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4. Eigenvalues and Eigenvectors

• linear dependence and linear span

• definition of eigenvalues

• important properties

• similarity transform

• diagonalization
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Linear Independence

Definition: a set of vectors {v1, v2, . . . , vn} is linearly independent if

α1v1 + α2v2 + · · ·+ αnvn = 0 =⇒ α1 = α2 = · · · = αn = 0

equivalent conditions:

• coefficients of α1v1 + α2v2 + · · ·+ αnvn are uniquely determined, i.e.,

α1v1 + α2v2 + · · ·+ αnvn = β1v1 + β2v2 + · · ·+ βnvn

implies αk = βk for k = 1, 2, . . . , n

• no vector vi can be expressed as a linear combination of the other
vectors
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examples:

•





1
2
1



 ,





3
1
0



 are independent

•





1
2
1



 ,





3
1
0



 ,





−1
0
1



 are independent

•





1
2
1



 ,





3
1
0



 ,





−1
0
1



 ,





4
2
0



 are not independent

•





1
2
1



 ,





3
1
0



 ,





2
−1
−1



 are not independent
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Linear span

Definition: the linear span of a set of vectors

{v1, v2, . . . , vn}

is the set of all linear combinations of v1, . . . , vn

span{v1, v2, . . . , vn} = {a1v1 + a2v2 + · · ·+ anvn | a1, . . . , an ∈ R}

example:

span











1
0
0



 ,





0
1
0











is the hyperplane on x1x2 plane
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Definition

λ ∈ C is called an eigenvalue of A ∈ Cn×n if

det(λI −A) = 0

equivalent to:

• there exists nonzero x ∈ Cn s.t. (λI −A)x = 0, i.e.,

Ax = λx

any such x is called an eigenvector of A (associated with eigenvalue λ)
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Computing eigenvalues

• X (λ) = det(λI −A) is called the characteristic polynomial of A

• X (λ) = 0 is called the characteristic equation of A

the characteristic equation provides a way to compute the eigenvalues of A

A =

[

5 3
−6 −4

]

X (λ) =

∣

∣

∣

∣

λ− 5 −3
6 λ+ 4

∣

∣

∣

∣

= λ2 − λ− 2 = 0

solving the characteristic equation gives

λ = 2,−1
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Computing eigenvectors

for each eigenvalue of A, we can find an associated eigenvector from

(λI −A)x = 0

where x is a nonzero vector

for A in page 4-6, let’s find an eigenvector corresponding to λ = 2

(λI −A)x =

[

−3 −3
6 6

] [

x1

x2

]

= 0 =⇒ x1 + x2 = 0

the equation has many solutions, so we can form the set of solutions by

{

x ∈ R2

∣

∣

∣

∣

x =

[

x1

−x1

]}

= span

{[

1
−1

]}

this set is called the eigenspace of A corresponding to λ = 2
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Eigenspace

eigenspace of A corresponding to λ is defined as the nullspace of λI −A

N (λI −A)

equivalent definition: solution space of the homogeneous system

(λI −A)x = 0

• an eigenspace is a vector space (by definition)

• 0 is in every eigenspace but it is not an eigenvector

• the nonzero vectors in an eigenspace are the eigenvectors of A
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from page 4-7, any nonzero vector lies in the eigenspace is an eigenvector

of A, e.g., x =
[

−1 1
]T

same way to find an eigenvector associated with λ = −1

(λI −A)x =

[

−6 −3
6 3

] [

x1

x2

]

= 0 =⇒ 2x1 + x2 = 0

so the eigenspace corresponding to λ = −1 is

{

x

∣

∣

∣

∣

x =

[

x1

−2x1

]}

= span

{[

1
−2

]}

and x =
[

1 −2
]T

is an eigenvector of A associated with λ = −1
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Properties

• if A is n× n then X (λ) is a polynomial of order n

• if A is n× n then there are n eigenvalues of A

• even when A is real, eigenvalues and eigenvectors can be complex, e.g.,

A =

[

2 −1
1 2

]

, A =





−2 0 1
−6 −2 0
19 5 −4





• if A and λ are real, we can choose the associated eigenvector to be real

• if A is real then eigenvalues must occur in complex conjugate pairs

• if x is an eigenvector of A, so is αx for any α ∈ C, α 6= 0

• an eigenvector of A associated with λ lies in N (λI −A)
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Scaling interpretation

assume λ is real

if v is an eigenvector, effect of A on v is simple: just scaling by λ

v

Av

x

Ax
λ > 0 v and Av point in same direction

λ < 0 v and Av point in opposite directions

|λ| < 1 Av smaller than v

|λ| > 1 Av larger than v
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Important facts

denote λ(A) an eigenvalue of A

• λ(αA) = αλ(A) for any α ∈ C

• tr(A) is the sum of eigenvalues of A

• det(A) is the product of eigenvalues of A

• A and AT share the same eigenvalues ✎

• λ(AT ) = λ(A) ✎

• λ(Am) = (λ(A))m for any integer m

• A is invertible if and only if λ = 0 is not an eigenvalue of A ✎
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Matrix powers

the mth power of a matrix A for a nonnegative integer m is defined as

Am =
m
∏

k=1

A

(the multiplication of m copies of A)

and A0 is defined as the identity matrix, i.e., A0 = I

✌ Facts: if λ is an eigenvalue of A with an eigenvector v then

• λm is an eigenvalue of Am

• v is an eigenvector of Am associated with λm
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Invertibility and eigenvalues

A is not invertible if and only if there exists a nonzero x such that

Ax = 0, or Ax = 0 · x

which implies 0 is an eigenvalue of A

another way to see this is that

A is not invertible ⇐⇒ det(A) = 0 ⇐⇒ det(0 · I −A) = 0

which means 0 is a root of the characteristic equation of A

conclusion ✎ the following statements are equivalent

• A is invertible

• N (A) = {0}

• λ = 0 is not an eigenvalue of A
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Eigenvalues of special matrices

diagonal matrix:

D =









d1 0 · · · 0
0 d2 · · · 0
... ... . . . ...
0 0 · · · dn









eigenvalues of D are the diagonal elements, i.e., λ = d1, d2, . . . , dn

triangular matrix:

upper triangular lower triangular

U =









a11 a12 · · · a1n
0 a22 · · · a2n
... ... . . .
0 0 · · · ann









L =









a11 0 · · · 0
a21 a22 · · · 0
... ... . . .

an1 an2 · · · ann









eigenvalues of L and U are the diagonal elements, i.e., λ = a11, . . . , ann
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Similarity transform

two n× n matrices A and B are said to be similar if

B = T−1AT

for some invertible matrix T

T is called a similarity transform

✌ invariant properties under similarity transform:

• det(B) = det(A)

• tr(B) = tr(A)

• A and B have the same eigenvalues

det(λI −B) = det(λT−1T − T−1AT ) = det(λI −A)
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Diagonalization

an n× n matrix A is diagonalizable if there exists T such that

T−1AT = D

is diagonal

• similarity transform by T diagonalizes A

• A and D are similar, so the entries of D must be the eigenvalues of A

D =









λ1 0 · · · 0
0 λ2 0
... ... . . . ...
0 0 · · · λn









• computing Ak is simple because Ak = (TDT−1)k = TDkT−1
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how to find a matrix T that diagonalizes A ?

suppose {v1, . . . , vn} is a linearly independent set of eigenvectors of A

Avi = λivi i = 1, . . . , n

we can express this equation in the matrix form as

A
[

v1 v2 · · · vn
]

=
[

v1 v2 · · · vn
]









λ1 0 · · · 0
0 λ2 0
... ... . . . ...
0 0 · · · λn









define T =
[

v1 v2 · · · vn
]

and D = diag(λ1, . . . , λn), so

AT = TD

since T is invertible (v1, . . . , vn are independent), finally we have

T−1AT = D
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conversely, if there exists T =
[

v1 · · · vn
]

that diagonalizes A

T−1AT = D = diag(λ1, . . . , λn)

then AT = TD, or
Avi = λivi, i = 1, . . . , n

so {v1, . . . , vn} is a linearly independent set of eigenvectors of A

conclusion: A is diagonalizable if and only if

n eigenvectors of A are linearly independent

(eigenvectors form a basis for Cn)

• a diagonalizable matrix is called a simple matrix

• if A is not diagonalizable, sometimes it is called defective
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Example

find T that diagonalizes

A =





4 0 1
2 3 2
1 0 4





the characteristic equation is

det(λI −A) = λ3 − 11λ2 + 39λ− 45 = 0

the eigenvalues of A are λ = 5, 3, 3

an eigenvector associated with λ1 = 5 can be found by

(5 · I −A)x =





1 0 −1
−2 2 −2
−1 0 1









x1

x2

x3



 = 0 =⇒

x1 − x3 = 0

x2 − 2x3 = 0

x3 is a free variable

an eigenvector is v1 =
[

1 2 1
]T
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next, find an eigenvector associated with λ2 = 3

(3·I−A)x =





−1 0 −1
−2 0 −2
−1 0 −1









x1

x2

x3



 = 0 =⇒
x1 + x3 = 0

x2, x3 are free variables

the eigenspace can be written by







x

∣

∣

∣

∣

∣

∣

x = x2





0
1
0



+ x3





−1
0
1











= span











0
1
0



 ,





−1
0
1











hence we can find two independent eigenvectors

v2 =





0
1
0



 , v3 =





−1
0
1





corresponding to the repeated eigenvalue λ2 = 3
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easy to show that v1, v2, v3 are linearly independent

we form a matrix T whose columns are v1, v2, vn

T =
[

v1 v2 v3
]

=





1 0 −1
2 1 0
1 0 1





then v1, v2, v3 are linearly independent if and only if T is invertible

by a simple calculation, det(T ) = 2 6= 0, so T is invertible

hence, we can use this T to diagonalize A and it is easy to verify that

T−1AT =





5 0 0
0 3 0
0 0 3




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Not all matrices are diagonalizable

example: A =

[

0 1
0 0

]

characteristic polynomial is det(λI −A) = s2, so 0 is the only eigenvalue

eigenvector satisfies Ax = 0 · x, i.e.,

[

0 1
0 0

] [

x1

x2

]

= 0 =⇒
x2 = 0

x1 is a free variable

so all eigenvectors has form x =

[

x1

0

]

where x1 6= 0

thus A cannot have two independent eigenvectors
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Distinct eigenvalues

Theorem: if A has distinct eigenvalues, i.e.,

λi 6= λj, i 6= j

then a set of corresponding eigenvectors are linearly independent

which further implies that A is diagonalizable

the converse is false – A can have repeated eigenvalues but still be
diagonalizable

example: all eigenvalues of I are 1 (repeated eigenvalues) but I is diagonal
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Proof by contradiction: assume the eigenvectors are dependent

(simple case) let Axk = λkxk, k = 1, 2

suppose there exists α1, α2 6= 0

α1x1 + α2x2 = 0 (1)

multiplying (1) by A: α1λ1x1 + α2λ2x2 = 0

multiplying (1) by λ1: α1λ1x1 + α2λ1x2 = 0

subtracting the above from the previous equation

α2(λ2 − λ1)x2 = 0

since λ1 6= λ2, we must have α2 = 0 and consequently α1 = 0

the proof for a general case is left as an exercise
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Eigenvalues of symmetric matrices

A is an n× n (real) symmetric matrix, i.e., A = AT

x∗ denotes x̄T (complex conjugate transpose)

Facts ✌

• y∗Ay is real for all y ∈ Cn

• all eigenvalues of A are real

• eigenvectors with distinct eigenvalues are orthogonal, i.e.,

λj 6= λk =⇒ xT
j xk = 0

• there exists an orthogonal matrix U (UTU = UUT = I) such that

A = UDUT

(symmetric matrices are always diagonalizable)
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MATLAB commands

[V,D] = eig(A) produces a diagonal matrix D of eigenvalues and a full
matrix V whose columns are the corresponding eigenvectors

>> A = [5 3;-6 -4];

>> [V,D] = eig(A)

V =

0.7071 -0.4472

-0.7071 0.8944

D =

2 0

0 -1

λ1 = 2 and λ2 = −1 and the corresponding eigenvectors are

v1 =
[

0.7071 0.7071
]T

, v2 =
[

−0.4472 0.8944
]T

note that the eigenvector is normalized so that it has unit norm
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power of a matrix: use ^ to compute a power of A

>> A^3

ans =

17 9

-18 -10

>> eig(A^3)

ans =

8

-1

>> V*D^3*inv(V)

ans =

17 9

-18 -10

agree with the fact that the eigenvalue of A3 is λ3 and A3 = TD3T−1
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