EE202 - EE MATH II Jitkomut Songsiri

8. Complex Numbers

- sums and products
- basic algebraic properties
- complex conjugates
- exponential form
- principal arguments
- roots of complex numbers
- regions in the complex plane

Introduction

we denote a complex number z by

$$z = x + jy$$

where

- $x = \operatorname{Re}(z)$ (real part of z)
- $y = \operatorname{Im}(z)$ (imaginary part of z)
- $j = \sqrt{-1}$

Sum and Product

consider two complex numbers

$$z_1 = x_1 + jy_1, \quad z_2 = x_2 + jy_2$$

the sum and product of two complex number are defined as:

•
$$z_1 + z_2 = (x_1 + x_2) + j(y_1 + y_2)$$
 addition

•
$$z_1 z_2 = (x_1 x_2 - y_1 y_2) + j(y_1 x_2 + x_1 y_2)$$
 multiplication

example:

$$(-3+j5)(1-2j) = 7+j11$$

Algebraic properties

•
$$z_1 = z_2 \Longleftrightarrow \operatorname{Re}(z_1) = \operatorname{Re}(z_2)$$
 and $\operatorname{Im}(z_1) = \operatorname{Im}(z_2)$

equality

$$\bullet$$
 $z_1 + z_2 = z_2 + z_1$

commutative

$$\bullet (z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$$

associative

$$z_1(z_2 + z_3) = z_1 z_2 + z_1 z_3$$

distributive

$$\bullet$$
 $-z = -x - iy$

addtive inverse

•
$$z^{-1} = \frac{x}{x^2 + y^2} - j\frac{y}{x^2 + y^2}$$

multiplicative inverse

Complex conjugate and Moduli 🦠

modulus (or absolute value): $|z| = \sqrt{x^2 + y^2}$

complex conjugate: $\bar{z} = x - jy$

$$\bullet |z_1 z_2| = |z_1||z_2|$$

- $\bullet |z_1 + z_2| \le |z_1| + |z_2|$
- $|z_1 + z_2| \ge ||z_1| |z_2||$
- $\bullet \ \overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$
- $\bullet \ \overline{z_1 z_2} = \overline{z_1} \cdot \overline{z_2}$

$$ullet$$
 $\overline{\left(rac{z_1}{z_2}
ight)}=rac{\overline{z_1}}{ar{z_2}}$, if $z_2
eq 0$

• $\operatorname{Re}(z) = (z + \overline{z})/2$ and $\operatorname{Im}(z) = (z - \overline{z})/2j$

triangle inequality

Argument of complex numbers

$$x = r \cos \theta, \quad y = r \sin \theta$$

$$z = r(\cos \theta + j \sin \theta)$$

$$r = |z|$$

$$\theta = \tan^{-1}(y/x) \triangleq \arg z$$
 (called an argument of z)

principal value of $\arg z$ denoted by $\operatorname{Arg} z$ is the unique θ such that $-\pi < \theta \leq \pi$

$$\arg z = \operatorname{Arg} z + 2n\pi, \quad (n = 0, \pm 1, \pm 2, ...)$$

example: $Arg(-1+j) = \frac{3\pi}{4}$, $arg z = \frac{3\pi}{4} + 2n\pi$, $n = 0, \pm 1, ...$

Polar representation

Euler's formula &

$$e^{j\theta} = \cos\theta + j\sin\theta$$

a polar representation of z = x + jy (where $z \neq 0$) is

$$z = re^{j\theta}$$

where r = |z| and $\theta = \arg z$

example:

$$(-1+j) = \sqrt{2} e^{j3\pi/4} = \sqrt{2} e^{j(3\pi/4+2n\pi)}, \quad n = 0, \pm 1, \dots$$

(there are infinite numbers of polar forms for -1+j)

let $z_1 = r_1 e^{j\theta_1}$ and $z_2 = r_2 e^{j\theta_2}$

properties 🦠

•
$$z_1 z_2 = r_1 r_2 e^{j(\theta_1 + \theta_2)}$$

$$\bullet \ \frac{z_1}{z_2} = \frac{r_1}{r_2} e^{j(\theta_1 - \theta_2)}$$

$$-1 = \frac{1}{r}e^{-j\theta}$$

•
$$z^n = r^n e^{jn\theta}$$
, $n = 0, \pm 1, \dots$

de Moivre's formula 🦠

$$(\cos \theta + j \sin \theta)^n = \cos n\theta + j \sin n\theta, \quad n = 0, \pm 1, \pm 2, \dots$$

example: prove the following trigonometric identity

$$\cos 3\theta = \cos^3 \theta - 3\cos\theta\sin^2\theta$$

from de Moivre's formula,

$$\cos 3\theta + j \sin 3\theta = (\cos \theta + j \sin \theta)^{3}$$
$$= \cos^{3} \theta + j 3 \cos^{2} \theta \sin \theta - 3 \cos \theta \sin^{2} \theta - j \sin^{3} \theta$$

and the identity is readily obtained from comparing the real part of both sides

Arguments of products

an argument of the product $z_1z_2=r_1r_2e^{j(\theta_1+\theta_2)}$ is given by

$$\arg(z_1 z_2) = \arg z_1 + \arg z_2$$

example: $z_1 = -1$ and $z_2 = -1 + j$

$$\arg(z_1 z_2) = \arg(1 - j) = 7\pi/4, \quad \arg z_1 + \arg z_2 = \pi + 3\pi/4$$

this result is not always true if arg is replaced by Arg

$$Arg(z_1 z_2) = Arg(1 - j) = -\pi/4$$
, $Arg z_1 + Arg z_2 = \pi + 3\pi/4$

more properties of the argument function

•
$$arg(\bar{z}) = -arg z$$

•
$$arg(1/z) = -arg z$$

$$\bullet \arg(z_1 z_2) = \arg z_1 + \arg z_2$$

(no need to memorize these formulae)

Roots of complex numbers

an nth root of $z_0=r_0e^{j\theta_0}$ is a number $z=re^{j\theta}$ such that $z^n=z_0$, or

$$r^n e^{jn\theta} = r_0 e^{j\theta_0}$$

note: two nonzero complex numbers

$$z_1 = r_1 e^{j heta_1}$$
 and $z_2 = r_2 e^{j heta_2}$

are equal if and only if

$$r_1 = r_2$$
 and $\theta_1 = \theta_2 + 2k\pi$

for some $k = 0, \pm 1, \pm 2, ...$

therefore, the nth roots of z_0 are

$$z = \sqrt[n]{r_0} \exp \left[j \left(\frac{\theta_0 + 2k\pi}{n} \right) \right] \quad k = 0, \pm 1, \pm 2, \dots$$

all of the distinct roots are obtained by

$$c_k = \sqrt[n]{r_0} \exp \left[j \left(\frac{\theta_0 + 2k\pi}{n} \right) \right] \quad k = 0, 1, \dots, n-1$$

the roots lie on the circle $|z|=\sqrt[n]{r_0}$ and equally spaced every $2\pi/n$ rad

when $-\pi < \theta_0 \le \pi$, we say c_0 is the **principal root**

example 1: find the n roots of 1 for n=2,3,4 and 5

$$1 = 1 \cdot \exp[j(0 + 2k\pi)], \quad k = 0, \pm 1, \pm 2, \dots$$

the distinct n roots of 1 are

$$c_k = \sqrt[n]{r_0} \exp \left[j \left(\frac{0 + 2k\pi}{n} \right) \right] \quad k = 0, 1, \dots, n-1$$

example 2: find $(-8 - j8\sqrt{3})^{1/4}$

write
$$z_0 = -8 - j8\sqrt{3} = 16e^{j(-\pi + \pi/3)} = 16e^{j(-2\pi/3)}$$

the four roots of z_0 are

$$c_k = (16)^{1/4} \exp \left[j \left(\frac{-2\pi/3 + 2k\pi}{4} \right) \right] \quad k = 0, 1, 2, 3$$

Regions in the Complex Plane

- interior, exterior, boundary points
- open and closed sets
- loci on the complex plane

Regions in the complex plane

an ϵ **neighborhood** of z_0 is the set

$$\{z \in \mathbf{C} \mid |z - z_0| < \epsilon \}$$

Definition: a point z_0 is said to be

- ullet an **interior point** of a set S if there exists a neighborhood of z_0 that contains only points of S
- ullet an **exterior point** of S when there exists a neighborhood of it containing *no points* of S
- ullet a **boundary point** of S if it is neither an interior nor an exterior point of S

the **boundary** of S is the set of A boundary points of S

examples on the real axis: $S_1 = (0,1)$, $S_2 = [0,1]$, and $S_3 = (0,1]$

in *real analysis*, an ϵ neighborhood of $x_0 \in \mathbf{R}$ is the set

$$\{x \in \mathbf{R} \mid |x - x_0| < \epsilon \}$$

- any $x \in (0,1)$ is an interior point of S_1 , S_2 , and S_3
- any $x \in (-\infty,0) \cup (1,\infty)$ is an exterior point of S_1,S_2 and S_3
- 0 and 1 are boundary points of S_1, S_2 and S_3

examples on the complex plane:

- ullet any point $z\in {\bf C}$ with |z|<1 is an interior point of A and B
- ullet any point $z\in {\bf C}$ with 1/2<|z|<1 is an interior point of C
- ullet any point $z\in {\bf C}$ with |z|>1 is an exterior point of A and B
- any point $z \in \mathbf{C}$ with 0 < |z| < 1/2 or |z| > 1 is an exterior point of C
- ullet the circle |z|=1 is the boundary of A and B
- ullet the union of the circles |z|=1 and |z|=1/2 is the boundary of C

Open and Closed sets

- a set is **open** if and only if each of its points is an interior point
- a set is **closed** if it contains all of its boundary points
- ullet the **closure** of a set S is the *closed* set consisting of all points in S together with the boundary of S
- some sets are neither open nor closed

from the examples on page 8-18 and page 8-19,

- ullet S_1 is open, S_2 is closed, S_3 is neither open nor closed
- S_2 is the closure of S_1
- ullet A is open, B is closed, C is neither open nor closed
- B is the closure of A

Connected sets

an open set S is said to be **connected** if any pair of points z_1 and z_2 in S can be joined by a *polygonal line* that lies entirely in S

- a nonempty open set that is connected is called a **domain**
- any neighborhood is a domain
- a domain with some, none, or all of its boundary points is called a region

Bounded sets

a set S is said to be **bounded** if for any point $z \in S$,

$$|z| \leq M$$
, for some $M < \infty$

otherwise it is unbounded

Loci in the complex plane

- |z-a|=r, $a\in\mathbf{C},r\in\mathbf{R}$
- |z-a| < r, $a \in \mathbf{C}, r \in \mathbf{R}$
- $\bullet ||z-a| = |z-b|, a, b \in \mathbf{C}$

References

Chapter 1 in

J. W. Brown and R. V. Churchill, *Complex Variables and Applications*, 8th edition, McGraw-Hill, 2009

Complex Numbers 8-24