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11. Integrals

e derivatives of functions
e definite integrals

e contour integrals

e Cauchy-Goursat theorem

e Cauchy integral formula
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Derivatives of functions

consider derivatives of complex-valued functions w of a real variable ¢
w(t) = u(t) + jo(t)
where u and v are real-valued functions of ¢

the derivative w'(t) or Zw(t) is defined as

w'(t) = u'(t) + jv'(t)
Properties & many rules are carried over to complex-valued functions
o [cw(t)] = cuw'()

o [w(t)+s(t)]" = w'(t) + 5'(t)
o [w(t)s(t)] = w'(t)s(t) +w(t)s'(t)
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mean-value theorem: no longer applies for complex-valued functions

suppose w(t) is continuous on [a,b] and w’(t) exists

it is not necessarily true that there is a number ¢ € |a, b] such that

w(b) — w(a)
b—a

w'(c) =

for example, w(t) = €’* on the interval [0, 27] and we have w(27) — w(0) = 0

however, |w'(t)| = |je’t| = 1, which is never zero
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Definite integrals
the definite integral of a complex-valued function
w(t) = u(t) + jo(t)

over an interval a <t < b is defined as

/abw(t)dt - /abu(t)dt +j/abfu(t)dt

provided that each integral exists (ensured if u and v are piecewise continuous)

Properties &

o [Vlew(t)+s®)dt =c [ w(t)dt + [ s(t)dt
o [Tw(t)dt =— ["w(t)dt
o [Pw(t)dt= [Cw(t)dt+ [Pw(t)dt
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Fundamental Theorem of Calculus: still holds for complex-valued functions

suppose
W(t)=U(t)+jV(t) and w(t) = u(t)+ jou(t)

are continuous on |a, D]
if W/(t) =w(t) when a <t <bthen U'(t) =u(t) and V'(t) = v(t)
then the integral becomes
b
[ witde = U@L+ 5 VL= U@+ 3V 0) - Ula) + 5V (a)

therefore, we obtain

/%@ﬁ:W@—W@
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example: compute foﬂ/G el 2t dt

since

the integral is given by

71'/6 ) 1 .
/ et = —el?t
0
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mean-value theorem for integration: not hold for complex-valued w(t)

it is not necessarily true that there exists ¢ € [a, b] such that

b
/ w(t)dt = w(c)(b— a)

for example, w(t) = e’ for 0 <t < 27 (same example as on page 11-3)

it Is easy to see that

27
=0
0

b 27 . Gjt
/ w(t)dt:/ eltdt = ——
a 0 J

but there is no ¢ € [0, 2x] such that w(c) =0
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Contour integral

integrals of complex-valued functions defined on curves in the complex plane

® arcs
® contours

e contour integrals
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Arcs
a set of points z = (x,y) in the complex plane is said to be an arc or a path if
x=xz(t), y=uyt), or z2(t) =xz(t) +jy(t), a<t<b
where x(t) and y(t) are continuous functions of real parameter ¢

e the arc is simple or is called a Jordan arc if it does not cross itself, e.g.,

2(t) # z(s) when t #£ s
e the arc is closed if it starts and ends at the same point, e.g., 2(b) = z(a)

e a simple closed path (or curve) is a closed path such that z(t) # z(s) for
a<s<t<bd

22

<22
r\ 21©22
21 ~1

simple arc arc (not simple) simple closed curve
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examples:

polygonal line

; 14+5 247
L T+ jx,
B x+ 7,
A | |
1 2
traverse twice
z = el?0
C) 0<6 <27
C

0<z<1
1< <2

counterclockwise

"
D

-
AN,

z = el?
0<60 <27

2 =eJY
0<6<2m

the arcs B, C' and D have the same set of points, but they are not the same arc

remark: a closed curve is positive oriented if it is counterclockwise direction

Integrals
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Contours

an arc is called differentiable if the components z’(¢) and y(t) of the derivative
2(t) = 2'(t) + jy' (1)

of z(t) used to represent the arc, are continuous on the interval [a, b]

the arc z = 2(t) for a <t < b is said to be smooth if

e /(1) is continuous on the closed interval [a, b]

e 2/(t) # 0 throughout the open interval a <t < b

a concatenation of smooth arcs is called a contour or piecewise smooth arc
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Contour integrals

let C' be a contour extending from a point a to a point b

an integral defined in terms of the values f(z) along a contour C' is denoted by
o [, f(z)dz (its value, in general, depends on C)
. f;f(z)dz (if the integral is independent of the choice of (')

if we assume that f is piecewise continuous on C' then we define

b
[ £z = [ 1) @
C a
as the line integral or contour integral of f along C' in terms of parameter ¢
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Properties &

o [l20f(2) +g(2))dz = 2 [, f(2)dz + [.g(2)dz, z€C
o [ of(R)dz=— [, f(2)dz

e Jof(2)dz = |o f(2)dz+ [q, f(2)d2

e if C'is a simple closed path then we write [, f(2)dz = §,. f(
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example: f(z) =y —z—j32° (2 =12+ jy)

o [| = fc (2)dz = [, , f(z)dz+ [, 5 f(2)dz

— segment OA: z =0+ jy,dz = jdy
fOAf(z)dz:fol(y—O—jO)jdy:j/Q

— segment AB: z=x 4+ j,dz = dx
Jin f(z)dz = fol(l—x—ijz)dx =1/2—j

o Ir= [ f(z)dz 0

1
z =x+jx, dz= (1+j)dz, f(z)dz = / (x—2—732%)(1+j)dxr = 1—
Co 0

remark: [; = 1%3 = I though (' and (5 start and end at the same points
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example: compute fc zdz on the following contours

the contour is a circle, so we write z in polar form, and note that r is unchanged

z = reje, dz = jrejedﬁ, 01 <0 <60,

02 | 0
I = / reif . jrel?dh = j?“Q/ 1do
01 01
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example: let C be a circle of radius r, centered at zg

0 —1
show that / (z—29)"dz =1 m 7 <0
C 12w, m = —1

we parametrize the circle by writing
z=zo+7re’?, 0<60<2m, so dz=jre’’dd

the integral becomes
. . 27-‘- .
I = / rmeimo -j'rejedz :j’rmH/ e (m+1)0 qp
C 0
fm=-1, 1= fo% df = j2m; otherwise, for m % —1, we have

I = jfrmH/O ' {cos|(m + 1)0] + jsin[(m + 1)0]} df =0

Integrals
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Independence of path

under which condition does a contour integral only depend on the endpoints 7

assumptions:

e let D be a domain and f : D — C be a continuous function

e let C' be any contour in D that starts from 21 to 2z

we say [ has an antiderivative in D if there exists F': D — C such that

_dF(2)

F(z) =2 = f(2)

Theorem: if f has an antiderivative F' on D, the contour integral is given by

t/ﬂ@®=Fvﬂ—ﬂm)
C
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example: f(z) is the principal branch
o =elt8% (2] > 0,—71 < Argz < 1)

of this power function, compute the integral

1 .
/ 2ldz
1

by two methods:

e using a parametrized curve C' which is the semicircle z = ¢/, (0 < 0 < )

e using an antiderivative of f of the branch

=el1%8% (|z| >0,-7/2 < arg z < 37/2)
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parametrized curve: z = €% and dz = je’?df

the integral becomes

/ Hdz = / je(j_l)edﬁ
C 0
C _ G-

—1 1 = (e = T ey

(I—4)(e ™ +1)

hence, f_ll Hdz= [ ,2dz =

Integrals
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antiderivative of 27 is 21! /(5 + 1) on the branch
=el18% (|z| >0,-7/2 < arg z < 37/2)

(we cannot use the principal branch because it is not defined at z = —1)

1 .
/ Zdz =
1

[1j—|—1 _ (_1)j+1}

zj“]l 1
i+1]_, j+1

f\ — L _6(j+1)10g1 _ 6(j—l—l)log(—l)}
1 1 7411
_ b T Gn@es o) 6(j+1)<Log1+jﬁ>}
i1l
1 : 1 — V(e ™ +1
= 1—6‘77_71:( Je"+1)
Jg+1- 2

the integral computed by the two methods are equal
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if we use an antiderivative of 27 on a different branch

2 =el8% (|2] > 0,7/2 < argz < 57/2)

1 _
/ g — b [ GtDlegl _ G+1) 1og<_1)}
. j+1l
_ b [t eg1ti2n) _ (5+1) (Log 1+j7r>]
J+1
—1 1 1
_ '6—27r—|—j27r . 6—7r—|—j7r]
j+1°
1y
— e T +e T
Jg+1- }
(1—j)e "(e7™ +1)

2

the integral is different now as the function value of the integrand has changed
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Simply and Multiply connected domains

a simply connected domain D is a domain such that every simple closed
contour within it encloses only points of D

intuition: a domain is simply connected if it has no holes

+ o £&

simply connected multiply connected

a domain that is not simply connected is called multiply connected
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Green’s Theorem

let D be a bounded domain whose boundary C' is sectionally smooth

let P(x,y) and Q(x,y) be continuously differentiable on D U C', then

[ = [ (524} o

where C' is in the positive direction w.r.t. the interior of D

C

D can be simply or multiply

Q D © connected

—>>

this result will be used to prove the Cauchy's theorem
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Cauchy’s theorem

let D be a bounded domain whose boundary C' is sectionally smooth

Theorem: if f(z) is analytic and f’(z) is continuous in D and on C' then

/Cf(z)dz =0

w & 00

Goursat proved this result w/o the assumption on continuity of f’

the consequence is then known as the Cauchy-Goursat theorem
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Proof of Cauchy’s theorem:

f(z) =ul(z,y) +jv(z,y), dz=dz+jdy
f(2)dz = (u + jv)(dx + jdy) = u dr — v dy + j(v dx + u dy)

if f’ is continuous in D, so are g“ gZ’ gg, , then from Green's theorem

e [ (=) (5o

since f is analytic, the Cauchy-Riemann equations suggest that

du Odv Ou ov

oxr Oy Oy  Ox

so we can conclude that
f(z)dz =0
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example: for any simple closed contour C

2
/ezdz:()
C
2

because e*” is a composite of e* and 22, so f is analytic everywhere

example: the integral

ze”
dz =0
/c<z2+4>2 )

for any closed contour lying in the open disk |z| < 2

............................
....................
. .

oooooooooo

~~~~~~
~~~~~~~~~~
....................
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Extension to multiply connected domains

let D be a multiply connected domain

Cauchy-Goursat theorem: suppose that

1. C'is a simple closed contour in D, described in counterclockwise direction
2. Cq,...,C, are simple closed contours interior to C, all in clockwise direction

3. C4,...,C, are disjoint and their interiors have no points in common

(then D consists of the points in C and exterior to each C})

if f is analytic on all of these contours and throughout D then

C
Cs

Ch
f(z)dz + Z f(z)dz =0 = C@ -

D

Integrals 11-27



example: use the result from page 11-16 to compute

1
/—dz
CZ

where C' is the boundary of the annulus D shown below (where r, R > 0)

if 2z =770 then 2z = |22 =7

&

from p. 11-16, we obtain

/ R?/zdz = j2rR?,
Co

]i’ 1
/ —dz = —j2m, /
Cl z C'2

therefore, fc% dz = fC1 % dz

agree with the Cauchy’s theorem since f is analytic everywhere i

Integrals

2

or that
1dz = 92T
2z
+ f02 %dz =0
n D and on C
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example: for each f, use the Cauchy-Goursat theorem on p. 11-27 to show that
f(z)dz = [ f(z)dz
Cq Cy

where C is a circle with radius 4 and C5 is a square shown below

C1

fz) = 3221+ 1
z+2
flz) = =
A SIDZ(Z/Q)
(CE—

where are the singular points of these f7?

this result is known as the principle of deformation path
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Principle of deformation of paths

Ch

let C; and C5 be positively oriented simple
closed contours where C5 is interior to C

Theorem: if a function f is analytic in the closed region consisting of those
contours and all points between them, then

f(z)dz= [ f(2)dz
o) Cy

meaning: integrals of an analytic function does not
depend on the path if the function is analytic in between
and on the two paths
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Cauchy integral formula

let C' be a simple closed contour, taken in the positive sense
Theorem: let f be analytic everywhere inside and on C

if zo is any point interior to C' then

o f(0) = [ G

c (2 — 20)

this is known as the Cauchy integral formula

meaning: certain integrals along contours can be determined by the values of f

Integrals
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example: compute |, 21 dz on the contours C; and Cs

write / i dz—/ € dz
cz?+1 c(z+7)(z—7)

choose f(z) such that it is analytic everywhere on each contour

e to compute [ 2+1dz choose f(z) =e*/(z +j)

/01 (24 7)(z — J)dz = j2nfly) = me

e to compute | 2+1dz choose f(z) =€*/(z — j)

/cl(Zﬂ)(z—J)dZ_]%f( J)=—me™
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Upper bound for contour integrals

2 Theorem: if w(t) is piecewise continuous complex-valued function

</ ()t

t)dt

Proof sketch: let f t)dt = roe’?o

e we can solve for ro: 179 = fo ~oy(t)

e since rg is real, the integral must be real and equal to its real part

t t b b
= — 1004 = e 00y e 00y = w
ro = §R/O e~ P0u(t)dt /O R (t)]dt g/o | (t)|dt /O w(t)|dt

e the latter ineq uses the fact that the real part must be less than the modulus
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Upper bounds for contour integrals

setting: (' denotes a contour of length L and f is piecewise continuous on C

2 Theorem: if there exists a constant M > 0 such that
f(z)| <M

for all z on C' at which f(z) is defined, then

Proof sketch: need lemma: |f (t)dt| < f lw(t)|dt for complex

Jo F)dt] = |[2 £0) (0| < 71702/ 0)lde < [ M|/ (0)lde < M - L
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Proof of Cauchy integral formula
create a small circle C, which is interior to C

f(z) is analytic everywhere in D

f(z)

Z — 20

is analytic in D except at z = 2z

from the Cauchy-Goursat theorem,

€)oo [ 10,

C R — R0 pZ_ZO

which can be expressed as

) g, - f(zo)/c 4z /Cp f(zi _ fo(z())dz

C < — R0 pZ—ZO

dz

z—zo0

we can show that fcp = j27 (similar to example on page 11-16)

Integrals
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therefore, we obtain

dz

OIS (O R (€

C <~ *0 C, ~ 40
and we will show that the RHS must be zero

since f is analytic, it is continuous at zg, e.q., for each € > 0, 30 > 0 such that
1f(2) — f(z0)| <& whenever |z— 2| <

if we pick p to be smaller than § then |f(z) — f(z0)|/|z — 20| < €/p

we can show that the integral is bounded by (from page 12-29)

f(z) — f(Zo)d

C, Z — 20

e - length of C,
o

—= 27

z| <

since we can let € be arbitrarily small, the integral must be equal to zero
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Derivatives of analytic functions

let D be a simply connected domain and zgy be any interior point of D

Theorem: if f is analytic in D then the derivative of f(zg) of all order exist and

are analytic in D

moreover, the derivatives of f at z are given by

jQWf(”)(Zo):/( f(2) dz (n=1,2,...)
C

n! z — zg)"t1

where C' is a closed contour lying on D and z is inside C

2z

€
example: compute fc —dz where C' is the positively oriented unit circle
z
C < C (Z — 0)3+1 3' 3

Integrals
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(z+1)

example: compute [, f(2)dz where f(z) =

(23 — 222)
C' are circles given by |z| =1, 2z —2—j| =2, z—1—42| =2
(all are in counterclockwise direction)
Cs
Co

142y

Ch 2+ )

N
z+1 z+1 z+1
fl(z)_z_Qv fQ(Z)_ 22 fS(Z)_ZZ(Z—Q)_f(Z)
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example: let C' be a simple closed contour lying in the annulus 1 < |z| < 2

combute / 323—|—2z2—82—4d
u z
P o 22(22+32+2)

~
N~-_

-

f is not analytic at 0, —1, —2, so the Cauchy formula cannot be readily applied

we can compute the partial fraction of f and the integral becomes

1
/ f(2)dz = / —dz — —de / > dz +/ dz
C CZ —|—1 CZ—|—2

applying the Cauchy integral formula to each term gives

/Cf(z)dz = j21(—1) + j27(0) + j27(3) + 0 = jdn
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