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5. Function of square matrices

• matrix polynomial

• rational function

• Cayley-Hamilton theotem

• infinite series

• matrix exponential

• applications to differential equations
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Matrix Power

the mth power of a matrix A for a nonnegative m is defined as

Am =
m
∏

k=1

A

and define A0 = I

property: ArAs = AsAr = Ar+s

a negative power of A is defined as

A−n = (A−1)n

n is a nonnegative integer and A is invertible
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Matrix polynomial

a matrix polynomial is a polynomial with matrices as variables

p(A) = a0I + a1A+ · · ·+ anA
n

for example A =

[

2 1
0 −1

]

p(A) = 2I − 6A+ 3A2 = 2

[

1 0
0 1

]

− 6

[

2 1
0 −1

]

+ 3

[

2 1
0 −1

]2

=

[

2 −3
0 11

]

Fact ✎ any two polynomials of A commute, i.e., p(A)q(A) = q(A)p(A)
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similarity transform: suppose A is diagonalizable, i.e.,

Λ = T−1AT ⇐⇒ A = TΛT−1

where T =
[

v1 · · · vn
]

, i.e., the columns of T are eigenvectors of A

then we have Ak = TΛkT−1

thus diagonalization simplifies the expression of a matrix polynomial

p(A) = a0I + a1A+ · · ·+ anA
n

= a0TT
−1 + a1TΛT

−1 + · · ·+ anTΛ
nT−1

= Tp(Λ)T−1

where

p(Λ) =









p(λ1) 0 · · · 0
0 p(λ2) 0
... ... . . . ...
0 0 · · · p(λn)
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eigenvalues and eigenvectors ✌

if λ and v be an eigenvalue and corresponding eigenvector of A then

• p(λ) is an eigenvalue of p(A)

• v is a corresponding eigenvector of p(A)

Av = λv =⇒ A2v = λAv = λ2v · · · =⇒ Akv = λkv

thus

(a0I + a1A+ · · ·+ anA
n)v = (a0v + a1λ+ · · ·+ anλ

n)v

which shows that
p(A)v = p(λ)v
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Rational functions

f(x) is called a rational function if and only if it can be written as

f(x) =
p(x)

q(x)

where p(x) and q(x) are polynomial functions in x and q(x) 6= 0

we define a rational function for square matrices as

f(A) =
p(A)

q(A)
, p(A)q(A)−1 = q−1(A)p(A)

provided that q(A) is invertible
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eigenvalues and eigenvectors ✌

if λ and v be an eigenvalue and corresponding eigenvector of A then

• p(λ)/q(λ) is an eigenvalue of f(A)

• v is a corresponding eigenvector of f(A)

both p(A) and q(A) are polynomials, so we have

p(A)v = p(λ)v, q(A)v = q(λ)v

and the eigenvalue of q(A)−1 is 1/q(λ), i.e., q(A)−1v = (1/q(λ))v

thus

f(A)v = p(A)q(A)−1v = q(λ)−1p(A)v = q(λ)−1p(λ)v = f(λ)v

which says that f(λ) is an eigenvalue of f(A) with the same eigenvector
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example: f(x) = (x+ 1)/(x− 5) and A =

[

4 2
1 5

]

det(λI −A) = 0 = (λ− 4)(λ− 5)− 2 = λ2 − 9λ+ 18 = 0

the eigenvalues of A are λ1 = 3 and λ2 = 6

f(A) = (A+ I)(A− 5I)−1 =

[

5 2
1 6

] [

−1 2
1 0

]−1

=

[

1 6
3 4

]

the characteristic function of f(A) is

det(λI − f(A)) = 0 = (λ− 1)(λ− 4)− 18 = λ2 − 5λ− 14 = 0

the eigenvalues of f(A) are 7 and −2

this agrees to the fact that the eigenvalues of f(A) are

f(λ1) = (λ1 − 1)/(λ1 − 5) = −2, f(λ2) = (λ2 − 1)/(λ2 − 5) = 7
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Cayley-Hamilton theorem

the characteristic polynomial of a matrix A of size n× n

X (λ) = det(λI −A)

can be written as a polynomial of degree n:

X (λ) = λn + αn−1λ
n−1 + · · ·+ α1λ+ α0

✌ Theorem: a square matrix satisfies its characteristic equation:

X (A) = An + αn−1A
n−1 + · · ·+ α1A+ α0I = 0

result: for m ≥ n, Am is a linear combination of Ak, k = 0, 1, . . . , n− 1.
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example 1: A =

[

1 2
0 3

]

the characteristic equation of A is

X (λ) = (λ− 1)(λ− 3) = λ2 − 4λ+ 3 = 0

the Cayley-Hamilton states that A satisfies its characteristic equation

X (A) = A2 − 4A+ 3I = 0

use this equation to write matrix powers of A

A2 = 4A− 3I

A3 = 4A2 − 3A = 4(4A− 3I)− 3A = 13A− 12I

A4 = 13A2 − 12A = 13(4A− 3I)− 12A = 40A− 39I

... ...

powers of A can be written as a linear combination of I and A
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example 2: with A in page 5-10, find the closed-form expression of Ak

for k ≥ 2, Ak is a linear combination of I and A, i.e.,

Ak = α0I + α1A

where α1, α0 are to be determined

multiply eigenvectors of A on both sides

Akv1 = (α0I + α1A)v1 ⇒ λk
1 = α0 + α1λ1

Akv2 = (α0I + α1A)v2 ⇒ λk
2 = α0 + α1λ2

substitute λ1 = 1 and λ2 = 3 and solve for α0, α1

[

1
3k

]

=

[

1 1
1 3

] [

α0

α1

]

⇒ α0 =
3− 3k

2
, α1 =

3k − 1

2

Ak =
3− 3k

2
I +

3k − 1

2
A =

[

1 3k − 1
0 3k

]

, k ≥ 2
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Computing the inverse of a matrix

A is a square matrix with the characteristic equation

λn + an−1λ
n−1 + · · ·+ a1λ+ a0 = 0

by the C-H theorem, A satisfies the characteristic equation

An + an−1A
n−1 + · · ·+ a1A+ a0I = 0

if A is invertible, multiply A−1 on both sides

An−1 + an−1A
n−2 + · · ·+ a1I + a0A

−1 = 0

thus the inverse of A can be alternatively computed by

A−1 = −
1

a0

(

An−1 + an−1A
n−2 + · · ·+ a1I

)
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example: given A =





2 −4 −4
1 −4 −5
1 4 5



 find A−1

the characteristic equation of A is

det(λI −A) = λ3 − 3λ2 + 10λ− 8 = 0

0 is not an eigenvalue of A, so A is invertible and given by

A−1 =
1

8

(

A2 − 3A+ 10I
)

=
1

4





0 2 2
−5 7 3
4 −6 2





compare the result with other methods
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Infinite series

Definition: a series
∑∞

k=0
ak converges to S if the partial sum

Sn ,

n
∑

k=0

ak

converges to S as n → ∞

example of convergent series:

1 +
1

2
+

1

4
+

1

8
+ · · · = 2

1−
1

2
+

1

3
−

1

4
+ · · · = log(2)
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Power series

a power series in scalar variable z is an infinite series of the form

f(z) =
∞
∑

k=0

akz
k

example: power series that converges for all values of z

ez = 1 + z +
z2

2!
+

z3

3!
+ · · ·

cos(z) = 1−
z2

2!
+

z4

4!
−

z6

6!
+ · · ·

sin(z) = z −
z3

3!
+

z5

5!
−

z7

7!
+ · · ·

cosh(z) = 1 +
z2

2!
+

z4

4!
+

z6

6!
+ · · ·

sinh(z) = z +
z3

3!
+

z5

5!
+

z7

7!
+ · · ·
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Power series of matrices

let A be matrix and Aij denotes the (i, j) entry of A

Definition: a matrix power series

∞
∑

k=0

akAk

converges to S if all (i, j) entries of the partial sum

Sn ,

n
∑

k=0

akAk

converges to the corresponding (i, j) entries of S as n → ∞

Fact ✌ if f(z) =
∑∞

k=0
akz

k is a convergent power series for all z then

f(A) is convergent for any square matrix A
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Matrix exponential

generalize the exponential function of a scalar

ex = 1 + x+
x2

2!
+

x3

3!
+ · · ·

to an exponential function of a matrix

define matrix exponential as

eA = I +A+
A2

2!
+

A3

3!
+ · · · =

∞
∑

k=0

Ak

k!

for a square matrix A

the infinite series converges for all A
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example: A =

[

1 1
0 0

]

find all powers of A

A2 =

[

1 1
0 0

]

, A3 =

[

1 1
0 0

]

, . . . , Ak = A for k = 2, 3, . . .

so by definition,

eA =
∞
∑

k=0

Ak

k!
= I +

∞
∑

k=1

Ak

k!
=

[

1 0
0 1

]

+
∞
∑

k=1

1

k!

[

1 1
0 0

]

=

[

e e− 1
0 1

]

never compute eA by element-wise operation !

eA 6=

[

e1 e1

e0 e0

]
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Eigenvalues of matrix exponential

✌ if λ and v be an eigenvalue and corresponding eigenvector of A then

• eλ is an eigenvalue of eA

• v is a corresponding eigenvector of eA

since eA can be expressed as power series of A:

eA = I +A+
A2

2!
+

A3

3!
+ · · ·

multiplying v on both sides and using Akv = λkv give

eAv = v +Av + A2v
2!

+ A3v
3!

+ · · ·

=
(

1 + λ+ λ2

2!
+ λ3

3!
+ · · ·

)

v

= eλv
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Properties of matrix exponential

• e0 = I

• eA+B 6= eA · eB

• if AB = BA, i.e., A and B commute, then eA+B = eA · eB

• (eA)−1 = e−A

✌ these properties can be proved by the definition of eA
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Computing eA via diagonalization

if A is diagonalizable, i.e.,

T−1AT = Λ = diag(λ1, λ2, . . . , λn)

where λk’s are eigenvalues of A then eA has the form

eA = TeΛT−1

• computing eΛ is simple since Λ is diagonal

• one needs to find eigenvectors of A to form the matrix T

• the expression of eA follows from

eA =
∞
∑

k=0

Ak

k!
=

∞
∑

k=0

(TΛT−1)k

k!
=

∞
∑

k=0

TΛkT−1

k!
= TeΛT−1

• if A is diagonalizable, so is eA

Function of square matrices 5-21



example: compute f(A) = eA given A =





1 1 0
0 2 1
0 0 0





the eigenvalues and eigenvectors of A are

λ1 = 1, v1 =





1
0
0



 , λ2 = 2, v2 =





1
1
0



 , λ3 = 0, v3 =





1
−1
2





form T =
[

v1 v2 v3
]

and compute eA = TeΛT−1

eA =





1 1 1
0 1 −1
0 0 2









e 0 0
0 e2 0
0 0 1









1 −1 −1
0 1 1/2
0 0 1/2



 =





e e2 − e (e2 − 2e+ 1)/2
0 e2 (e2 − 1)/2
0 0 1
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Computing eA via C-H theorem

eA is an infinite series

eA = I +A+
A2

2!
+

A3

3!
+ · · ·

by C-H theorem, the power Ak can be written as

Ak = a0I + a1A+ · · ·+ an−1A
n−1, k = n, n+ 1, . . .

(a polynomial in A of order ≤ n− 1)

thus eA can be expressed as a linear combination of I,A, . . . , An−1

eA = α0I + α1A+ · · ·+ αn−1A
n−1

where αk’s are coefficients to be determined
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this also holds for any convergent power series f(A) =
∑∞

k=0
akA

k

f(A) = α0I + α1A+ · · ·+ αn−1A
n−1

(recursively write Ak as a linear combination of I,A, . . . , An−1 for k ≥ n)

multiplying an eigenvector v of A on both sides and using v 6= 0, we get

f(λ) = α0I + α1λ+ · · ·+ αn−1λ
n−1

substitute with the n eigenvalues of A









f(λ1)
f(λ2)

...
f(λn)









=









1 λ1 · · · λn−1
1

1 λ2 · · · λn−1
2

... ... ... ...
1 λn · · · λn−1

n

















α0

α1
...

αn−1









Fact ✎ if all λk’s are distinct, the system is solvable and has a unique sol.
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Vandermonde matrix

a Vandermonde matrix has the form

V =









1 λ1 · · · λn−1
1

1 λ2 · · · λn−1
2

... ... ... ...
1 λn · · · λn−1

n









(with a geometric progression in each row)

✎ one can show that the determinant of V can be expressed as

det(V ) =
∏

1≤i<j≤n

(λj − λi)

hence, V is invertible as long as λi’s are distinct
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example: compute f(A) = eA given

A =





1 1 0
0 2 1
0 0 0





the eigenvalues of A are λ = 1, 2, 0 (all are distinct)

form a system of equations: f(λi) = α0 + α1λi + α2λ
2
i for i = 1, 2, 3





e1

e2

e0



 =





1 1 1
1 2 22

1 0 0









α0

α1

α2





which has the solution

α0 = 1, α1 = 2e− e2/2− 3/2, α2 = −e+ e2/2 + 1/2
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substituting α0, α1, α2 in

eA = α0I + α1A+ α2A
2

gives

eA = α0





1 0 0
0 1 0
0 0 1



+ α1





1 1 0
0 2 1
0 0 0



+ α2





1 3 1
0 4 2
0 0 0





=





α0 + α1 + α2 α1 + 3α2 α2

0 α0 + 2α1 + 4α2 α1 + 2α2

0 0 α0





=





e e2 − e (e2 − 2e+ 1)/2
0 e2 (e2 − 1)/2
0 0 1





(agree with the result in page 5-22)

Function of square matrices 5-27



Repeated eigenvalues

A has repeated eigenvalues, i.e., λi = λj for some i, j

goal: compute f(A) using C-H theorem

however, we can no longer apply the result in page 5-24 because

• the number of independent equations on page 5-24 is less than n

• the Vandermonde matrix (page 5-25) is not invertible

cannot form a linear system to solve for the n coefficients, α0, . . . , αn−1
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solution: for the repeated root with multiplicity r

get r − 1 independent equations by taking derivatives on f(λ) w.r.t λ

f(λ) = α0 + α1λ+ · · ·+ αn−1λ
n−1

df(λ)

dλ
= α1 + 2α2λ+ · · ·+ (n− 1)αn−1λ

n−2

... = ...

dr−1f(λ)

dr−1λ
= (r − 1)!αr−1 + · · ·+ (n− r) · · · (n− 2)(n− 1)αn−1λ

n−1−r
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example: compute f(A) = cos(A) given

A =





1 1 0
0 1 0
0 0 2





the eigenvalues of A are λ1 = 1, 1 and λ2 = 2

by C-H theorem, write f(A) as a linear combination of Ak, k = 0, ..., n− 1

f(A) = cos(A) = α0 + α1A+ α2A
2

the eigenvalues of A must also satisfies this equation

f(λ) = cos(λ) = α0 + α1λ+ α2λ
2

the derivative of f w.r.t λ is given by

f ′(λ) = − sin(λ) = α1 + 2α2λ
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thus we can obtain n linearly independent equations:





f(λ1)
f ′(λ1)
f(λ2)



 =





1 λ1 λ2
1

0 1 2λ1

1 λ3 λ2
3









α0

α1

α2



 =⇒





cos(1)
− sin(1)
cos(2)



 =





1 1 1
0 1 2
1 2 4









α0

α1

α2





which have the solution





α0

α1

α2



 =





2 sin(1) + cos(2)
2 cos(1)− 3 sin(1)− 2 cos(2)
− cos(1) + sin(1) + cos(2)





substitute α0, α1, α2 to obtain f(A)

f(A) = cos(A) = α0I + α1A+ α2A
2

=





cos(1) − sin(1) 0
0 cos(1) 0
0 0 cos(2)
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Applications to ordinary differential equations

we solve the following first-order ODEs for t ≥ 0 where x(0) is given

scalar: x(t) ∈ R and a ∈ R is given

ẋ(t) = ax(t)

solution: x(t) = eatx(0), for t ≥ 0

vector: x(t) ∈ Rn and A ∈ Rn×n is given

ẋ(t) = Ax(t)

solution: x(t) = eAtx(0), for t ≥ 0 (use
deAt

dt
= AeAt = eAtA)
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Applications to difference equations

we solve the difference equations for t = 0, 1, . . . where x(0) is given

scalar: x(t) ∈ R and a ∈ R is given

x(t+ 1) = ax(t)

solution: x(t) = atx(0), for t = 0, 1, 2, . . .

vector: x(t) ∈ Rn and A ∈ Rn×n is given

x(t+ 1) = Ax(t)

solution: x(t) = Atx(0), for t = 0, 1, 2, . . .
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example: solve the ODE

ÿ(t)− ẏ(t)− 6y(t) = 0, y(0) = 1, ẏ(0) = 0

solution: define

x(t) ,

[

x1(t)
x2(t)

]

,

[

y(t)
ẏ(t)

]

write the equation into the vector form ẋ(t) = Ax(t)

ẋ(t) =

[

ẏ(t)
ÿ(t)

]

=

[

ẏ(t)
ẏ(t) + 6y(t)

]

=

[

x2(t)
6x1(t) + x2(t)

]

=

[

0 1
6 1

]

x(t)

the initial condition is

x(0) =

[

y(0)
ẏ(0)

]

=

[

1
0

]
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thus it is left to compute eAt

A =

[

0 1
6 1

]

the eigenvalues and eigenvectors of A are

λ1 = −2, v1 =

[

1
−2

]

, λ2 = 3, v2 =

[

1
3

]

all eigenvalues are distinct, so A is diagonalizable and

eAt = TeΛtT−1, T =
[

v1 v2
]

, Λ =

[

λ1 0
0 λ2

]

eAt =

[

1 1
−2 3

] [

e−2t 0
0 e3t

]

1

5

[

3 −1
2 1

]

Function of square matrices 5-35



the closed-form expression of eAt is

eAt =
1

5

[

3e−2t + 2e3t −e−2t + e3t

−6e−2t + 6e3t 2e−2t + 3e3t

]

the solution to the vector equation is

x(t) = eAtx(0) =
1

5

[

3e−2t + 2e3t −e−2t + e3t

−6e−2t + 6e3t 2e−2t + 3e3t

] [

1
0

]

=
1

5

[

3e−2t + 2e3t

−6e−2t + 6e3t

]

hence the solution y(t) can be obtained by

y(t) = x1(t) =
[

1 0
]

x(t) =
1

5

(

3e−2t + 2e3t
)

, t ≥ 0
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example: solve the difference equation

y(t+ 2)− y(t+ 1)− 6y(t) = 0, y(0) = 1, y(1) = 0

solution: define

x(t) ,

[

x1(t)
x2(t)

]

,

[

y(t)
y(t+ 1)

]

write the equation into the vector form x(t+ 1) = Ax(t)

x(t+ 1) =

[

y(t+ 1)
y(t+ 2)

]

=

[

y(t+ 1)
y(t+ 1) + 6y(t)

]

=

[

x2(t)
6x1(t) + x2(t)

]

=

[

0 1
6 1

]

x(t)

the initial condition is

x(0) =

[

y(0)
y(1)

]

=

[

1
0

]
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thus it is left to compute At

A =

[

0 1
6 1

]

the eigenvalues and eigenvectors of A are

λ1 = −2, v1 =

[

1
−2

]

, λ2 = 3, v2 =

[

1
3

]

all eigenvalues are distinct, so A is diagonalizable and

At = TΛtT−1, T =
[

v1 v2
]

, Λ =

[

λ1 0
0 λ2

]

At =

[

1 1
−2 3

] [

(−2)t 0
0 3t

]

1

5

[

3 −1
2 1

]
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the closed-form expression of At is

At =
1

5

[

2(3t) + 3(−2)t 3t − (−2)t

2(3t+1) + 3(−2)t+1 3t+1 − (−2)t+1

]

for t = 0, 1, 2, . . .

the solution to the vector equation is

x(t) = Atx(0) =
1

5

[

2(3t) + 3(−2)t 3t − (−2)t

2(3t+1) + 3(−2)t+1 3t+1 − (−2)t+1

] [

1
0

]

=
1

5

[

2(3t) + 3(−2)t

2(3t+1) + 3(−2)t+1

]

hence the solution y(t) can be obtained by

y(t) = x1(t) =
1

5

(

2(3t) + 3(−2)t
)

, t = 0, 1, 2, . . .
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MATLAB commands

• expm(A) computes the matrix exponential eA

• exp(A) computes the exponential of the entries in A

example from page 5-18, A =

[

1 1
0 0

]

, eA =

[

e e− 1
0 1

]

>> A=[1 1;0 0];

>> expm(A)

ans =

2.7183 1.7183

0 1.0000

>> exp(A)

ans =

2.7183 2.7183

1.0000 1.0000
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