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11. Integrals

• derivatives of functions

• definite integrals

• contour integrals

• Cauchy-Goursat theorem

• Cauchy integral formula
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Derivatives of functions

consider derivatives of complex-valued functions w of a real variable t

w(t) = u(t) + jv(t)

where u and v are real-valued functions of t

the derivative w′(t) or d
dtw(t) is defined as

w′(t) = u′(t) + jv′(t)

Properties . many rules are carried over to complex-valued functions

• [cw(t)]′ = cw′(t)

• [w(t) + s(t)]′ = w′(t) + s′(t)

• [w(t)s(t)]′ = w′(t)s(t) + w(t)s′(t)

Integrals 11-2



mean-value theorem: no longer applies for complex-valued functions

suppose w(t) is continuous on [a, b] and w′(t) exists

it is not necessarily true that there is a number c ∈ [a, b] such that

w′(c) =
w(b)− w(a)

b− a

for example, w(t) = ejt on the interval [0, 2π] and we have w(2π)− w(0) = 0

however, |w′(t)| = |jejt| = 1, which is never zero
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Definite integrals

the definite integral of a complex-valued function

w(t) = u(t) + jv(t)

over an interval a ≤ t ≤ b is defined as∫ b

a

w(t)dt =

∫ b

a

u(t)dt+ j

∫ b

a

v(t)dt

provided that each integral exists (ensured if u and v are piecewise continuous)

Properties .

•
∫ b
a

[cw(t) + s(t)]dt = c
∫ b
a
w(t)dt+

∫ b
a
s(t)dt

•
∫ b
a
w(t)dt = −

∫ a
b
w(t)dt

•
∫ b
a
w(t)dt =

∫ c
a
w(t)dt+

∫ b
c
w(t)dt
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Fundamental Theorem of Calculus: still holds for complex-valued functions

suppose
W (t) = U(t) + jV (t) and w(t) = u(t) + jv(t)

are continuous on [a, b]

if W ′(t) = w(t) when a ≤ t ≤ b then U ′(t) = u(t) and V ′(t) = v(t)

then the integral becomes

∫ b

a

w(t)dt = U(t)|ba + j V (t)|ba = [U(b) + jV (b)]− [U(a) + jV (a)]

therefore, we obtain ∫ b

a

w(t)dt = W (b)−W (a)
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example: compute
∫ π/6
0

ej2tdt

since
d

dt

(
ej2t

j2

)
= ej2t

the integral is given by

∫ π/6

0

ej2tdt =
1

j2
ej2t
∣∣∣∣π/6
0

=
1

j2
[ejπ/3 − ej0]

=

√
3

4
+
j

4
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mean-value theorem for integration: not hold for complex-valued w(t)

it is not necessarily true that there exists c ∈ [a, b] such that

∫ b

a

w(t)dt = w(c)(b− a)

for example, w(t) = ejt for 0 ≤ t ≤ 2π (same example as on page 11-3)

it is easy to see that

∫ b

a

w(t)dt =

∫ 2π

0

ejtdt =
ejt

j

∣∣∣∣2π
0

= 0

but there is no c ∈ [0, 2π] such that w(c) = 0

Integrals 11-7



Contour integral

integrals of complex-valued functions defined on curves in the complex plane

• arcs

• contours

• contour integrals
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Arcs

a set of points z = (x, y) in the complex plane is said to be an arc or a path if

x = x(t), y = y(t), or z(t) = x(t) + jy(t), a ≤ t ≤ b

where x(t) and y(t) are continuous functions of real parameter t

• the arc is simple or is called a Jordan arc if it does not cross itself, e.g.,
z(t) 6= z(s) when t 6= s

• the arc is closed if it starts and ends at the same point, e.g., z(b) = z(a)

• a simple closed path (or curve) is a closed path such that z(t) 6= z(s) for
a ≤ s < t < b

simple arc arc (not simple) simple closed curve
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examples:

clockwise

D

traverse twice

C

counterclockwise

B

polygonal line

A

the arcs B,C and D have the same set of points, but they are not the same arc

remark: a closed curve is positive oriented if it is counterclockwise direction
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Contours

an arc is called differentiable if the components x′(t) and y′(t) of the derivative

z′(t) = x′(t) + jy′(t)

of z(t) used to represent the arc, are continuous on the interval [a, b]

the arc z = z(t) for a ≤ t ≤ b is said to be smooth if

• z′(t) is continuous on the closed interval [a, b]

• z′(t) 6= 0 throughout the open interval a < t < b

a concatenation of smooth arcs is called a contour or piecewise smooth arc
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Contour integrals

let C be a contour extending from a point a to a point b

an integral defined in terms of the values f(z) along a contour C is denoted by

•
∫
C
f(z)dz (its value, in general, depends on C)

•
∫ b
a
f(z)dz (if the integral is independent of the choice of C)

if we assume that f is piecewise continuous on C then we define

∫
C

f(z)dz =

∫ b

a

f(z(t))z′(t)dt

as the line integral or contour integral of f along C in terms of parameter t
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Properties .

•
∫
C

[z0f(z) + g(z)]dz = z0
∫
C
f(z)dz +

∫
C
g(z)dz, z0 ∈ C

•
∫
−C f(z)dz = −

∫
C
f(z)dz

•
∫
C
f(z)dz =

∫
C1
f(z)dz +

∫
C2
f(z)dz

• if C is a simple closed path then we write
∫
C
f(z)dz =

∮
C
f(z)dz
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example: f(z) = y − x− j3x2 (z = x+ jy)

• I1 =
∫
C1
f(z)dz =

∫
OA

f(z)dz +
∫
AB

f(z)dz

– segment OA: z = 0 + jy, dz = jdy∫
OA

f(z)dz =
∫ 1

0
(y − 0− j0)jdy = j/2

– segment AB: z = x+ j, dz = dx∫
AB

f(z)dz =
∫ 1

0
(1−x−j3x2)dx = 1/2−j

• I2 =
∫
C2
f(z)dz

z = x+jx, dz = (1+j)dx,

∫
C2

f(z)dz =

∫ 1

0

(x−x−j3x2)(1+j)dx = 1−j

remark: I1 = 1−j
2 6= I2 though C1 and C2 start and end at the same points
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example: compute
∫
C
z̄dz on the following contours

the contour is a circle, so we write z in polar form, and note that r is unchanged

z = rejθ, dz = jrejθdθ, θ1 ≤ θ ≤ θ2

I =

∫ θ2

θ1

rejθ · jrejθdθ = jr2
∫ θ2

θ1

1 dθ

I = jr2
∫ 2π

0

1 dθ

= j2πr2

I = −jr2
∫ 2π

0

1 dθ

= −j2πr2

I = jr2
∫ π/2

−π/2
1 dθ

= jπr2
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example: let C be a circle of radius r, centered at z0

show that

∫
C

(z − z0)mdz =

{
0, m 6= −1

j2π, m = −1

we parametrize the circle by writing

z = z0 + rejθ, 0 ≤ θ ≤ 2π, so dz = jrejθdθ

the integral becomes

I =

∫
C

rmejmθ · jrejθdz = jrm+1

∫ 2π

0

ej(m+1)θdθ

if m = −1, I = j
∫ 2π

0
dθ = j2π; otherwise, for m 6= −1, we have

I = jrm+1

∫ 2π

0

{cos[(m+ 1)θ] + j sin[(m+ 1)θ]} dθ = 0
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Independence of path

under which condition does a contour integral only depend on the endpoints ?

assumptions:

• let D be a domain and f : D → C be a continuous function

• let C be any contour in D that starts from z1 to z2

we say f has an antiderivative in D if there exists F : D → C such that

F ′(z) =
dF (z)

dz
= f(z)

Theorem: if f has an antiderivative F on D, the contour integral is given by∫
C

f(z)dz = F (z2)− F (z1)
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example: f(z) is the principal branch

zj = ej Log z (|z| > 0,−π < Arg z < π)

of this power function, compute the integral

∫ 1

−1
zjdz

by two methods:

• using a parametrized curve C which is the semicircle z = ejθ, (0 ≤ θ ≤ π)

• using an antiderivative of f of the branch

zj = ej log z (|z| > 0,−π/2 < arg z < 3π/2)

Integrals 11-18



parametrized curve: z = ejθ and dz = jejθdθ

zj = ej log z = ej(Log 1+j arg z) = ej·jθ = e−θ, (0 < θ < π)

the integral becomes

∫
C

zjdz =

∫ π

0

je(j−1)θdθ

=
j

j − 1
e(j−1)θ

∣∣∣π
0

=
j

j − 1
(e(j−1)π − 1) =

−j
j − 1

(e−π + 1)

= −(1− j)(e−π + 1)

2

hence,
∫ 1

−1 z
jdz =

∫
−C z

jdz =
(1− j)(e−π1 + 1)

2
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antiderivative of zj is zj+1/(j + 1) on the branch

zj = ej log z (|z| > 0,−π/2 < arg z < 3π/2)

(we cannot use the principal branch because it is not defined at z = −1)

∫ 1

−1
zjdz =

[
zj+1

j + 1

]1
−1

=
1

j + 1

[
1j+1 − (−1)j+1

]
=

1

j + 1

[
e(j+1) log 1 − e(j+1) log(−1)

]
=

1

j + 1

[
e(j+1)(Log 1+j0) − e(j+1)(Log 1+jπ)

]
=

1

j + 1

[
1− ejπ−π

]
=

(1− j)(e−π + 1)

2

the integral computed by the two methods are equal
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if we use an antiderivative of zj on a different branch

zj = ej log z (|z| > 0, π/2 < arg z < 5π/2)

∫ 1

−1
zjdz =

1

j + 1

[
e(j+1) log 1 − e(j+1) log(−1)

]
=

1

j + 1

[
e(j+1)(Log 1+j2π) − e(j+1)(Log 1+jπ)

]
=

1

j + 1

[
e−2π+j2π − e−π+jπ

]
=

1

j + 1

[
e−2π + e−π

]
=

(1− j)e−π(e−π + 1)

2

the integral is different now as the function value of the integrand has changed
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Simply and Multiply connected domains

a simply connected domain D is a domain such that every simple closed
contour within it encloses only points of D

intuition: a domain is simply connected if it has no holes

simply connected multiply connected

a domain that is not simply connected is called multiply connected
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Green’s Theorem

let D be a bounded domain whose boundary C is sectionally smooth

let P (x, y) and Q(x, y) be continuously differentiable on D ∪ C, then∫
C

Pdx+

∫
C

Qdy =

∫ ∫
D

(
∂Q

∂x
− ∂P
∂y

)
dxdy

where C is in the positive direction w.r.t. the interior of D

D can be simply or multiply
connected

this result will be used to prove the Cauchy’s theorem
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Cauchy’s theorem

let D be a bounded domain whose boundary C is sectionally smooth

Theorem: if f(z) is analytic and f ′(z) is continuous in D and on C then∫
C

f(z)dz = 0

Goursat proved this result w/o the assumption on continuity of f ′

the consequence is then known as the Cauchy-Goursat theorem
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Proof of Cauchy’s theorem:

f(z) = u(x, y) + jv(x, y), dz = dx+ jdy

f(z)dz = (u+ jv)(dx+ jdy) = u dx− v dy + j(v dx+ u dy)

if f ′ is continuous in D, so are ∂u
∂x,

∂u
∂y ,

∂v
∂x,

∂v
∂y, then from Green’s theorem

∫
C

f(z)dz =

∫ ∫
D

(
−∂v
∂x
− ∂u
∂y

)
dxdy + j

∫ ∫
D

(
∂u

∂x
− ∂v
∂y

)
dxdy

since f is analytic, the Cauchy-Riemann equations suggest that

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x

so we can conclude that ∫
C

f(z)dz = 0
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example: for any simple closed contour C∫
C

ez
2
dz = 0

because ez
2

is a composite of ez and z2, so f is analytic everywhere

example: the integral ∫
C

zez

(z2 + 4)2
dz = 0

for any closed contour lying in the open disk |z| < 2
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Extension to multiply connected domains

let D be a multiply connected domain

Cauchy-Goursat theorem: suppose that

1. C is a simple closed contour in D, described in counterclockwise direction

2. C1, . . . , Cn are simple closed contours interior to C, all in clockwise direction

3. C1, . . . , Cn are disjoint and their interiors have no points in common

(then D consists of the points in C and exterior to each Ck)

if f is analytic on all of these contours and throughout D then

∫
C

f(z)dz +

n∑
k=1

∫
Ck

f(z)dz = 0
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example: use the result from page 11-16 to compute∫
C

1

z
dz

where C is the boundary of the annulus D shown below (where r,R > 0)

if z = rjθ then zz̄ = |z|2 = r2

from p. 11-16, we obtain∫
C2

R2/zdz = j2πR2, or that∫
C1

1

z
dz = −j2π,

∫
C2

1

z
dz = j2π

therefore,
∫
C

1
z dz =

∫
C1

1
z dz +

∫
C2

1
zdz = 0

agree with the Cauchy’s theorem since f is analytic everywhere in D and on C
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example: for each f , use the Cauchy-Goursat theorem on p. 11-27 to show that∫
C1

f(z)dz =

∫
C2

f(z)dz

where C1 is a circle with radius 4 and C2 is a square shown below

f(z) =
1

3z2 + 1

f(z) =
z + 2

sin(z/2)

f(z) =
z

1− ez

where are the singular points of these f?

this result is known as the principle of deformation path
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Principle of deformation of paths

let C1 and C2 be positively oriented simple
closed contours where C2 is interior to C1

Theorem: if a function f is analytic in the closed region consisting of those
contours and all points between them, then∫

C1

f(z)dz =

∫
C2

f(z)dz

meaning: integrals of an analytic function does not
depend on the path if the function is analytic in between
and on the two paths
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Cauchy integral formula

let C be a simple closed contour, taken in the positive sense

Theorem: let f be analytic everywhere inside and on C

if z0 is any point interior to C then

j2πf(z0) =

∫
C

f(z)

(z − z0)
dz

this is known as the Cauchy integral formula

meaning: certain integrals along contours can be determined by the values of f
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example: compute
∫
C

ez

z2 + 1
dz on the contours C1 and C2

write

∫
C

ez

z2 + 1
dz =

∫
C

ez

(z + j)(z − j)
dz

choose f(z) such that it is analytic everywhere on each contour

• to compute
∫
C1

ez

z2+1
dz choose f(z) = ez/(z + j)

∫
C1

ez

(z + j)(z − j)
dz = j2πf(j) = πej

• to compute
∫
C2

ez

z2+1
dz choose f(z) = ez/(z − j)

∫
C1

ez

(z + j)(z − j)
dz = j2πf(−j) = −πe−j
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Upper bound for contour integrals

. Theorem: if w(t) is piecewise continuous complex-valued function∣∣∣∣∣
∫ b

a

w(t)dt

∣∣∣∣∣ ≤
∫ b

a

|w(t)|dt

Proof sketch: let
∫ b
a
w(t)dt = r0e

iθ0

• we can solve for r0: r0 =
∫ t
0
e−iθ0w(t)dt

• since r0 is real, the integral must be real and equal to its real part

r0 = <
∫ t

0

e−iθ0w(t)dt =

∫ t

0

<[e−iθ0w(t)]dt ≤
∫ b

0

|e−iθ0w(t)|dt =

∫ b

0

|w(t)|dt

• the latter ineq uses the fact that the real part must be less than the modulus
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Upper bounds for contour integrals

setting: C denotes a contour of length L and f is piecewise continuous on C

. Theorem: if there exists a constant M > 0 such that

|f(z)| ≤M

for all z on C at which f(z) is defined, then∣∣∣∣∣
∫ b

a

f(z)dz

∣∣∣∣∣ ≤ML

Proof sketch: need lemma: |
∫ b
a
w(t)dt| ≤

∫ b
a
|w(t)|dt for complex∣∣∫

C
f(z)dt

∣∣ =
∣∣∣∫ ba f(z(t))z′(t)dt

∣∣∣ ≤ ∫ ba |f(z(t)z′(t)|dt ≤
∫ b
a
M |z′(t)|dt ≤M · L
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Proof of Cauchy integral formula

create a small circle Cρ which is interior to C

f(z) is analytic everywhere in D

f(z)

z − z0
is analytic in D except at z = z0

from the Cauchy-Goursat theorem,∫
C

f(z)

z − z0
dz =

∫
Cρ

f(z)

z − z0
dz

which can be expressed as∫
C

f(z)

z − z0
dz − f(z0)

∫
Cρ

dz

z − z0
=

∫
Cρ

f(z)− f(z0)

z − z0
dz

we can show that
∫
Cρ

dz
z−z0

= j2π (similar to example on page 11-16)
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therefore, we obtain∫
C

f(z)

z − z0
dz − j2πf(z0) =

∫
Cρ

f(z)− f(z0)

z − z0
dz

and we will show that the RHS must be zero

since f is analytic, it is continuous at z0, e.g., for each ε > 0, ∃δ > 0 such that

|f(z)− f(z0)| < ε whenever |z − z0| < δ

if we pick ρ to be smaller than δ then |f(z)− f(z0)|/|z − z0| < ε/ρ

we can show that the integral is bounded by (from page 12-29)∣∣∣∣∣
∫
Cρ

f(z)− f(z0)

z − z0
dz

∣∣∣∣∣ < ε · length of Cρ
ρ

= 2πε

since we can let ε be arbitrarily small, the integral must be equal to zero
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Derivatives of analytic functions

let D be a simply connected domain and z0 be any interior point of D

Theorem: if f is analytic in D then the derivative of f(z0) of all order exist and
are analytic in D

moreover, the derivatives of f at z are given by

j2πf (n)(z0)

n!
=

∫
C

f(z)

(z − z0)n+1
dz (n = 1, 2, . . .)

where C is a closed contour lying on D and z0 is inside C

example: compute
∫
C

e2z

z4
dz where C is the positively oriented unit circle

∫
C

e2z

z4
dz ,

∫
C

f(z)

(z − 0)3+1
dz =

j2πf (3)(0)

3!
=
j8π

3

(where f(z) = e2z)
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example: compute
∫
C
f(z)dz where f(z) =

(z + 1)

(z3 − 2z2)

C are circles given by |z| = 1, |z − 2− j| = 2, |z − 1− j2| = 2

(all are in counterclockwise direction)

f1(z) =
z + 1

z − 2
, f2(z) =

z + 1

z2
, f3(z) =

z + 1

z2(z − 2)
= f(z)∫

C1

f(z) dz = j2πf ′1(0),

∫
C2

f(z) dz = j2πf2(2),

∫
C3

f(z) dz = 0
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example: let C be a simple closed contour lying in the annulus 1 < |z| < 2

compute

∫
C

3z3 + 2z2 − 8z − 4

z2(z2 + 3z + 2)
dz

f is not analytic at 0,−1,−2, so the Cauchy formula cannot be readily applied

we can compute the partial fraction of f and the integral becomes∫
C

f(z)dz = −
∫
C

1

z
dz −

∫
C

1

z2
dz +

∫
C

3

z + 1
dz +

∫
C

1

z + 2
dz

applying the Cauchy integral formula to each term gives∫
C

f(z)dz = j2π(−1) + j2π(0) + j2π(3) + 0 = j4π
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