 +jsin30 = (cosf+ jsinh)?
= cos®f + j3cos?fsinf — 3cosfsin®H — jsin® @

and the identity is readily obtained from comparing the real part of both sides
Complex Numbers 8.9
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Arguments of products

an argument of the product 2129 = r172e7(91192) is given by

arg(z122) = arg z1 + arg zo

example: z; = —land zo = -1+
arg(z122) = arg(l — j) = 7r/4, argz +argze =7+ 31/4
this result is not always true if arg is replaced by Arg

Arg(z122) = Arg(1 — j) = —n/4, Argz + Argzy =7+ 31/4

Complex Numbers

8-10

% more properties of the argument function

o arg(z) = —argz
o arg(l/z) = —argz

e arg(z120) = arg z; + arg z»

(no need to memorize these formulae)

Complex Numbers

Roots of complex numbers

an nth root of zg = r¢e? is a number z = re?? such that 2" = zg, or
rel™ = pyeif
note: two nonzero complex numbers
21 =€/ and 2y = ree’®
are equal if and only if
ri=ry9 and 0 =0y + 2kn

for some k = 0,+1,+2, ...

Complex Numbers
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therefore, the nth roots of zy are

0o + 2k
n

Z:{L/Toexp |:j( >:| k=0,£1,£2,...

all of the distinct roots are obtained by

0o + 2k
e = {/ro exp HM)} E=01,..,n—1

n

the roots lie on the circle |z| = /ro and equally spaced every 27 /n rad

Complex Numbers 8-13

when —7m < 0y < 7, we say ¢ is the principal root

example 1: find the n roots of 1 forn =2,3,4 and 5

1=1-exp[j(0+2km)], k=041,42, ...

the distinct n roots of 1 are

2
Ck:WEXP {J(M>:| k=0,1,...,n—1

n

Complex Numbers 814

example 2: find (-8 — j8v/3)1/*
write zg = —8 — j8v/3 = 16e/(~TH+7/3) = 16¢(~27/3)
the four roots of z are

cr = (16)V4 exp {j <M)} k=0,1,2,3

g = 2ei(=27/12) = 2797/6 = 3

z = 2 (=) 297/ = 1+5V3
¢ = 2 (M) = 257/6 = /34
o = 20 2047/3 = _1-4\3

Complex Numbers 8-15
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Regions in the Complex Plane

e interior, exterior, boundary points
e open and closed sets

e loci on the complex plane

Complex Numbers 8-16

Regions in the complex plane

an ¢ neighborhood of z is the set

{zeCl|lz—2z| <€}

Definition: a point zj is said to be

e an interior point of a set S if there exists a neighborhood of 2, that contains
only points of S

e an exterior point of S when there exists a neighborhood of it containing no
points of S

e a boundary point of S if it is neither an interior nor an exterior point of S

the boundary of S is the set of all boundary points of S

Complex Numbers 817

examples on the real axis: S; = (0,1), S2 = [0,1], and S5 = (0,1]

in real analysis, an € neighborhood of zy € R is the set

{reR||z—zo| <€}

e any z € (0,1) is an interior point of S7, S2, and S5
e any = € (—00,0) U (1,00) is an exterior point of Sy, .S, and S5

e 0 and 1 are boundary points of Sy, 52 and S5

Complex Numbers 818




8

Complex Numbers

105

examples on the complex plane:

Yy Y Y
/'/ \‘\
{ Vo x x
]
\ J1 1 “v 1
A /
\\ V2
\N- - —"
A B C

e any point z € C with |z| < 1 is an interior point of A and B

e any point z € C with 1/2 < |z| < 1 is an interior point of C

e any point z € C with |z| > 1 is an exterior point of A and B

e any point z € C with 0 < |z] < 1/2 or |z| > 1 is an exterior point of C'
e the circle |z| = 1 is the boundary of A and B

e the union of the circles |z| =1 and |z| = 1/2 is the boundary of C

Complex Numbers 8-19

Open and Closed sets

e a set is open if and only if each of its points is an interior point
e a set is closed if it contains all of its boundary points

e the closure of a set S is the closed set consisting of all points in S together
with the boundary of S

e some sets are neither open nor closed
from the examples on page 8-18 and page 8-19,

e S; is open, Sy is closed, S3 is neither open nor closed
e S5 is the closure of S;
e A is open, B is closed, C' is neither open nor closed

e B is the closure of A

Complex Numbers 8-20

Connected sets

an open set S is said to be connected if any pair of points z; and 25 in S can
be joined by a polygonal line that lies entirely in S

connected set disconnected set

e a nonempty open set that is connected is called a domain
e any neighborhood is a domain

e a domain with some, none, or all of its boundary points is called a region

Complex Numbers 821
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a set S is said to be bounded if for any point z € S,

otherwise it is unbounded

Bounded sets

|z| < M, for some M < co

{z|Re z < 0} {z]01 < arg z < 05}
) Yy Y
bounded unbounded unbounded

Complex Numbers 8-22
Loci in the complex plane
AY AY AY
% a
i 5
\ooa
A L %
o |z—a|l=r,acCreR
o |z—a|<r,aceCreR
o |z—a|=|z—-b,abeC
Complex Numbers 8-23
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Exercises

1.

Show that

cos 20 = cos® 0 —sin? 0, sin20 = 2cosfsinh

using de Moivre’s formula.
Find all the distinct values of the follow roots:

(a) the 5th roots of —4 + 53
1+
V3—j

Show that |Rez| < |z| and |Im z| < |z|. Show that

(b) the 8th roots of

|z +w|? = |2]? + |w]* + 2Re(zw).

Use this to prove that the friangle inequality |z + w| < |z| + |w].

Show that | Rez| < |z| and |Im z| < |z|. Show that

|z 4+ w? = |2? + |w]* + 2 Re(zw).

Use this fo prove that the friangle inequality |z + w| < |z| + |w].

For n > 1, show that

1 sin[(n+1/2)6)
2sin(6/2)

1+COSQ+C0820+'”+COSTL9:5-1—

This is known as Lagrange’s trigonometric identity.

Sketch the following sets and determine which are domains:

(@ [z =3+j|=2

(b) |z| = argz

() |argz| < w/4
d [3z2—2|>6
(e) Imz > 2

)
)
)
)
)
)

N |z=2[+]z+2/<6
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9. Analytic Functions

e functions of complex variables

e mappings

e limits, continuity, and derivatives
e Cauchy-Riemann equations

e analytic functions

9-1
Functions of complex variables
a function f defined on a set S is a rule that assigns a complex number w to
eachz € S
e S is called the domain of definition of f
e w is called the value of f at z, denoted by w = f(z)
e the domain of f is the set of z such that f(z) is well-defined
e if the value of f is always real, then f is called a real-valued function
example: f(z) =1/|z|
o let z =z + jy then f(2) = 1/(z% +¢?)
e f is a real-valued function
e the domain of f is C\{0}
Analytic Functions 9-2

suppose w = u + jv is the value of a function f at z = = + jy, so that
u+jv = f(z+jy)
then we can express f in terms of a pair of real-valued functions of z,y
f(2) = u(z,y) + ju(z,y)
example: f(z) =1/(z2+1)

o the domain of f is C\{+j}

e for z = x + jy, we can write f(z) = u(z,y) + jv(z,y) by

o 1 _ -yt 1—j2ay
fatiy) = 22— 2+ 1+ 522y (22 —y2 + 1)2 + da2y?
u(z,y) = oyl , v(z,y) = 2zy
’ ($2 _ yZ + 1)2 + 4x2y2)' 7 (.TQ _ yQ + 1)2 + 4.%’2?/2)

Analytic Functions 9-3
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if the polar coordinate r and 6 is used, then we can express f as
F(re?®) = u(r,0) + jo(r,0)
example: f(z) =z+4+1/z, 2#0

f(re?®) = red? + (1/r)e7?
= (r+1/r)cosf+ j(r—1/r)sind

Analytic Functions 9-4

Mappings
consider w = f(z) as a mapping or a transformation

example:
e translation each point z by 1
w=f(z)=z+1=(z+1)+jy
e rotate each point z by 90°
w= f(z) =iz =red0T7/2)
o reflect each point z in the real axis
w=f(z)=z=z—-jy
it is useful to sketch images under a given mapping

Analytic Functions 9-5

example 1: given w = 22, sketch the image of the mapping on the xy plane
w=u(z,y) + ju(z,y), where uw=2a>—19> ov=2y

122y = ca

v

!

2 2
2 —yt=c

u=c

e for c; > 0, #2 — y? = ¢; is mapped onto the line u = ¢;
o if u=rcq thenv = :|:2y\/y?Tc1, where —oo < y < 00
e for co > 0, 22y = ¢y is mapped into the line v = co

o if v = cy then u = c2/4y? — y? where —c0 <y < 0, or

o ifv=cythenu=2%-c/42?, 0 <z < o0

Analytic Functions 96
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example 2: sketch the mapping w = 22 in the polar coordinate

y v

x u

T0 ré

the mapping w = r2e/2? = pel? where

e the image is found by squaring the modulus and doubling the value 6
e we map the first quadrant onto the upper half plane p > 0,0 <60 <=

e we map the upper half plane onto the entire w plane

Analytic Functions

mappings by the exponential function: w = ¢*
w=e"Y = pel®  where p=e€%, o=y

Yy r=cy

e a vertical line z = ¢y is mapped into the circle of radius ¢;

e a horizontal line y = ¢, is mapped into the ray ¢ = ¢,

Analytic Functions 9-8

Limits
limit of f(z) as z approaches z; is a number wy, i.e.,

A ) =

meaning: w = f(z) can be made arbitrarily close to wy if z is close enough to zg

y

Definition: if for each € > 0, there exists § > 0 such that
|f(z) —wo| <e whenever 0<|z— 2| <4
then wo = lim; ;. f(2)

Analytic Functions 9-9
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example: let f(z) =25z, show that lim,; f(2) =25
we must show that for any € > 0, we can always find § > 0 such that
lz—1<0 = [2jz2—2j]<e¢
if we express |2jZ — 2j] in terms of |z — 1| by
12z —2j| =2z —1| =2]z — 1]
hence if 6 = £/2 then
[f(z) —2j|=2z—1] <20 <e
f(2) can be made arbitrarily close to 2j by making z close to 1 enough

how close ? determined by § and ¢

Analytic Functions 9-10

Remarks:

e when a limit of f(z) exists at zp, it is unique

e if the limit exists, z — zp means z approaches zy in any arbitrary direction

example: let f(z) =z/z

Y
= (0,9) o if 2= then f(z) = Z0 =1
7 as z — 0, f(z) — 1 along the real axis
; — _ O+jy _
Y e if z = jy then f(z) = 07],; =-1
T as z = 0, f(z2) —» —1 along the imaginary
(0,0) z = (z,0) s

since a limit must be unique, we conclude that lim,_,o f(z) does not exist

Analytic Functions 9-11

Theorems on limits
Theorem & suppose f(z) = u(z,y) + ju(z,y) and
Zo = 2o + Yo, wWo = uo + jvo
then lim, ., f(z) = wo if and only if

lim u(z,y) =uo and lim v(x,y) = vo
(z,y)—=(0,y0) (z,y) = (20,%0)

Theorem § suppose lim._, ., f(z) = wp and lim,_,.; g(z) = ¢o then

o lim [f(2) 4+ g(2)] = wo + co

z—20

o lim [f(2)g(2)] = woco

z— 20

. ZILH;U% = wo/co if cg #0

Analytic Functions 912
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Limit of polynomial functions: for p(z) = ag + a1z + - - - + apz"

lim p(z) = p(z0)

z—20
Theorem % suppose lim f(z) = wy then
z—2Q
. . 1
o lim f(z) =00 ifandonlyif lim ——=0
22 2=z f(z)

o lim f(z) =wo ifandonlyif lim f (%) =wp
zZ—00 z—0 Z

o lim f(z) =00 ifandonlyif lim = =0

Z—00 20 f(1/2)
example:
22+ 2 j 247
lim 1) =2 because lim (2/2) +j, = lim R =
z—00 2+ z—>0(1/z)+‘7 z—0 1+ 2
Analytic Functions 9-13

Continuity

Definition: f is said to be continuous at a point z if
lim f(2) = f(z0)

z—20

provided that both terms must exist

this statement is equivalent to another definition:

¢ — ¢ Definition: if for any € > 0, there exists § > 0 such that
|f(2) = f(20)] <& whenever |z—z| <0

then f is continuous at zg

Analytic Functions 9-14

example: f(z) =z/(z2 +1)

e fis not continuous at +j because f(+j) do not exist

e f is continuous at 1 because

. z
f(1)=1/2 and ;glll22+1_1/2

2 .
z2°+j3z—2 .
777 z 5& _J

example: f(z) = { 247

2j7 z2==J
2L s o . i
lim f(z) = lim % = lim w = lim (z+42)=j
z——j z——j zZ+] z——j zZ+) z——j

we see that lim._,_; f(z) # f(—j) = 2j

hence, f is not continuous at z = —j

Analytic Functions 9-15
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Remarks %

e f is said to be continuous in a region R if it is continuous at each point in R
e if f and g are continuous at a point, thensois f + ¢

e if f and g are continuous at a point, then so is fg

e if f and g are continuous at a point, then so is f/g at any such point if g is
not zero there

e if f and g are continuous at a point, then sois fog
o f(z) =u(z,y) + ju(x,y) is continuous at zg = (o, yo) if and only if

u(z,y) and v(x,y) are continuous at (o, yo)

Analytic Functions 9-16

Derivatives

the complex derivative of f at z is the limit

df . . flz4+Az) = f(2)
=)= ;e

(if the limit exists)

Az is a complex variable

so the limit must be the same no matter how Az
approaches 0

f is said to be differentiable at z when f/(z) exists

Analytic Functions 9-17

example: find the derivative of f(z) = 22

_ 3_ .3
N {CET O (C RN Y O
Az—0 Az Az—0 Az
. 322Az 4 32A22 + A
= lim
Az—0 Az

lim 3224 32Az + Az? =322
Az—0

hence, f is differentiable at any point z and f/(z) = 322

example: find the derivative of f(z) =z

. flz+Az) = f(z) . Z+Az—Z . g
Ao Az A% Az T a0 Az

but lim,_,( z/Z does not exist (page 9-11), so f is not differentiable everywhere

Analytic Functions 9-18
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example: f(z) = |z|? (real-valued function)

fe+A2) = f(z) 2+ Az -2 (+A2)(E+Az) — |2
Az B Az n Az
. Az
= z+Az+zA—Z

Z4+Az+2z, Az=Azx+j0
z—Az—2z, Az=0+4jAy

exists then it must be unique, meaning

hence, if lima,_o %}W

Z4+z=zZ—2 — z=0

therefore f is only differentiable at z = 0 and f'(0) =0

Analytic Functions 9-19

note: f(z) = |z|?> = u(z,y) + ju(x,y) where
u(r,y) =22 + 9% v(z,y) =0

e f is continuous everywhere because u(x,y) and v(z,y) are continuous

e but f is not differentiable everywhere; f’ only exists at z = 0
hence, for any f we can conclude that

e the continuity of a function does not imply the existence of a derivative !

e however, the existence of a derivative implies the continuity of f at that point

lim [f(2) — f(20)] = lim FE = 1G0) g, (z—20) = f'(2)-0=0

z—r2 z2—20 zZ— 2 zZ— 20
Theorem § if f(z) is differentiable at z, then f(z) is continuous at z

Analytic Functions 9-20

Differentiation formulas

basic formulas still hold for complex-valued functions

d
e —0and d—[cf(z)} = c¢f'(z) where c is a constant
z z

d

o —2"=nz""1ifn#0is an integer

dz
o LFE) + 9] = 1) +(2)
o d%[f(Z)Q(Z)] = f(2)d'(2) + f'(2)g(2) (product rule)
o let h(z) = g(f(2)) (chain rule)

h(z) = g'(f(2))f'(2)

Analytic Functions 9-21
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Cauchy-Riemann equations

¥ Theorem: suppose that

[(z) = u(z,y) + jv(z,y)

and f’(z) exists at 29 = (z9,y0) then
e the first-order derivatives of u and v must exist at (xg, yo)
e the derivatives must satisfiy the Cauchy-Riemann equations:

ou Ov  Ou  Ov

9x oy oy oz at (o, Yo)
and f’(zp) can be written as
Oou v
f(z0) = i (evaluated at (zq,0))
Analytic Functions 9-22

Proof: we start by writing
z=x+jy, Az=Az+jAy
and Aw = f(z + Az) — f(z) which is

Aw = u(x + Az, y + Ay) — u(z,y) + jlv(z + Az, y + Ay) — v(z,y)]

e let Az — 0 horizontally (Ay =0)
Y
NN Aw  ulz+ Azy) — uz,y) + jlo(@ + Az,y) — v(z,y)]
z = (0,Ay) Az Az
o let Az — 0 vertically (Az =0)
0.0 As=(A20) Aw _ u(z,y+ Ay) —u(z,y) + jlo(z,y + Ay) — v(z,y)]
Az jAy
Analytic Functions 9-23
lculate (=) = lim > in both direct
we calculate f/(z) = Aim < in both directions

e as Az — 0 horizontally
ou v
! — S
Fi(2) = 5 (@) +ig(x,y)
e as Az — 0 vertically
0 7]
1'2) = g @9) — g 5.0)
f/(z) must be valid as Az — 0 in any direction
the proof follows by matching the real /imaginary parts of the two expressions

note: C-R egs provide necessary conditions for the existence of f/(z)

Analytic Functions 9-24
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example: f(z) = |z|?, we have

u(z,y) =2+ 47, v(z,y) =0

if the Cauchy-Riemann egs are to hold at a point (z,y), it follows that

9 du v

L= — = — =

dxz Oy

d

an 7@7_@70
Y=%8y” "oz

hence, a necessary condition for f to be differentiable at z is

z=x+jy=0

(if z # 0 then f is not differentiable at z)

Analytic Functions

9-25

Cauchy-Riemann equations in Polar form

let z =z + jy = re/? # 0 with £ = rcosf and y = rsind

apply the Chain rule

ou  Ou o+ ou . 0 and ou ou 6+ ou 0
— = ——sin nd — =——-rsin — <
o = 95 9y s 70 % S 9y 7 COs
%z%cos@Jrg—Zsinb’ and %zf%-rsinb’wtg—z-rcos@
substitute % = g—?y’ and g—z = f% (Cauchy-Riemanns equations)

the Cauchy-Riemann equations in the polar form are

Jou _ov
“or ~ o9’

Analytic Functions

ou ) ov

- "o

example: Cauchy-Riemann egs are satisfied but f’ does not exist at z = 0

) # e, 240
f(Z)—{(L

ifz=0

from a direct calculation, express f as f = u(x,y) + ju(z,y) where

28— 3:L'y2 4
u(z,y)=q x2+y?> "’ ;
0, (z,y) =0

and we can say that

u(z,0) =z, Vo, u(0,y) =0, Vy,

which give
dugx,O) —1 v, 0u(0,y) —0, vy,
ox dy

Analytic Functions

y’ — 32’y
v(z,y) =4 a?+y?

v(z,0) =0, Vo, v(0,y) =y, Yy

Ov(z,0)
ox

=0, Vo, —=1,Vy
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so the Cauchy-Riemann equations are satisfied at (z,y) = (0,0)

however, f is not differentiable at 0 because

(Az)? Ao\2
; fo+an -0 o B0 (&)
PO = fim o A A T A G

and the limit does not exist (from page 9-11)

Analytic Functions 9-28

Sufficient conditions for differentiability
¥ Theorem: let z = = + jy and let the function
f(2) = u(z,y) + ju(z,y)
be defined on some neighborhood of z, and suppose that

1. the first partial derivatives of v and v w.r.t. = and y exist

2. the partial derivatives are continuous at (z,y) and satisfy C-R eqgs

Ou Ov  Ou ov

gw_ovo ou_ v t (2
ox Oy Oy Ox at (z,9)
then f/(2) exists and its value is
72) = 9ha) + f(ay)
Analytic Functions 9-29

example 1: on page 9-27, f’(0) does not exist while the C-R egs hold because

ou(w,y)  a* — 3y* + 6x%y? Ou(z,0) ou(0,y)
or  (z2492)2 - oxr L, oxr -3

which show that g—; is not continuous at (z,y) = (0,0) (neither is g—; )
example 2: f(z2) = 22 = 2% — 4 + j2zy, find f'(2) if it exists
check the Cauchy-Riemann egs,

ou Ov  Ov ou
9y =Y g

dx T 8y dx 4 oy
and all the partial derivatives are continuous at (z,y)
thus, f/(z) exists and

ou v
’ = — _ — ] =
f(z)—a$+]8$ 20 4 j2y =2z

Analytic Functions 9-30
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example 3: f(z) = e?, find f'(z) if it exists
write f(z) = e*cosy + jesiny
check the Cauchy-Riemann equations

811,_1" v 81}_ _ Ou
—=e cosyfa—y, 3=

ox

and all the derivatives are continuous for all (z,y)

thus f’(z) exists everywhere and

0 0 ) )
f(z) = 87;2 +'787.Z =c"cosy + je siny

note that f/(z) = e* = f(z) for all z

Analytic Functions 9-31

Analytic functions

Definition: f is said to be analytic at zj if it has a derivative at zy and every
point in some neighborhood of z,

e the terms regular and holomorphic are also used to denote analyticity

e we say f is analytic on a domain D if it has a derivative everywhere in D

e if f is analytic at zy then zj is called a regular point of f

e if f is not analytic at zy but is analytic at some point in every neighborhood
of zg then zj is called a singular point of f

e a function that is analytic at every point in the complex plane is called entire

Analytic Functions 9-32

let f(z) = u(z,y) + ju(x,y) be defined on a domain D

¥ Theorem: f(z) is analytic on D if and only if all of followings hold

e u(x,y) and v(z,y) have continuous first-order partial derivatives

e the Cauchy-Riemann equations are satisfied

examples &

e f(z) = z is analytic everywhere (f is entire)

e f(z) = Z is not analytic everywhere because

ou_, o
or 7 Oy

Analytic Functions 9-33
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more examples &
o f(z) =e* =e”cosx + je”siny is analytic everywhere (f is entire)
ou ov ou . ov
— =e"cosy = — — = —¢"siny = ——
Ox Y oy’ Ay Y Ox
and all the partial derivatives are continuous
o f(2) = (2+1)(22 + 1) is analytic on C (f is entire)
241
o f(z)= m is analytic on C except at
z==41, and z=4j2
e f(z) = zy + jy is not analytic everywhere because
ou v ou v
— = 1=—, and — = 0=——
or Y 7 oy’ : Ay 7 Ox
Analytic Functions 9-34

Theorem on analytic functions

let f be an analytic function everywhere in a domain D

Theorem: if f/(z) = 0 everywhere in D then f(z) must be constant on D

Theorem: if f(z) is real valued for all z € D then f(z) must be constant on D

Analytic Functions 9-35

Harmonic functions

the equation
Pulz,y)  Pu(z,y)

=0
Ox? Oy?

is called Laplace’s equation
we say a function u(z,y) is harmonic if
e the first- and second-order partial derivatives exist and are continuous

e u(x,y) satisfy Laplace's equation

& Theorem: if f(z) = u(x,y) + ju(z,y) is analytic in a domain D then u and
v are harmonic in D

Analytic Functions 9-36
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example: f(z) =e Ysinxz — je Ycosx

e f is entire because

ou —y ov ou g ov
— =e¢ Ycosx = = —e¢ Ysine = ——

Ox dy’ Ay Ox
(C-R is satisfied for every (z,y) and the partial derivatives are continuous)

e we can verify that

Ou -y Ou “Ysi 2 2

— = e Ycosza, — = —e Ysinzx

ax ’ 0.T2 8 u n 8 u _ 0
ou o 02 o ox? 8y2

— = —e Ysinux, — = e Ysinx ‘

dy dy?

e hence, u(z,y) = e”¥sinz is harmonic in every domain of the complex plane

Analytic Functions 9-37

Harmonic Conjugate

v is said to be a harmonic conjugate of w if

1. u and v are harmonic in a domain D

2. their first-order partial derivatives satisfy the Cauchy-Riemann equations on D

2

example: f(z) =22 = 2% — y% + j2xy

e since f is entire, then u and v are harmonic on the complex plane
e since f is analytic, u and v satisfy the C-R equations

e therefore, v is a harmonic conjugate of u

Analytic Functions 9-38

¥ Theorem: f(z) = u(z,y) + jv(z,y) is analytic in a domain D if and only if

v is a harmonic conjugate of u

example: f =22y + j(z? —y?)

e f is not analytic anywhere because

ou dv ou v

(C-R eqs do not hold anywhere except z = 0)

e hence, 22 — y? cannot be a harmonic conjugate of 2xy on any domain

(contrary to the example on page 9-38)

Analytic Functions 9-39
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References

Chapter 2 in

J. W. Brown and R. V. Churchill, Complex Variables and Applications, 8th
edition, McGraw-Hill, 2009

Chapter 2 in
T. W. Gamelin, Complex Analysis, Springer, 2001

Analytic Functions 9-40




9 Analytic Functions 123

Exercises
1. Let n be a positive integer. Use the & — € definition of a limit to prove that

lim 2™ = 0.
z—0

2. Determine whether f(z) is continous at z = 0 if f(0) = 0 and for z # 0 the function f is equal fo:
(@) |22 Im(1/z)
b) (Rez?)/|z|
(©) (Im2?)/]z[?
3. Prove that f(z) = 2™ where n is a positive integer, is analytic everywhere, and f'(z) = nz""1.
4. Where is the function f(z) = z Re z differentiable ?
5. Prove that f(z) = |z|* is differentiable but not analytic at z = 0.

6. For each of the following functions, locate the singularities in the finite z plane.

22— 32
22+4z+4
(b) sin"!(1/2)

(@)

COS 2
) Gr2)e

7. Show that the function © = 2:(1—y) is harmonic. Find a function v such that f(z) = u(x,y)+jv(x, y)
is analytic, i.e., the conjugate function of u.
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10. Elementary Functions

e exponential function
e logarithmic function
e complex components
e trigonometric function
e hyperbolic functions

e branches for multi-valued functions

101

Exponential function
from z = x + jy, an exponential function is defined as

f(z)=€* = e"cosy+ jesiny

Properties &
e f(z) = e* is analytic everywhere on C (e* is entire)
o fl(z)=¢*
o eFtW =¢%", 2 weC (addition formula)
o |¢*| =¢® and arg(e®) =y +2nm (n=0,£1,%2,...) (so e* # 0)
e if z is pure imaginary, then e? is periodic
Elementary Functions 10-2

Yy

/2

\

images under f(z) = €*
e images of horizontal lines are rays pointing from the origin

e images of vertical lines are circles centered at the origin

Elementary Functions 10-3
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Logarithmic function

the definition of log function is based on solving

for w where z is any nonzero complex number, and we call w = log 2z
write z = re/®(—m < © < 1) and w = u + jv, so we have
e’ =r, v =0+ 2nr
thus the definition of the (multiple-valued) logarithmic function of z is
log z = logr + i(© + 2nx), (n=0,£1,%+2,...)

if only the principle value of arg z is used (n = 0), then log z is single-valued

Elementary Functions 10-4

the principal value of log z is defined as
Logz =logr+iArgz
where r = |z| and recall that Arg z is the principal argument of z

e Log z is single-valued

e logz=Logz+ j2nm, (n=0,£1,£2,...)

note: when z is complex, one should not jump into the conclusion that
log(e®) = z (log is multiple-valued)

instead, if z = = + jy, we should write

log(e*) = log ¢7] + j(Arg(e*) + 2nm) = log |e?] + j(y + 2nm)
=z+j2nm (n=0,£1,%£2,...)

Elementary Functions 10-5

example: find logz for z=—-1+4+7j,2=1,and z= -1

e if 2= —1+4j then r = v/2 and Argz = 37/4
logz =log V2 +j(3n/4+2nm), (n=0,41,42,...)
Log z = log V2 + j3r /4

e ifz=1thenr=1and Argz=10

logz =0+ j2nm = j2nm, (n=0,+1,£2,...)
Logz=0 (as expected)

e ifz=—1thenr=1and Argz=n

logz=logl+j(r+2nm)=j2n+1)mr, (n=0,%+1,%£2,...)

Logz=jn=j (now we can find log of a negative number)

Elementary Functions 10-6
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Complex exponents

let z # 0 and ¢ be any complex number, the function z¢ is defined via
c Pclogz

z- =
where log z is the multiple-valued logarithmic function
let © be the principal value of arg z and let ¢ = a + jb

c e log z

e — (atib)(l0g |2147(O+2nm) =y — 0, +£1,42,...)

example: find j7

§I = eilord) = gillogltilm/242nm)) — o=(1/242m)7 (1 — () 41 42, ..))

(complex power of a complex can become real numbers)

Elementary Functions 10-7

more example: the values of 577 are given by

§79 = emilogd) = gmillogltj(m/242mm)) — ((1/242m)m (= 41,42, .. )

if we multiply the values of j7 by those of 777 we obtain infinitely many values of

T oo <k < o0

—4rm —27 1

€ €

thus, the usual algebraic rules do not apply to z¢ when they are multi-valued !

G -G A0 =1

Elementary Functions 10-8

Trigonometric functions

by using Euler's formula

e’ = cosx + jsinz, for any real number x
we can write ) ) . .
er —e " [
sineg = ————— cosy = ————
2j ’ 2

hence, it is natural to define trigonometric functions of a complex number z as

. el* — e=I% el eIz sin 2z
sing = ————, c0sSz = ——— tanz =
2j 2 cos z
1 1 1
cscz = —, secz = X cotz =
sin 2 CcoS z tan z

Elementary Functions 10-9
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Properties ™

e sinz and cos z are entire functions (since €/ and =77 are entire)

. asinz = cos z and 70087 = —sinz (use d‘—"zejz = jel?)
e sin(—z) = —sin z and cos(—z) = cos z (sine is odd and cosine is even)
e sin(z+27) =sinz and sin(z + 7) = —sinz

e cos(z + 2m) = cos z and cos(z + m) = —cos z

e sin(z + 7/2) = cos z and sin(z — 7/2) = —cos 2z

sin(z + w) = sin z cos w + cos z sinw

® cos(z +w) = coszcosw — sin zsinw

Elementary Functions 10-10

Hyperbolic functions

the hyperbolic sine, cosine, and tangent of a complex number are defined as

e —e’” e +e? sinh z
sinhz = — coshz = %, tanh z =

cosh z

(as they are with a real variable)

Properties &

e sinh z and cosh z are entire (since e* and e~ * are entire)

tanh z is analytic in every domain in which coshz # 0
e Lsinh z = cosh z and % cosh z = sinh z
dz dz

° d% tanh 2z = sech®z

Elementary Functions 10-11

Branches for multiple-valued functions

we often need to investigate the differentiability of a function f

o f A2~ f()
P = fim =,

what happen if f is multiple-valued (like arg z , 2¢) ?
e have to make sure if the two funtion values tend to the same value in the limit

e have to choose one of the function values in a consistent way

restricting the values of a multiple-valued functions to make it single-valued in
some region is called choosing a branch of the function

a branch of f is any single-valued function F' that is analytic in some domain

Elementary Functions 10-12




10

Elementary Functions

129

Branches for logarithmic functions
we define the principal branch Log of the lograrithmic function as
Logz = Log|z| + j Arg(z), —m<Arg(z)<m
where Arg(z) is the principle value of arg(z)

e Log z is single-valued

e Log z is not continuous along the negative real axis (because of Arg z)
A Y

z=—-z+je = Argz—m1 ase—0

3
A\ &S]

—W]]]]] z=-r—je = Argz— -7 ase—0

Elementary Functions 10-13

a branch cut is portion of curve that is introduced to define a branch F'

e points on the branch cut for f are singular points
o the negative real axis is a branch cut for the Log function

e Log z is single-valued and continuous in D = C\(—o0, 0]
D = C\(—00,0]

let zg be any point in D and wy = Log zy (or zg = €0)

d w — wo .
— Log zp = lim = lim —— = lim
dz z2—=z20 2 — 20 z—zg 2220 w—wo 220
w—wq w—wq
i 1 1 1 1
= m ——y = = —un =
w—wy E-—€ 0 d w w(
0 w—wo 1€ w=wy € 20

(we have used single-valuedness and continuity of the Log function)
Log z is analytic in D

Elementary Functions 10-14

other branches of log =

Do D,

Log|z| + jarg(z), 0 <arg(z)<2w

log(z)
log(z) = Log|z|+jarg (2), 7 <arg (z)<T7+2m

a branch log(z) is analytic everywhere on D,
any point that is common to all branch cuts of f is called a branch point

the origin is a branch point of the log function

Elementary Functions 10-15
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example: suppose we have to compute the derivative of
f(2) =log(z®> —1) at point z =j
choose a branch of f which is analytic in a region containing the point
2-1=-2

the principal branch is not analytic there, so we choose another branch

e.g., choose log(z) = Log |z| + jarg(z), 0 < arg z < 2m; then by chain rule,

Elementary Functions 10-16

Branches for the complex power

define the principal branch of z¢ to be

e Log z

where Log z is the principal branch of log z

e since the exponential function is entire, the principal branch of z¢ is analytic
in D where Log z is analytic

e using the chain rule

c
i (ecLog z) _ eCLOg 20 ¢ _ %0 _ CZC71
d - - - 0
Z 2=2 20 20

provided that we use the same branch of 2¢ on both sides of the equation

(272" = 291V iff we use the same branch for the complex power on both sides)
Elementary Functions 10-17
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Exercises
1. Find all values of 2z such that e**~1 = 2 4+ j2/3.
2. Show that e* = €%
3. What restriction is placed on z ? when
(a) € is real;
(b) €7 is pure imaginary.
4. Find all values of log z and the principle value Log 2z when z equals
—je?, 2+352, 4-33.
5. Show that the set of values of log(j3) is not the same as the set of values of 31og j.
6. Find j9°. Show that it does not coincide with 99 = j~1.
7. Find the principle values of the following complex numbers.
(3%, (=), ()P
8. Determine all the values of (a) (1 + j)7 (b) vz,
9. Establish the following addition formulae:
(a) cos(z + w) = cos z cosw — sin z sin w
(b) sin(z + w) = sin z cos w + cos z sin w
(c) cosh(z + w) = cosh z cosh w + sinh z sinh w
(d) sinh(z + w) = sinh z coshw + cosh z sinh w
10. Show that

1 1+
tanlz_log< Jrj,z),
72 1—jz2

where both sides of the identify are to be interpreted as subsets of the complex plane, i.e., tan™

lzisa

multiple-valued function. In other words, show that tanw = z if and only if j2w is one of the logarithm

values on the right hand side.
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11. Integrals

e derivatives of functions
e definite integrals

e contour integrals

e Cauchy-Goursat theorem

o Cauchy integral formula

11-1

Derivatives of functions

consider derivatives of complex-valued functions w of a real variable ¢
w(t) = u(t) + jo(t)

where u and v are real-valued functions of ¢

the derivative w'(t) or w(t) is defined as

w'(t) =/ (t) + jv'(t)
Properties & many rules are carried over to complex-valued functions
o [cw(t)] = cw'(t)

o [w(t)+ s(t)] =w'(t) +5'(t)
o [w(t)s(t)] =w'(t)s(t) +w(t)s'(t)

Integrals

mean-value theorem: no longer applies for complex-valued functions

suppose w(t) is continuous on [a,b] and w’(t) exists

it is not necessarily true that there is a number ¢ € [a, b] such that

w(b) —w(a)

wie) ==,

for example, w(t) = €7t on the interval [0,27] and we have w(27) — w(0) = 0

however, |w'(t)| = |je’| = 1, which is never zero

Integrals
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Definite integrals
the definite integral of a complex-valued function
w(t) = u(t) + jo(t)

over an interval a <t < b is defined as

/ab w(t)dt = /ab )+ ] /abv(t)d,t

provided that each integral exists (ensured if u and v are piecewise continuous)
Properties ™

o j:[cw(t) + s(t)]dt = cj;fw(t)dt + jjs(t)dt

o [Pw(t)dt = — [ w(t)dt

o [Pw(tydt = [Cw(t)dt+ [ w(t)dt

Integrals 11-4

Fundamental Theorem of Calculus: still holds for complex-valued functions

suppose
W(t)y=U(@t)+jV(t) and w(t)=u(t)+ jou(t)

are continuous on [a, ]
if W(t) = w(t) when a <t <bthen U'(t) = u(t) and V'(t) = v(t)
then the integral becomes
b
/ w(t)dt = U(D)], + VD), = [U0) + 5V (0)] - [U(a) + V()

therefore, we obtain

Integrals 11-5

example: compute foﬂ/s eI2tdt

since

the integral is given by

/6 . 1 .
/ At = —eI?
0

Integrals 116
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mean-value theorem for integration: not hold for complex-valued w(t)

it is not necessarily true that there exists ¢ € [a, b] such that

b
/ w(t)dt = w(c)(b—a)
for example, w(t) = et for 0 <t < 27 (same example as on page 11-3)

it is easy to see that

2m
=0

b 2 ) e_jt
/ w(t)dt:/ eJtdt = —
a 0 J

but there is no ¢ € [0, 27| such that w(c) =0

0

Integrals 117

Contour integral

integrals of complex-valued functions defined on curves in the complex plane

® arcs
e contours

e contour integrals

Integrals

Arcs
a set of points z = (z,y) in the complex plane is said to be an arc or a path if
r=ut), y=y(t), or z(t) =z(t) +jy(t), a<t<b
where z(t) and y(t) are continuous functions of real parameter ¢

e the arc is simple or is called a Jordan arc if it does not cross itself, e.g.,
z(t) # z(s) when t # s

e the arc is closed if it starts and ends at the same point, e.g., 2(b) = z(a)

e a simple closed path (or curve) is a closed path such that z(t) # z(s) for
a<s<t<b

22

22
[(\’ z1©z2
Z1 21
simple arc  arc (not simple) simple closed curve

Integrals
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examples:
polygonal line counterclockwise
. . _ .50
gLl 2+ z=¢
_Ja+tjr, 0<z< 0 S 9 S 27T
R + 7, 1<z<2
A B
1 2
traverse twice clockwise
z = 6'729 z = €7j0
0<6<2mr 0<6<2mr
C D

the arcs B, C and D have the same set of points, but they are not the same arc

remark: a closed curve is positive oriented if it is counterclockwise direction

Integrals 11-10

Contours

an arc is called differentiable if the components 2/(t) and y/(t) of the derivative
(1) = a/(8) + jy' ()

of z(t) used to represent the arc, are continuous on the interval [a, b]

the arc z = z(t) for a <t < b is said to be smooth if

e 2/(t) is continuous on the closed interval [a, ]

e 2/(t) # 0 throughout the open interval a <t <b

a concatenation of smooth arcs is called a contour or piecewise smooth arc

Integrals 11-11

Contour integrals

let C be a contour extending from a point a to a point b

an integral defined in terms of the values f(z) along a contour C' is denoted by
o [ f(2)dz (its value, in general, depends on C')
. f: f(z)dz (if the integral is independent of the choice of C)

if we assume that f is piecewise continuous on C then we define

b
[ ez = [ oo
C a
as the line integral or contour integral of f along C' in terms of parameter ¢

Integrals 11-12
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Properties

o [l20f(2) + 9(2)dz = 2 [ f(2)dz + [L9(z)dz, 2 €C
o [ of(2)dz=— [ f(2)dz

o [ f()dz= [y f(2)dz+ [, f(2)dz

e if C'is a simple closed path then we write [, f(2)dz = §, f(2)dz

C
- C 2
21 21 C =3

Integrals 11-13

example: f(2) =y —x —j32% (2 =2+ jy)
o [} = -[01 J(2)dz = [p, [(2)dz+ [, [(2)dz

— segment OA: z =0+ jy,dz = jdy
Jou F()dz = [}y — 0= j0)jdy = j/2

— segment AB: z =x + j,dz = dz
Jup f(2)dz = [} (1—2—j32%)dz = 1/2—j

o = fCQ f(z)dz 0

1
z=ua+jz, dz=(14j)dz, f(z)dz = / (x—2—7322)(14+j)dx = 1—j
Cs 0
remark: [| = 1%1 # I though Cy and Cs start and end at the same points

Integrals 11-14

example: compute fc Zdz on the following contours

the contour is a circle, so we write z in polar form, and note that r is unchanged

z= rejs, dz = jT€j9d097 61 <60<6,

05 _ 02
I :/ rei? - jrel?do :jrz/ 1d6

01 01

27 2m /2
1:jr2/ 1d6 I:fjrz/ 1d6 I:jr2/ 1d6
0 0
= j2omr? = —j2mr?

Integrals 11-15
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example: let C' be a circle of radius r, centered at z
z C

L # —1
show that / (z — 20)"dz = 0.’ m# ’
c j2m, m= -1

we parametrize the circle by writing
z=z0+rel?, 0<0<2r, so dz=jre’’do

the integral becomes
2m
I= / rmed™0 . jrelfdz = jrmtt / el (100
JC JOo
ifm=-1,1=j f027r df = j2m; otherwise, for m # —1, we have
270

I = jrm+t A {cos[(m + 1)0] + jsin[(m + 1)6]} d6 =0

Integrals 11-16

Independence of path
under which condition does a contour integral only depend on the endpoints 7
assumptions:
e let D be a domain and f : D — C be a continuous function
e let C be any contour in D that starts from z; to 2o

we say f has an antiderivative in D if there exists I’ : D — C such that

_dF(2)

Fi(z) = S22 = §(2)

Theorem: if f has an antiderivative F' on D, the contour integral is given by

/ f(2)dz = F(22) — F(21)
C

Integrals 1117

example: f(z) is the principal branch
2 =ello8% (|2] >0, -7 < Argz < )

of this power function, compute the integral

1 .
/ Zdz
-1

by two methods:

e using a parametrized curve C' which is the semicircle z = et 0<f<m)
e using an antiderivative of f of the branch

2 =ell8% (2] >0,—71/2 < argz < 31/2)

Integrals 11-18
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parametrized curve: z = ¢/ and dz = je??df
zj _ ejlogz _ ej(Log1+jargz) _ ej-jﬁ _ 679, (0 <0< 7r)

the integral becomes

/zjdz = /je(jfl)gde
c 0

- _J <j—1)0‘”
i-1° 0
_ .7 (j*l)“',l _ _j -7 1
Aoy = ey
_ o @=)em+ 1
N 2
1 , (1=7)(e ™ +1)
hence, [ Zdz = [ ,2idz= —
Integrals 1119

antiderivative of 2/ is z/*1/(j + 1) on the branch

2 =el8* (|2] >0,—7/2 < argz < 37/2)

(we cannot use the principal branch because it is not defined at z = —1)
. j+171 1 . )
/ Zdz = {Z } = [1”’1 - (—l)”’l}
-1 J+1j_, J+1
- b [eml)logl _ e<j+1>log<71>]
= 1 Jj+1
- 1 [eml)(Log 140) _ e<j+1><Log1+jw>]
Jj+1
- b [1- e ] = A=jlem+1)
j+1 2
the integral computed by the two methods are equal
Integrals 11-20
if we use an antiderivative of z7 on a different branch
=87 (|2 > 0,7/2 < argz < 57/2)
! 1
/ Jds — [e<.7+1>1og1 _ e(j+1>1og<—1>]
J-1 Jj+1
_ ! [e(.7'+1)(Log 14527) _ ,(j+1)(Log 1+.7'7r)]
j+1
—1 1 1
— i [6727r+j27r _ 677r+j7r:|
j+1
_ 1 [672# +E*W}
j+1
(1—g)e "(e"+1)
- 2

the integral is different now as the function value of the integrand has changed

Integrals 1121
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Simply and Multiply connected domains

a simply connected domain D is a domain such that every simple closed
contour within it encloses only points of D

intuition: a domain is simply connected if it has no holes

Ok o &%

simply connected multiply connected

a domain that is not simply connected is called multiply connected

Integrals 11-22

Green’s Theorem

let D be a bounded domain whose boundary C' is sectionally smooth

let P(x,y) and Q(x,y) be continuously differentiable on D U C, then

[ raes [an= [ [ (22-22) sy

where C'is in the positive direction w.r.t. the interior of D
C

D can be simply or multiply
connected

this result will be used to prove the Cauchy's theorem

Integrals 11-23

Cauchy’s theorem

let D be a bounded domain whose boundary C' is sectionally smooth

Theorem: if f(z) is analytic and f/(z) is continuous in D and on C' then

/c f(z)dz=0

W & 00

Goursat proved this result w/o the assumption on continuity of f’ E .

the consequence is then known as the Cauchy-Goursat theorem

Integrals 11-24
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Proof of Cauchy’s theorem:

f2) =u(z,y) +jv(z,y), dz=dz+jdy
f(2)dz = (u+ jv)(dz + jdy) = u dx — v dy + j(v dz + u dy)

if f’is continuous in D, so are Qu du Ov 9v then from Green's theorem
dx’ Oy’ dx’ Oy

Jorene= [, (o) e ] ], (G 5y) e

since f is analytic, the Cauchy-Riemann equations suggest that

Ou Ov  Ou ov

dxr —dy 9y Ox

/Cf(z)dz =0

Integrals 11-25

so we can conclude that

example: for any simple closed contour C'

/ dz =0
c

2. . . .
because e* is a composite of e and 22, so f is analytic everywhere
example: the integral
/ 2 =0
z =
Jc (22 + 4)2
for any closed contour lying in the open disk |z| < 2

Integrals 11-26

Extension to multiply connected domains

let D be a multiply connected domain

Cauchy-Goursat theorem: suppose that

1. C is a simple closed contour in D, described in counterclockwise direction
2. Cy,...,C, are simple closed contours interior to C, all in clockwise direction

3. Ch,...,C, are disjoint and their interiors have no points in common

(then D consists of the points in C' and exterior to each Cj)

if f is analytic on all of these contours and throughout D then

/Cf(z)dz + ; o f(z)dz=0

Integrals 11-27
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example: use the result from page 11-16 to compute

1
/7dz
cr

where C'is the boundary of the annulus D shown below (where r, R > 0)

02 from p. 11-16, we obtain

{-\ / R%/zdz = j2rR?, or that
Cy
T
\/ R / 1dz = —j2m, / 1dz =27
C:

012’ 22

if z =779 then 2z = |2|2 = r?

therefore, [, % dz = fCl % dz + fCQ %dz =0

agree with the Cauchy's theorem since f is analytic everywhere in D and on C

Integrals 11-28

example: for each f, use the Cauchy-Goursat theorem on p. 11-27 to show that
f(R)dz= [ [f(z)dz
el Cy

where C is a circle with radius 4 and Cj is a square shown below

&

1
Cs 1e) = 5aa
= z2+2
&) = ——7
1 A SIH§Z/2)

16 =

where are the singular points of these f7

this result is known as the principle of deformation path

Integrals 11-29

Principle of deformation of paths

C1

let Cy and Cy be positively oriented simple
closed contours where Cs is interior to C;

Theorem: if a function f is analytic in the closed region consisting of those
contours and all points between them, then

f(2)dz= [ f(2)d=
el Cy

meaning: integrals of an analytic function does not
depend on the path if the function is analytic in between
and on the two paths

Integrals 11-30
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Cauchy integral formula

let C' be a simple closed contour, taken in the positive sense
Theorem: let f be analytic everywhere inside and on C'

if zg is any point interior to C' then

f(z0) = ! /C(f&dz

jor z— 20)

this is known as the Cauchy integral formula

meaning: certain integrals along contours can be determined by the values of f

Integrals 11-31

z

€

22+1

example: compute fc dz on the contours C and Cs

e* e*
write / 5 dz = / - —dz
Joz+1 Jo (z+5)(z =)
choose f(z) such that it is analytic everywhere on each contour
e to compute [, ﬁdz choose f(z) =¢*/(z +j)
z

' € . . 771_]'
/c] e ) =me

e to compute [, z;—:_ldz choose f(z) =e*/(z —j)

dz = j2nf(—j) = —me™?

Integrals 11-32

Upper bounds for contour integrals

assumptions:

e (' denotes a contour of length L

e f is piecewise continuous on C
% Theorem: if there exists a constant M > 0 such that
lf(z)l <M

for all z on C' at which f(z) is defined, then

/:) f(z)dz

Integrals 11-33
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Proof of Cauchy integral formula
create a small circle C), which is interior to C

f(2) is analytic everywhere in D
/

(2)

zZ— 20

is analytic in D except at z = 2z

from the Cauchy-Goursat theorem,

L0 g [ S,

cr 20 CPZ_ZO

which can be expressed as

G gy [ 45 [ DI,
e fe) [ = [ FEI

Jo & — %0

dz
z—20

we can show that fcp =j27 (similar to example on page 11-16)

Integrals 11-34

therefore, we obtain

f(Z) — f(ZO)dZ

c, *T %

JECTSyEE

Cc? 20

and we will show that the RHS must be zero

since f is analytic, it is continuous at zg, e.g., for each € > 0, 30 > 0 such that
[f(z) = f(20)] <& whenever |z— 2z <4

if we pick p to be smaller than ¢ then |f(z) — f(20)|/|z — 20| < €/p

we can show that the integral is bounded by (from page 11-33)

1) =), |

Jo, Z—Z0

€ - length of C,
p

2me

since we can let ¢ be arbitrarily small, the integral must be equal to zero

Integrals 11-35

Derivatives of analytic functions

let D be a simply connected domain and zy be any interior point of D

Theorem: if f is analytic in D then the derivative of f(z) of all order exist and
are analytic in D

moreover, the derivatives of f at z are given by

wyy f(s) _
Ji )(z)—ﬁ/cmds (n=1,2,...)

2z
example: compute [, idz where C is the positively oriented unit circle
z

2z : (3) ;
oY R . U
c (Z — 0)3+1 3! 3

R
(where f(z) = e2?)

Integrals 11-36
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1
example: compute [, f(z)dz where f(z) = (;‘%22)2)
C are circles given by |z]| =1, |z —2—j] =2, lz—1—732|=2
(all are in counterclockwise direction)
C3
Co
z+1 z+1 z+1
fl(Z)*ZfT f2(z) = 22 f:ﬂ@*m*ﬂz)
f(2) dz = j2m f1(0), f(2) dz = j2m f2(2), f(z)dz=0

felt Cy C3

Integrals 11-37

example: let C' be a simple closed contour lying in the annulus 1 < |z] < 2

325+ 222 — 82— 4
compute 5 Ao 47
c 22(22+3z2+2)

f is not analytic at 0, —1, —2, so the Cauchy formula cannot be readily applied

we can compute the partial fraction of f and the integral becomes

1 1 3 1
(e = — [ —dz— | —d 2 g — 4
/Cj(z)z ,/sz ,/022 Z+,/Cz+1z+/cz+22

applying the Cauchy integral formula to each term gives

/Cf(z)dz = j27(=1) 4+ 527(0) 4+ j27(3) + 0 = jdm

Integrals 11-38
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Exercises

1. f(2) = me™ and C is the boundary of the square with vertices at the points 0,1,1 + 5 and 4, the
orientation of C' being in the counterclockwise direction.

2. Find the following integrals where the path is any contour between the indicated limits of integration:

J/4
(a) / e™* dz
33

T+52
(b) / sin z dz
0

4
() / (z—1)% dz
2

3. Directly evaluate the integral
1—j
/ (322 +j22) dz
1+j
along the three paths joining the points 1 4 5 and 1 — j shown in the figure. Are the three values of the

three the same ? Explain your reasons.

Yy Yy y
+j 1+ Lt

Lo

4. Evaluate the following integrals:

j{ sin w22 + cos w22
a
c (z-1)(2-2)

62z d
)fé(zﬂ)‘* :

where C' is the circle |z| = 4.
5. Evaluate the integral
dz
o 22(2%2 — 4)e?
where
(@) C is the circle |z| =1,
() C is the circle |z — 1| = 2.
6. Prove that if f is analytic inside and on a circle C' of radius 7 and center at z = a, then

M -n!
/rn

|F™(a)] < ., n=0,1,2,... (11.1)

where M is a constant such that | f(z)| < M. This is known as the Cauchy’s inequality. Hint. Use the
Cauchy’s integral formula and apply an upperbound for the integral.
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7. Liouville’s theorem states that if for all z in the entire complex plane, (i) f(z) is analytic and (ii) f(z is
bounded, i.e., IM, |f(z)| < M, then f(z) must be a constant. Use the Cauchy’s inequality from ({11.1)
to prove Liouville's theorem. Hint. Consider an upper bound for |f’(z)| when r — oo.

8. Fundamental theorem of algebra states that any polynomial
p(2) =ao + a1z +ax2® + -+ +a,z"  (a, #0)

of degree n (n > 1) has at least one zero. That is, there exists at least one point zg such that p(zo) =0.
Prove this theorem by using the result from Liouville’s theorem. Hint. Consider f(z) = 1/p(z). What
happen to f if p(z) = 0 has no root at all ?

9. By using the fundamental theorem of algebra, prove that every polynomial equation:
p(2) =ao+arz+- - +apz" =0,

where n > 1 and a,, # 0 has exactly n roots.
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EE202 - EE MATH 11 Jitkomut Songsiri

12. Series

e limit and convergence
e Taylor series
e Maclaurin series

e Laurent series

12-1

Convergence of sequences

an infinite sequence
R13 %2y -+ o5 %my - -
of complex numbers has a limit z, denoted by

lim z, =z
n—o0

if for each € > 0, there exists a positive integer N such that

zn — 2| < € whenver n >N
(zn, becomes arbitrarily close to z as n increases)

e if a limit exists it must be unique
e when the limit exists, the sequence is said to converge to z

e if the sequence has no limit, it diverges

Series 12-2

Limit of complex-valued sequences
suppose that z, = x,, + jy, and z = x + jy; then

lim 2z, =z
n—oo

if and only if
lim z, =2 and lim y,=vy
n—oo n—0o0o
example: z, = & +jforn=1.2,...
. .1 . .
limz, = lim —+j lim 1=04+j=j
n— n—oo N/ n—oo

moreover, we can see that for each € > 0

\z,,,,fj|:i3 whenver n > —
n el/

Series 12-3
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Convergence of series

an infinite series

o0
sz:21+22+"'+zk+"'
k=1
of complex numbers converges to the sum S if the sequence

n
Sn:ZZkZZ1+Zz+~~+zn (n=1,2,...)
k=1

of partial sums converges to S; then we can write
[ee)
d a=8 if lim S, =S
—1 n—oo

e a series can have at most one sum

e when a series does not converge, we say it diverges

Series 12-4

Limit of complex-valued series

suppose that z, = x,, + jy, and S = X + jY; then

if and only if

ixn:X and iyn:Y
n=1 n=1

Facts:

e if a series converges, the nth term converges to zero as n — oo

e the absolute convergence of a series implies the convergence of that series

[e o) o0
g |zn| converges — E Zn converges

n=1 n=1

Series 12-5

example: the geometric series > 5o, 2%

the nth partial sum of the geometric series is given by

n
Sn:szz1+z+22+---+z"_1+z"
k=0

multiply both sides by 1 — z

(1*Z)Sn:1*Z+Z*22+"'+2n_1*Z"+Z"*Z"+1:1*Z"+1

1
if |2| < 1 then 2"*! — 0 and S,, — T, dsn—ox
—z
the limit of the partial sum exists, and hence
o0
1
k _
Zz =1 lz| <1
k=0

Series 12-6
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Taylor series

Taylor’s theorem: suppose f is analytic throughout a disk |z — zg| < ¢ then
f(2) has the power series representation

F(2) = Fz0) + £'(z0)(z — 20) + L

for each z inside the disk, i.e.,

z—zo| <70

meaning: the power series converges to f(z) when |z — zp| < 19
Y

F) = i S (20)(z = 20)"

n!
n=0

the expansion of f(z) is called the Taylor series of f about the point z

Series 12-7

Maclaurin series

when zg = 0, the Taylor series becomes

0 r(n)(0)4n
CED SrA L Luy (R

and it is called a Maclaurin series
example: f(z) =e?
since €” is entire, it has a Maclaurin representation that is valid for all z

fW=e* n=01,2,.., = f("')(()):l for all n

and it follows that

n

o0
o
e = Zﬁ (2] < o0)
n=0

Series 12-8

example: Maclaurin representation of f(z) =1/(1 —z)

f(z) is analytic throughout the open disk |z| < 1 and its derivatives are

f<">(z):(1+;)n+l — f™0)=n (n=0,1,2,..)

therefore, the Maclaurin series is given by

1 2 n n
::1+z+z +-tz +---:2:z (|| < 1)

it is simply a geometric series where z is the common ratio of adjacent terms

agree with the result on page 12-6

Series 12-9
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example: Maclaurin representation of f(z) = sinz
. . ejz - ei]z . . .
we write sin z = —5 and note that sin z is entire
J

then we can use the Maclaurin series of e* for expanding e*7*

1 el (jZ)" e (_jz)n) 1 x j"Z"’
= (U S ) LS
! ! !
72 (nO n! = 72 oy n!
but (1 — (—1)") = 0 when n is even and 2 otherwise, so we replace n by 2n + 1
1 2j2n+122n+1 0 22+l
nz = —§ 2~ _ s
sinz = 53 2t 1) 2 (1) Guray A=)
n=0 n=0
B P I S
EERETI T

the series contains only odd powers of z

Series 12-10

Maclaurin series expansion

for |z] < o0
0o M ZZ 3
z — =1 o1
€ n:onl +Z+2!+3'+
- L (2n+1) 23 25 LT
. _ 1y = — T = — = e
sin z ng[)( ) @n+ 1) T3 + 51 7! +
o Z(?n) 22 24 26
. _ 1) = 1l—-——4+———=+4--
cos z 7;0( ) (2n)! 2! + 4! 6! +
o] 2(2"+1) ZJ 2'5 27
sinh z 7;0(2n+1)! Z+3!+5!+7!+
s (2n) 22 2t 2
coshz = = (271)' = 1+ 2! +j+a+
Series o

Proof of Taylor’s theorem

assumption: f is analytic on |z| < g

proof for special case: zg = 0; flz)= Z S0

n=0

= (12| < o)

e () is a positively oriented circle |z| =y

e z is any point with |z| =7 and r <71 <79

e s is a point on contour C

e f is analytic inside and on the circle C;

we will expand f(z) from the Cauchy integral formula

fe) = [ Loy

J2m Jo, 58— 2

Series 12-12
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expand the integral term

1 1
ite 1/(s — =--
e rewrite 1/(s z)ass_z s T= (/%)
e for any z # 1,
1 LN Nod
T + Z 2" (from long division)
n=0
e then we can write N1
1 ZN I am
-t
s—z sN(s—2) st

n=0

e multiply by f(s) and integrate with respect to s along C

(s) , ) RS S
01-9*2d87ZN/cl(5*Z)8Ndb+7;)2 /Cls”ﬁds

Series 12-13

characterize the remainder term

e the second term on RHS can be computed from the Cauchy integral formula

) g — jzn@ (n=0,1,2,...)

o gn+1 - |

o from f(2) = 5= [o, £6) s, we obtain

J2m s—

N (s = Fm(0)2n
f(z)—ﬂ? ) sN(s—z) ds+;) n!

Ry(2)

e we obtain Taylor's representation if we can show that limy_,oo Ry (2) =0

Series 12-14

the remainder term goes to zero as n — oo

o |s—z| >||s| = |z|| =r1 —r; hence 1/(s — 2z) < 1/(r1 —r)

o if |f(s)| < M on Cy then

2N f(s) rv M
R =|— —————ds| < — . ——— - length of C'
[Rn(2)] jor /C1 sN(s — z) - (ri — ) %,0_3
™
N
M
:<T> n — 0, as N — oo because r/r; <1
ri) (ri—r)

e we finished the proof for the special case of Taylor's theorem; when zo = 0

Series 12-15
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generalize the result to zy # 0

assumption: f is analytic on |z — zg| < 79

o f(z+ zg) must be analytic when |(z + z9) — 29| <79  (composite function)

e hence, g(z) = f(z + 20) is analytic on |z| < 1o, so its Maclaurin series is

o]

(n) on
(=3 20"y

|
n=0 e
e this is equivalent to

> f)(2) 2™
f(z+zo):27f fﬂ”) (2] < 7o)

n=0
e replace z by z — 2, we obtain the Taylor's series

Series 12-16

1+22

——— to a series involving powers of 2
2+ z

example: expand f(z) =
we cannot find a Maclaurin series for f since it is not analytic at z =0

however, for |z| # 0, we can write

1) = 12_1+2z: 12_<2 1 )

z 142z z 71—&-2
1 .
:?-(2—(1—z+22—z‘}+z4—-~~)) (Iz] < 1)
1
:;(1+2722+z3fz4+---) (0< |z <1)
1 1 9
=5 —<-tz—2+-
22z

the expansion of f contains both negative and positive powers of z

Series 12-17

remarks:

e if f fails to be analytic at a point 2y, we cannot apply Taylor's theorem there

e example in page 12-17 shows that however, it is possible to find a series for
f(z) involving both positive and negative powers of (z — zg)

1+ 22 1 1 2
= ——+z—=2"+--
z

23 + ZZ ZZ

f(2)

e such a representation is known as Laurent series, which includes the Taylor
series as a special case

e with the Laurent series, we can expand f about a singular point

Series 12-18
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Laurent series
Theorem: if all of the following assumptions hold

1. D is an annular domain 11 < |z — 20| < 72
2. C'is any positively oriented simple closed contour around 2 and lies inside D

3. f is analytic throughout D

then f has the series representation; called the Laurent series

oo o0 br’
flz) = an(z — 20)" + —
N
1 [ f(z)
h = 1,
where a, o 720)n+1d , (n=0, )
b, = i ﬁdz, (n=1,2,...)
327 Jo (2 — z9) 77!
Series 1219
remarks:

e we cannot apply the Cauchy integral formula to compute the coefficient a,,

1 z
= or f
because f is NOT analytic in C
o if the annular domain is specified, a Laurent series of f(z) about z is unique
e the annulus D is the region of convergence for the obtained Laurent series
e the coeff a,, and b,, given by the formula are generally difficult to compute

® so, we use another way such as computing a partial fraction of f and use

1 .
i:1+z+z2+23+-~' |z] <1

to expand the partial fraction as an infinite series

Series 12-20
' ' . -1 .
example: find power series representation of f(z) = m in
z—1)(z —
Dy : |z <1, Dy:1< |z <2, Dj3:2<|z| <0

Dy:0<|z—1/<1, Ds:1<|z—1|, Dg:0<|z—2/ <1, Dr:1<]|z—2]

fis not analytic at z=1and z — 2

Series 12-21




156

Series

e domain D;: |z| <1 (Jz| <1and |z/2] < 1forall z€ Dy )
~1 1/2
f(z)—f(z)—Eer
_ = n = Z\" _ = —n—1 n
-3 +(1/2)Z(§) =Y @rton JE<t
n=0 n=0 n=0
the representation is a Maclaurin series
e domain Dy: 1 < |z| <2 (J1/2] < 1 and |z/2| < 1 for all z € D5)
1 1 1 1
&= 1=am 2 16

=1 2 2 =1 2
= am X gm = X (A<<?)
n=0 n=0

n=1 n=0

this is the Laurent series for f in Dy where a,, = 1/2"+! and b, = 1

Series 12-22

e domain Dj: 2 < |z| < 00 (2/z] <1 andso|l/z| <1 forall z € Ds)

. 1 1 1 1
f(z):Z'l—(l/z)_z'l_(z/z)

o0 [ee) [ee)
1 on (1—-2n"h
= am et X (@<ll<oo
n=0 n=0 n=1

this is the Laurent series for f in D3 where a,, = 0 and b, =1 — 2"~1

e domain Dy: 0< [z —1| <1

. 1 1
LS i R e P}
:Ziﬁi(%m 0<|z—1<1)

n=0

this is the Laurent series for f in Dy where by = 1,b, =0,k >2and a, = 1

Series 12-23

e domain Ds: 1< |z — 1| (1/]z—=1] <1 for all z € Ds)

-1 —1 1
f(z):(z_l)(z_l—l):(2—1)2'1—1/(2—1)

> 1
:fzm, (1<]z—1| < )
n=0

this is the Laurent series for f in D5 where a, =0, by =0,b, = —1,n > 2

e domain Dg: 0 < |z —2| <1

. 1 1 1 1
=g T2 0709 2
:72i2+n§(71)n(372)n O<lz-2/<1)

this is the Laurent series for f in Dy with by = —1,b, =0,n > 2, a,, = (—1)"

Series 12-24
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e domain D7: 1 < |z —2| (1/]z—2| <1forall z € Dr)
—1 -1 1
(z=2+1)(2=2) (=22 1+1/(z—2)

n+1
,Zz+2ﬂ+27 (1<]z—=2| <)
n= O

fz) =

the Laurent series for f in D7 where a,, =0, by = 0,b,, = (=1)""1,n > 2

remark: we can find related integrals from the coefficients of the Laurent series

for example, let C' be a simple positive closed contour lying in D7

—1 _ - -
Je ey ¥ = Je £( = Jj2mby = 0
Jewmemrde = e <f(z) dz = J2ma =0
Jo (;_11) dz = [of(2)(z=2dz = j2mby = —j2n
Series 12-25
BZ
example: find a Laurent series for f(z) = W in a certain domain
z

for any z, since e* has a Maclaurin series about 0, we can write

e* B et Z (z+1)"
(z4+1)2  e(z+1)2 e n'z+1
7 1i(z+1)n*
= -y A
en:O n:
1| (z+ 1) 1 1
= - , 0< 1] <
D e R R ey (0 <fz+1] <o)

n=0

this is the Laurent series for f in the domain 0 < |z + 1| < co where

1/e
—1/e —1/e, b=0Yk>3 a,=
by /e, b /e, bp,=0,Vk>3, a )

Series 12-26
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Exercises
1. Find Maclaurin series of
1
qQ —
(a) 1=
. 2
® Toe
in certain domains. Specify those domains and express the series as f(z) = ZZO:O apz™. Give a

general expression of a,, as a function of n.

2. Write the two Laurent series in powers of z that represent the function

1
)= ——
1) z(1 4 22)
in certain domains, and specify those domains.
3. Show that )
e 14 22 2 n 32% 1120
1+2 2 3 8 30
in a certain domain. Specify that domain. Show that the general term of the power series is given by
1 1 (—1)”
— _ n —_— PR
= () g gt 22
4. Find all the possible Laurent series of
1

I&=e+s

Specify the domains where the expansions are valid.

5. Find the Laurent series about z = —2 of

f(z) =(z—3)sin

z+2

Specify the domain where the expansion is valid.
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13 Residue Theorem

EE202 - EE MATH 11 Jitkomut Songsiri

13. Residues and Its Applications

e isolated singular points
e residues
e Cauchy’s residue theorem

e applications of residues

13-1

Isolated singular points

zp is called a singular point of f if

o f fails to be analytic at zg

e but f is analytic at some point in every neighborhood of zg

a singular point z is said to be isolated if f is analytic in some punctured disk

0<|z—2z|<e £ /‘\
. \ 2
centered at zg (also called a deleted neighborhood of z;) . S

example: f(z) = 1/(2%(22 + 1)) has the three isolated singular points at

z=0, z==%j

Residues and lts Applications

Non-isolated singular points
. 1 . .
example: the function ———— has the singular points
sin(w/z)

1
z2=0, z==, (n==£1,%2,...)

-1 0.5 0 0.5 1

e each singular point except z = 0 is isolated
e ( is nonisolated since every punctured disk of 0 contains other singularities
e for any € > 0, we can find a positive integer n such that n > 1/¢

e this means z = 1/n always lies in the punctured disk 0 < |z| < &

Residues and lts Applications
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Residues

assumption: zy is an isolated singular point of f, e.g.,
there exists a punctured disk 0 < |z — zg| < 7o throughout which f is analytic

consequently, f has a Laurent series representation

> b b
= 2 — 2)" L e
f(z) - Z‘ML(‘ ZU) + z— 20 (Z _ Zo)"
n=0
let C' be any positively oriented simple closed contour lying in the disk
0< |Z — Z[)‘ <Tp

the coefficient b, of the Laurent series is given by
1
bn:,—/ﬁdz, (n=1,2,...)
j2m Jeo (z = z) !

Residues and lts Applications

+-oy (0< |z — 20| <70)

13-4

the coefficient of 1/(z — zp) in the Laurent expansion is obtained by

/ f(z)dz = j2mby
c
by is called the residue of f at the isolated singular point z,, denoted by

b1 = Res f(z)

z=zg

this allows us to write

/ f(2)dz = j2r Res f(z)
c z=z0

which provides a powerful method for evaluating integrals around a contour

Residues and lts Applications

) 2 . - . .
example: find [, e!/*"dz when C is the positive oriented circle |z = 1
1/2% is analytic everywhere except z = 0; 0 is an isolated singular point

the Laurent series expansion of f is

1 1 1
JE) =/ =14 St ot

o4 ﬁ"r (0<|Z|<OO)

the residue of f at z = 0 is zero (b = 0), so the integral is zero

remark: the analyticity of f within and on C' is a sufficient condition for
fc f(2)dz to be zero; however, it is not a necessary condition

Residues and lts Applications

13-6
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example: compute [, ~dz where C'is circle |z +2| =1

1
z2(z+2)3
f has the isolated singular points at 0 and —2
choose an annulus domain: 0 < |z + 2| < 2

on which f is analytic and contains C

f has a Laurent series on this domain and is given by

_ 1 1 1 1
f(z)_(z+2—2)(z+2)3_75.1—(24-2)/2.(24-2)3
0 n o n—3
:—2(zi2)32(zg,,?) :—2% (0<|z+2 <2)

the residue of f at z = —2 is —1/2% which is obtained when n = 2

therefore, the integral is j2m(—1/2%) = —jm/4 (check with the Cauchy formula)

Residues and lts Applications 137

Cauchy'’s residue theorem

let C' be a positively oriented simple closed contour

Theorem: if f is analytic inside and on C' except for a finite number of singular
points z1, 2o, ..., 2, inside C, then

/ f(z)dz = jQﬂ'i Res f(z)
c P z=z

Proof.

® since zi's are isolated points, we can find small
circles C}'s that are mutually disjoint

e f is analytic on a multiply connected domain

e from the Cauchy-Goursat theorem: T

Jo 1)z =35 Jo, 1 (2)dz

Residues and Its Applications 13-8

example: use the Cauchy residue theorem to evaluate the integral

3 1
/ Ldz, C'is the circle |z] = 2, in counterclockwise
Joz(z—=1)(z—3)

C encloses the two singular points of the integrand, so

1= /('f(Z)dZ = /c%dz = jom [E{:egf(z) + E{:elsf(z)]

e calculate Res.— f(z) via the Laurent series of f in 0 < |z| <1

e calculate Res,—; f(z) via the Laurent series of fin0<|z—1] <1

Residues and lts Applications 139
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3 2
z—1 2-3

1
rewrite f(z) = - —
z

o the Laurent series of fin 0 < |2] <1

1,3 2
T2 1-2z 3(1—2/3)

f(2)
the residue of f at 0 is the coefficient of 1/z, so Res,—¢ f(z) =1

e the Laurent seriesof fin0< |z —1] <1

1 3 1

LA s S ey S 5

the residue of f at 1 is the coefficient of 1/(z — 1), so Res,—o f(z) = —3

Residues and lts Applications

= §+3(1+z+z2+. . .)f§(1+(z/3)+(z/3)2+. )

_1(z1)+(z1)2+...z31<1+221+<Z21> +>

13-10

therefore, I = j27(1 — 3) = —jdn

alternatively, we can compute the integral from the Cauchy integral formula

I*/ 1 3 2 d
“Je z_zfl+zf3 *

= j2m(1 — 3+ 0) = —jdr

Residues and lts Applications

13-11

Residue at infinity
f is said to have an isolated point at zy = oo if

there exists R > 0 such that f is analytic for R < |z| < co

™, singular points of /

C' is a positive oriented simple closed contour

Theorem: if f is analytic everywhere except for a finite number of singular
points interior to C, then

[r-osal (0]

(see a proof on section 71, Churchill)

Residues and lts Applications

13-12




164

Residue Theorem

example: find I = [, dz, C'is the circle |z| = 2 (counterclockwise)
7C2

23
(z-1)
I = j2r Res [(1/22)f(1/2)]

1-3
:jQﬂRgg[ &

m} £ j2m Res g(2)

find the residue via the Laurent series of g in 0 < |z| < 1
write g(z) = ;73 Ql+z+24-) = ng g(z)=1
compare the integral with other methods &

e Cauchy integral formula (write the partial fraction of f)

e Cauchy residue theorem (have to find two residues; hence two Laurent series)

Residues and lts Applications 1313

Principal part

f has an isolated singular point at z(, so f has a Laurent seires

by bo by,

Goz) Gozp TG

f(z) = Z an(z = 20)" +

n=0

in a punctured disk 0 < |z — 29| < R

the portion of the series that involves negative powers of z — zj

bl + b2 + + bn
(z—20) (2—20)2 (z — 20)™

is called the principal part of f

Residues and lts Applications 13-14

Types of isolated singular points
three possible types of the principal part of f

e no principal part

2 24

f(z):cosz:l—%—&-i-&-'“7 (0 <[z] < o0)

e finite number of terms in the principal part

1 1 1
= = 41— 2. 0< 2] <1

e infinite number of terms in the principal part

. 111
fz) =€ :1“‘;4‘2724‘@4‘“'7 (0 <[z] < o0)

Residues and lts Applications 1315
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classify the number of terms in the principal part in a general form

e none: z is called a removable singular point

flz)= Z an(z — 20)"

n=0
o finite (m terms): zj is called a pole of order m

- n by by b
z) = an(z—20)" + e
1) ;} ( 0) z—z0 (z—20)? (z — zo)™

e infinite: z( is said to be an essential singular point of f

> b b b
— _ n 1 2 n
f(z) = ;an(z 20)" + P PR + EEraT +
Residues and Its Applications 13-16
examples:
22 A
filz) = cosz:175+ﬂ+~--
fa(2) 5 ! +14+(z-2)+ (2 -2+
z = = — z — z —
2 (z—1)(z—2) z-2
1 1 1
. S - 24 ...
f3(2) pETTR Sl Sl
1 1 1
_ ol/z - ...
falz) = e =1+ z + 2122 + 3123 +

e ( is a removeable singular point of f;
e 2 is a pole of order 1 (or simple pole) of f»
e 0 is a pole of order 2 (or double pole) of f3

e ( is an essential singular point of f4
note: for fa, f3 we can determine the pole/order from the denominator of f

Residues and lts Applications 13-17

Residue formula

if f has a pole of order m at z then

Res £(2) = o tim 02
= im
g’ (m — 1)l 2=z dzm—1

(z = 20)"f(2)

Proof. if f has a pole of order m, its Laurent series can be expressed as

o]

: = n bl b2 bm
f(Z) *nz:;]an(z—zf)) + (Z—Z()) + (Z—z0)2+.“+ (Z_Zo)m
(2= 20)"f(2) = Z an(z — 20)™ ™ + bi(z — 20) ™+ ba(z — 20) "2 4+ + by,
n=0

to obtain by, we take the (m — 1)th derivative and take the limit z — 2¢

Residues and lts Applications 13-18
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! (z+1
example 1: find Res,—o f(z) and Res,—> f(z) where f(z) = W_;)
.od (241 .
IZ{:egf(z) = ;1_1}1(1)% (z — 2> =-3/4 (0 is a double pole of f)
Coz4+1
Bep/e) = = =3/
+1
example 2: find Res,—o g(z) where g(z) = 12 3
-2z

g is analytic at 0 (0 is a removable singular point of g), so Res,—¢g(z) =0

check ® apply the results from the above two examples to compute

+1
/ %d&, C is the circle |z| = 3 (counterclockwise)
o ?2\Z—

by using the Cauchy residue theorem and the formula on page 13-12

Residues and lts Applications 1319

sometimes the pole order cannot be readily determined

. sinh z
example 3: find Res.—o f(z) where f(z) = —a

use the Maclaurin series of sinh z

£(2) 1 +z3+zs+ 1+1+Z+
N=— 2+ )= [ — 2
24 3! 5! 23 3lz 5!

0 is the third-order pole with residue 1/3!
here we determine the residue at z = 0 from its definition (the coeff. of 1/z )

no need to use the residue formula on page 13-18

Residues and lts Applications 13-20

when the pole order (m) is unknown, we can

e assumem =1,2,3,...

e find the corresponding residues until we find the first finite value

. 142
example 4: find Res.—o f(2) where f(2) = ———
1—cosz
e assume m =1
. 2(1+2) . 1+22
lz%zegf(z) = l%m =0/0= ,ll—% ek 1/0 =00 = (not 1st order)

e assume m = 2

. d (22(1+2)
=lim — | ————=
z—0dz \ 1 —cosz

ngf(z) ) =2 (finite) == 0 is a double pole

note: use L'Hopital's rule to compute the limit

Residues and lts Applications 1321
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Summary
many ways to compute a contour integral ([, f(z)dz)

e parametrize the path (feasible when C is easily described)

e use the principle of deformation of paths (if f is analytic in the region
between the two contours)

e use the Cauchy integral formula (typically requires the partial fraction of f)

e use the Cauchy’s residue theorem on page 13-8 (requires the residues at
singular points enclosed by C)

o use the theorem of the residue at infinity on page 13-12 (find one residue at 0)
to find the residue of f at zg

e read from the coeff of 1/(z — 2¢) in the Laurent series of f

e apply the residue formula on page 13-18

Residues and lts Applications 13-22

Application of the residue theorem

e calculating real definite integrals

— integrals involving sines and cosines
— improper integrals

— improper integrals from Fourier series

e inversion of Laplace transforms

Residues and lts Applications 13-23

Definite integrals involving sines and cosines

we consider a problem of evaluating definite integrals of the form

2m
F(sin 6, cos 6)do
0

since 6 varies from 0 to 2w, we can let 6 be an argument of a point z
z=¢e? (0<6<2n)
this describe a positively oriented circle C' centered at the origin
make the substitutions
27t 24271 dz

51119:;7 cos) = —, df =—

Residues and lts Applications 13-24
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this will transform the integral into the contour integral

/F zf'z’17z+z*1 %
c 72 2 jz

e the integrand becomes a function of z

e if the integrand reduces to a rational function of z, we can apply the Cauchy’s
residue theorem

example:

/‘2“ 9 B / 1 de / dz N / (2)d=
o Brasimd  JosraGiliz Jo24gi-2 e

- Laermerim = (00 =2

where C'is the positively oriented circle |z| =1

Residues and lts Applications 13-25

the above idea can be summarized in the following theorem

Theorem: if F'(cos6,sin@) is a rational function of cos and sin @ which is
finite on the closed interval 0 < 6 < 27, and if f is the function obtained from
F(-,-) by the substitutions

24271 z—2z"1

cosf = 5 sinf = 2

then

(e}

/ZW F(cosf,sin) df = j2r | 3" Res f(z)
' o A=k jz
where the summation takes over all z;'s that lie within the circle |z| =1

Residues and lts Applications 13-26

2m cos 20
example: compute [ :/ Wd&, -l1<axl1
0 — 2acos a

make change of variables

Cj29 + C_j29 22 + Z_2 24 + 1
20 — — -
e o8 2 2 2.2

az? — (> +1)z+a

e 1—2acosf+a’>=1-2a(z+27"1)/2+a>=
z

we have f027r F(0)do = [, %dz £ [, 9(2)dz where

B (z*+1)z _ (z'+1)
9(2) = jz-22%(a22 — (a2 + 1)z +a) j222(1 —az)(z —a)

we see that only the poles z = 0 and z = a lie inside the unit circle C

Residues and lts Applications 13-27
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therefore, the integral becomes
I= / g(2)dz = j2r (Reg g(z) + Resg(z)>
C z= z=a

e note that z = 0 is a double pole of g(z), so

Lod, 1 a?+1
ggﬂdeQQ&g@nf—ﬁ- 3

a

. 1 at+1
* Resg(z) = lm(z —a)g(z) = 5 iz
h I 2ra?
ence, = 1= a2

Residues and lts Applications 13-28

Improper integrals

let's first consider a well-known improper integral

I:/ dx .
Jooo 1+ 22

of course, this can be evaluated using the inverse tangent function

we will derive this kind of integral by means of contour integration
some poles of the integrand lie in the upper half plane
let C'r be a semicircular contour with radius R — oo

"R .
/7Rf(x)dx + - f()dz = ‘727r§ Res f(2)

z=z

and show that fCR f(2)dz — 0 as R — oo

Residues and lts Applications 13-29

Theorem: if all of the following assumptions hold
1. f(z) is analytic in the upper half plane except at a finite number of poles

2. none of the poles of f(z) lies on the real axis
M o
3 1f (=) < = when 2 = Re?%; M is a constant and k > 1

then the real improper integral can be evaluated by a contour integration, and

o . sum of the residues of f(z) at the poles
[x fla)do = j2m which lie in the upper half plane

e assumption 2: f is analytic on C}

e assumption 3: z)dz = 0as R — o0
Cr

Residues and lts Applications 13-30
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Proof. consider a semicircular contour with radius R large enough to include all
the poles of f(z) that lie in the upper half plane

e from the Cauchy's residue theorem
/ f(2)dz = jon [Z Res f(2) at all poles within C; U CR]
C1UCR

(to apply this, f(z) cannot have singular points on CY, i.e., the real axis)

e the integral along the real axis is our desired integral

Rlijnw/ f(z)dz + hm CRf( z)dz = lim f(z)dz

R—o00 C1UCR

e hence, it suffices to show that

lim/ f(2)dz=0 by using |f(z)| < M/R*, where k >1

R—o0

Residues and lts Applications 1331

o apply the modulus of the integral and use |f(2)| < M/RF

MnR
RE

M
< ik length of Cr =

f(z)dz
Cr

hence, limp_; o0 fCRf(z)dz =0ifk>1

remark: an example of f(z) that satisfies all the conditions in page 13-30
_ p(x) .
flz) = , p and g are polynomials

¢(z) has no real roots and deg ¢(z) > deg p(z) + 2

(relative degree of f is greater than or equal to 2)

Residues and lts Applications 13-32

example: show that
f(z)dz=0
Cr
as R — oo where Cris thearc z = Re??, 0 <6 <m
o f(2)=(2+2)/(z*+1) (relative degree of f is 2)

z+2[< |zl +2=R+2, [°+1]>]2°| -1 =|R’ -1

hence, |f(2)| < 252 and apply the modulus of the integral

1+ 2

‘/j Ydz /|j \dz< mR=m.—1
R— =

R2

the upper bound tends to zero as R — oo

Residues and Its Applications 13-33
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o f(z)=1/(*+22+2)
2422 42=(2—-1+))z—(1-75) 2 (z—2)(z— %)
hence, |2 — zo| > ||2| — |20l = R — |1 + j| = R — v/2 and similarly,
o= 20l 2 II2] ~ %]l = B~ V2

then it follows that

1

222 (R-VEP = OIS

1 g
f(z)d=z §/ [f(2)|dz < TR = ———Fr—
‘/c c (R—V2)? (1-92)2
the upper bound tends to zero as R — oo
Residues and Its Applications 13-34

®  dx
example: compute [ = 522
—0o0

o define f(2) and create a contour C' = C7 U CR as on page 13-29

BT
o relative degree of f is 2, so fCRf(z)dz =0as R— o

e f(z) has poles at z = j and z = —j (no poles on the real axis)
e only the pole z = j lies in the upper half plane

e by the residue’s theorem

R
j2m -y Res f(z) = %Cf(z)dz = /Rf(:c)d:v+ f(2)dz
(L —

z=zp Cr
——
=I as R—o =0 as R—oo

I = j2nResf(z) = j2nlim(z—j)f(z) = =«
z=j z—j

Residues and Its Applications 13-35

example: compute

I /OO P,
= x
Jooo (@2 + a?)(22 + b2)

2
(22 4+ a2)(22 + 12)

o relative degree of f is 2, so fcR f(z)dz=0as R — oo

e define f(2) = and create C' = Cy U Cg as on page 13-29

e f(z) has poles at z = +ja and z = +35b (no poles on the real axis)
e only the poles z = ja and z = jb lie in the upper half plane

e by the residue’s theorem

R
j2m- Zzh;isk f(z)= fgf(z)dz = /Rf(:p)d:r+ f(z)dz
(L —

Cr
—_——
=I as R—oo =0as R—oo

. . a b o
I=g2m L}i?if(z) +£’“}Sbf(z)} = J2m La(a,? ) R - (1,2)} Tatb

Residues and Its Applications 13-36
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Improper integrals from Fourier analysis

we can use residue theory to evaluate improper integrals of the form
o0 oo (e o) X
/ f(z)sinmz dz, / f(z)cosma dx, or / e f(x) dx
— 00 —00 —0o0
we note that /™7 is analytic everywhere, moreover
|e?™#| = e/™(@+3Y) — ¢=™Y < 1 for all y in the upper half plane
therefore, if | f(2)| < M/RF with k > 1, then so is [e/™* f(z)]

hence, if f(z) satisfies the conditions in page 13-30 then

® imz . sum of the residues of /™ f(z) at the poles
/ " (@)de =527 | [ 1ich lie in the upper half plane

—o00

Residues and lts Applications 13-37

denote .
g | sum of the residues of e/™% f(z) at the poles
~ | which lie in the upper half plane

and note that S can be complex

by comparing the real and imaginary part of the integral

/00 ™M f(2)dx = /00 (cosmzx + jsinma) f(x)dx = j2nS

—o00 —o00

we have

/ cosma f(x) dz Re(j2nS) = =27 -Im S

/ sinma f(x) dz Im(j27S) =27 -Re S

Residues and Its Applications 13-38

 cosmax dx

example: compute [ :/ T
—00

edmz

1422

e define f(z) = and create C' = C7 U Cg as on page 13-29
o relative degree of f is 2, so fCR f(z)dz=0as R — oo
e f has poles at z = j and z = —j (no poles on the real axis)

e the pole z = j lies in the upper half plane

e by residue’s theorem

z=z}

R
j2m -y Res f(z) :fcf(z)dz:/_Rf(x)dH g f(2)dz
=I as R—oo =0 as R—oc

Residues and Its Applications 13-39
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o therefore,

as R — oo

the examples of f we have seen so far are in the form of

where p, g are polynomials and degp(z) > degq(x) + 2

Residues and lts Applications
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oo 6jmz cjmz

/ ——dxr = j2rRes ——

oo L+ 22 z=j 1422

2 — 7 ejmz
= 727 lim % =me "
z—j 1422
e our desired integral can be obtained by
"> cosmaz dx
/ ———5 = Re(me™™)=me™",
oo 14z
* sinmz dx
/ ——— = Im(me™™) =0
oo 14z
Residues and lts Applications 13-40
Summary of improper integrals
Cr
— Tk al P R \ R
R
$o f(2)dz R f@)dz Jo,, f(2)dz
=j2m Z Resf(z) our desired integral show that this term is zero
2=2k as R — oo

the assumption on the degrees of p, q is sufficient to guarantee that

(2)e?"%*dz =0 (a > 0)
Cr

as R — oo where C is the arc z = Re??, 0<0 <7

we can relax this assumption to consider function f such as

z 1 . .
pors e Ll (relative degree is 1)

and obtain the same result by making use of Jordan’s inequality
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Jordan inequality

for R >0, .
i ™
/ e*Rsm 9d9 < =
0 R
Proof.
y ™
/ sinf > 20/m, 0<60<—
y=2 2
y =sing e~ Rsind < 6—2R9/7r7 R>0, 0<6< g
: /2
0 —Rsin6 4
e dd < —
the last line is another form of the Jordan inequality
because the graph of y = sin 6 is symmetric about the line § = 7/2
Residues and Its Applications 13-43

example: let f(z) = 22+;72+2 show that fCRf(z)ej“Zdz =0fora>0as
R— o0
o first note that |¢/%%| = |e/*(#TIV)| = |e/9% . =W = ¢~ W < 1  (since a > 0)

e similar to page 13-34, we see that |f(z)| < R/(R — v/2)? & My and

(2)e?%%dz

R
CRf SAR(Rfﬂ)Q.WR:(l_ﬁ)Q

which does not tend to zero as R — oo
e however, for z that lies on Cp, i.e., z = Re’?

f(z)ejaz _ f(Z)ejaRe]o _ f(z)ejaR(c059+jsin9) _ f(z)efaRsinG ) ejaRcosG

Residues and Its Applications 13-44

o if we find an upper bound of the integral, and use Jordan’s inequality:

(2)e?**dz
Cr

I
/ f(z)e—aRsinﬂ . ejaRcosBjRedee
0
T
< / |f(Z)67aRSin9 . ejaRcostl%e]'9| do
0

— RA/[R / efa,R sin Hde
0

TMpg
a

the final term approach 0 as R — oo because Mpr — 0

conclusion: then we can apply the residue’s theorem to integrals like
> zcos(ax
[ et
oo TP+ 22+ 2
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Inversion of Laplace transforms

recall the definitions:

!
—
3
N

[I>
D
~
—
=
=

(1>

/OO ft)e stdt
0
1

a+joo
F(s)e*tds

~
—~
4
=
Il
[
L
!
—~
=
Il

jer

a—joo
Theorem: suppose F(s) is analytic everywhere except at the poles
P1,P2,---5Pn,

all of which lie to the left of the vertical line Re(s) =a (a convergence factor)
if |F(s)] < Mg and Mr — 0 as s — oo through the half plane Re(s) < a then

LTYF(s)] = Z Res F(s)e®

s=p;

Residues and Its Applications 13-46

Proof sketch.

Ims
trize Cy and Cs b
c I parametrize C and Cy by
Pix Res
2| |a Ci={zlz=a+jy, —R<y<R}
P3 “ ) 3
G 02:{z|z:a+Re-79, ggegg}

1. create a huge semicircle that is large enough to contain all the poles of F(s)

2. apply the Cauchy'’s residue theorem to conclude that
. n
/ e F(s)ds = j2m Z Res[e*'F(s)] f/ e F(s)ds
G k=1 Pk C2

3. prove that the integral along C5 is zero when the circle radius goes to co
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choose a and R: choose the center and radius of the circle
e a > 0 is so large that all the poles of F(s) lie to the left of Cy

a > max
k=1,2,...r

) Re(pr)

e R > 0 is large enough so that all poles of F'(s) are enclosed by the semicircle

if the maximum modulus of p1,ps, ..., p, is Ry then

Vk, |pr—al<l|pgl ta<Roy+a = pick R>Ry+a

Cir={z]lz=a+jy, —R<y<R}

2

Cr_;:{z\z:a—&-Rejo, ggeggﬂ}
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integral along C, is zero

Ims
Ce P
X
BN Res Ci={z]|z=a+jy, -R<y<R}
b3 ) 3
“Cl 02:{Z|ZZG+R8]07 gggg?ﬂ}

e for s = a+ Rel? and ds = jRe’?df, the integral becomes

3m/2
/ w/ et . ethos*,9+thsin9F((l+Rej@)Rjejgdg
/2

/ e F(s)ds
Co
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e apply the modolus of the integral

/ e*'F(s)ds
Cy

e since |F(s)| < Mg for s that lies on C

/ et F(s)ds
Ca

e make change of variable ¢ = 6 — 7/2 and apply the Jordan inequality

/ e F(s)ds
Co

37/2
S / ‘eatethose ) ethsinBF(a+Rej9)Rj€je| "
/2

37/2
eRt cos 6 4o

< MpRe* /
/2

mMpe®
t

T
< N[RRBM/ 6—Rtsin¢ d¢
0

<m/Rt

the last term approaches zero as R — oo because Mg — 0 (by assumption)
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example: find L71[F(s)] where F(s) = 7 and ¢ >0

S
=+

Ims

ng{z\z:a—&-che, ggeg%}

Res poles of F'(s) are s = %jc so we choose a > 0
G the semicircle must enclose all the pole
Cy so we have R > a+c¢

first we verifty that |F(s)] < Mg and Mr — 0 as s — oo for s on Cs
we note that |s| = la + Re’’| <a+ Rand |s| > ja—R|=R—a
since [s2 + 2 > ||s]2 — ?| > (R —a)? — ¢2 > 0, then

s (R+a)
7P = [(R=ap =

['(s) QéJWR—>O as R — o0
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therefore, we can apply the theorem on page 13-46
st sest

L7F(s)) = 3 Res[e"'F(s)] = Res S C—

Res ————
s=je (52 +¢2)2 " s=—je (s2 + c2)?

poles of F'(s) are s = %jc (double poles)
d { seft } B {c“(l-ﬁ-ts) 2sest }
s=jc

Res e F(s) = lim —

s=ie smaeds [(s+je)?] [ (s+70)?  (s+jc)®
teict
T jde
.5t st 1 ts 25 st
Res e*'F(s) = lim — be, = | ( + 5) _ 66'
=5 s [ gor) ~ 1=~ G gonl .
te—Jgct
T j4c
- e tsinct
hence L7YF(s)] = ﬁ(e“t —e ety = o
Residues and Its Applications 1352

1
g “1rp(e —
example: find L7[F(s)] where F(s) = GraT i

F(s) has poles at s = —a =+ jb (simple poles)

L7YUF(s)]= Re

s €'F(s)+ Res e"F(s)
s=—a+jb j

s=—a—jb

(provided that |F(s)] < Mg and Mp — 0 as s — oo on Cy ... please check &)

est e(—a+ijb)t
Res = lim — = -
s=—a+jb  s=—a+jbS+ a+ jb j2b
st (—a—jb)t
Res = lim ¢ — = € -
s=—a—jb s=—a—jb S+ a— ]b —]2b

,—at jbt _ —jbt —at 3 bt
hence, £~ [F(s)] = @%be )

Residues and Its Applications 13-53

References

Chapter 6-7 in

J. W. Brown and R. V. Churchill, Complex Variables and Applications, 8th
edition, McGraw-Hill, 2009

Chapter 7 in
T. W. Gamelin, Complex Analysis, Springer, 2001

Chapter 22 in
M. Dejnakarin, Mathematics for Electrical Engineering, CU Press, 2006

Residues and Its Applications 13-54




178 13 Residue Theorem

Exercises

1. Find the residues of )
zc+2
TG = e+

at all its poles in the finite plane.

2. Consider f(z) = e*/sin? z. Show that z = 7 is a pole of order 2 (double pole) and find the residue of
fatz=m.

3. Explain how to evaluate the integral

00 l‘2
/_OO (22 4+ 1)%(2? + 2z + 2) de

by applying the residue theorem, and find the value of the integral.

27 ) .
/ cos 26 a0
o ©5—4cosb

4. Evaluate the integral

by applying the residue theorem.

5. Explain how to evaluate

°° cos(mmax)
[ w5

by applying the residue theorem and compute the integral.
6. Find the inverse Laplace transform of

s2 — 25— 23

FO) = G952 v 65+ 13)

by using the residue theorem. State the assumptions required by your calculation and show that those
assumptions hold in this problem.
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