1. Mathematical Proofs

- conditional statements
- sufficient and necessary conditions
- methods of proofs
- disproving statements
- proofs of quantified statements

Statements

a **statement** is a declarative sentence that is true *or* false but not both

examples:

- $3 + 4 = 7$
- $5 \cdot 2 3 = 9$
- $\bullet\,$ if x is an integer, then $2x$ is an even integer

the following sentences are not statements

- Bangkok is ^a lovely city (it's ^a matter of opinion)
- $2x -$ (we do not know what x is)

Conditional statements

for statements P and Q , a **conditional statement** is the statement:

If P , then Q

and is denoted by $P \Rightarrow Q$ (also stated as P implies Q)

example: 'if students obtain ^a score higher than ⁸⁰ then they will get an A' truth table

- $P \Rightarrow Q$ is logically equivalent to
- $\bullet \neg P \vee Q$
- $\bullet \ \neg Q \Rightarrow \neg P$

beware ! $P \Rightarrow Q$ is NOT logically equivalent to $Q \Rightarrow P$

Biconditional statements

the conjunction of ^a conditional statement and its converse:

 $(P \Rightarrow Q) \land (Q \Rightarrow P)$

is called the **biconditional** of P and Q , which is expressed as

 P if and only if $\,Q$

and denoted by $P \Leftrightarrow Q$

truth table

examples:

- $x = 2$ if and only if $3x = 6$
- $|x| = 4$ if and only if $x^2 = 16$

 $P \Leftrightarrow Q$ is true only when P and Q have the same truth values

Sufficient and Necessary conditions

consider a (true) conditional statement: $P \Rightarrow Q$, we say

- \bullet $\,P$ is sufficient for Q
- \bullet Q is necessary for P
- \bullet $\,P$ only if $\,Q$

example: if $x=-3$ then (a true conditional statement)

- $\bullet\,$ ' P is sufficient for Q' means the truth of $x=-3$ is sufficient for concluding the truth of $\vert x\vert =3$
- \bullet ' P only if Q ' and ' Q is necessary for P ' have the same meaning: $x=-3$ is true only under the condition that $|x|=3$ (because if $|x|\neq 3$) then $x=-3$ can't be true)

however, $\vert x\vert =3$ is *not a sufficient condition* for $x=-3$ (because if $|x|=3$ then x can be either 3 or $-3)$ $i.e.,$ the converse of 'if $x = -3$ then $|x| = 3'$ is false

consider a (true) biconditional statement: $P \Leftrightarrow Q$, we say

 $\,P$ is sufficient and necessary for Q

example: $\vert x\vert =2$ if and only if $x^2=4$ \qquad (a true biconditional statement)

 \bullet saying $|x|=2$ is equivalent to saying $x^2=4$

more examples:

- $\bullet\,$ being at least 18 years old is *necessary* for applying a driver license i.e.,
	- if you're ^a driver, everyone knows you must be at least ¹⁸ years old
	- $-$ if you're younger than 18 then you can't have a driver license
- \bullet if a person holds the title 'Miss Thailand' then that person must be 1) female 2) adult and 3) unmarried

i.e.,

- $-$ stating that 'Jenny is Miss Thailand' is sufficient to know that she is female and she must be old enoug^h (an adult)
- $-$ being unmarried is a *necessary* condition for being Miss Thailand because if ^a woman is married, she can't apply for this position

Mathematical terminology

- \bullet an axiom is a math statement that is self-evidently true w/o proof
- $\bullet\,$ a $\,$ definition is an $\,$ agreement as to the meaning of a particular term
- $\bullet\,$ a $\,$ proof is a sequence of math arguments demonstrating the truth of ^given results
- a theorem or a proposition is any mathematical statement that can be
shown to be true using accented legical and mathematical arguments shown to be true using accepted logical and mathematical arguments
- \bullet a lemma is a true mathematical statement that was proven mainly to help in the proof of some theorem
- •a corollary is used to refer to ^a theorem that is easily proven once some other theorem has been proven

Direct proofs

a **direct proof** of $P \Rightarrow Q$ typically consists of these steps:

- $1.$ start from assuming P is true then
- 2. develop a set of logical arguments to conclude Q

example: show that if $x, y \in \mathbf{R}$ then $x^2 + y^2 \ge |xy|$ Proof. let $x, y \in \mathbf{R}$ and consider $(|x| - |y|)^2$

$$
(|x| - |y|)^2 = |x|^2 + |y|^2 - 2|xy|
$$

since the LHS is nonnegative, it follows that

$$
(|x| - |y|)^2 = x^2 + y^2 - 2|xy| \ge 0
$$

and hence $x^2 + y^2 \ge 2|xy| \ge |xy|$

Proof by contrapositive

a contrapositive proof of a statement $P \Rightarrow Q$ uses the fact that

 $P \Rightarrow Q$ is logically equivalent to $\neg Q \Rightarrow \neg P$

so we can use a direct proof to show that $\neg Q \Rightarrow \neg P$ is true

example: let $x \in \mathbf{R}$. show that if $x^2 + 2x < 0$ then $x < 0$

Proof. we will show that if $x \ge 0$ then $x^2 + 2x \ge 0$

- if $x \geq 0$ then obviously $2x \geq 0$
- $\bullet \; x^2$ is always nonnegative

therefore, the sum of x^2 and $2x$ is nonnegative, finishing the proof $\hskip1cm \square$

Proof by contradiction

idea: $\neg (P \Rightarrow Q)$ is equivalent to $P \land \neg Q$, so if we do as follows:

- 1. assume P is true (accept all the hypotheses) and Q is false (negate the $\mathcal P(\mathcal S)$ conclusion)
- 2. try to prove that this leads to a **contradiction**

then we have shown that $\neg (P \Rightarrow Q)$ is false or that $P \Rightarrow Q$ is true

example: show that if n is an even integer then so is n^2

Proof. assume n is even but n^2 is not

since n is even, we can express $n=2k$ where k is some positive integer

$$
n^2 = (2k)^2 = 4k^2 = 2(2k^2)
$$

since $2k^2$ is also an integer, n^2 must be also even, which is a contradiction

Proof by induction

principle of mathematical indunction states that

the statement $P(n)$ is true for all $n \in \mathsf{N}$ if

- $1.$ $P(1)$ is true
- 2. for each $k \in \mathsf{N}$, if $P(k)$ is true then $P(k+1)$ is also true

example: show that $\sum_{i=1}^{n} i = n(n + 1)/2$ for $n = 1, 2, ...$

Proof. let $P(n)$ be the statement $\sum_{i=1}^{n} i = n(n+1)/2$

- \bullet $P(1)$ is true because $1 = 1 \cdot (1 + 1)/2$
- $\bullet\,$ assume $P(k)$ is true and show that $P(k+1)$ is true:

$$
\sum_{i=1}^{n+1} i = n + 1 + \sum_{i=1}^{n} i = n + 1 + n(n+1)/2 = (n+1)(n+2)/2
$$

Mathematical Proofs 1-12

Disproving statements

a **conjecture** is any math statement that has *not* been proved or disproved

disproving a conjecture requires only a *single example* to show the conjecture is false

such example is called a **counterexample**

example: $(x + y)^2 = x^2 + y^2$ for all $x, y \in \mathbb{R}$ (conjecture)

 $x=1, y=1$ is a counterexample that disproves the conjecture because

$$
(1+1)^2 = 4 \neq 1^2 + 1^2 = 2
$$

(because the conjecture says the identity holds for all x, y , we just gave a value of x, y that disproves it)

example: let A be a square matrix. if $A^2 = I$ then $A = I$ or $-I$

the conjecture is false because if we consider

$$
A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}
$$

then we can verify that

$$
A^2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
$$

hence, $A^2 = I$ does not necessarily imply that $A = I$ or $A = -I$

but A could be other matrices (at least the counterexample we just gave)

Quantifiers

- $\bullet\,$ the quantifying clause 'for every, for all, for each' is denoted by $\forall\,$
- $\bullet\,$ the quantifying clause 't**here exists, there is some**' is denoted by \exists
- $\bullet \ \ x \in S$ means ' x is a member of set S' or ' x belongs to S'

examples:

• for every positive real number $x, x^3 - 2x^2 + x > 0$

$$
\forall x \in \mathbf{R}, \ x^3 - 2x^2 + x > 0
$$

• there exists a real number x such that $x^2 - 2x = 4$

$$
\exists x, \ x^2 - 2x = 4
$$

Proofs of quantified statements

statements containing 'for some' or 'there exists' **example:** prove or disprove ${}^{\prime}\exists A\in{\bf R}^{2}$ $\times 2$ ², $det(A) = 1'$

to prove that it's true, we just need to come up with *an example* of A :

$$
A = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}
$$
 and show that $det(A) = 1$

hence, the statement is true

example: prove or disprove ' $\exists x \in \mathbf{R}, x^4 + 2x^2 + 1 = 0$ ' if $x \in \mathbf{R}$, then x^4 $4 \geq 0$ and x^2 $x^2 \geq 0$, so $x^4 + 2x^2 + 1 \geq 1$ $x^4 + 2x^2 + 1$ can't be 0 for any $x \in \mathbf{R}$, so the statement is false

- proving that the statement is true is typically (but not always) simple
- disproving the statement may require some effort

statements containing 'for all' or 'for any'

example: prove or disprove ' $\forall x, y \in \mathbf{R}, |x + y| \leq |x| + |y|$ '

$$
(x+y)^2 = x^2 + y^2 + 2xy \le |x|^2 + |y|^2 + 2|xy| = (|x|+|y|)^2
$$

so the statement is true

example: prove or disprove $^{\prime}AB= BA$ for any square matrices A,B^{\prime} disproving it is easy because we can just give an example of A, B :

$$
A = \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}
$$

and show that $AB=$ $\begin{bmatrix} 1 & 1 \ 2 & 0 \end{bmatrix}$ $\overline{}$ $\neq BA =$ $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ 1 $\begin{bmatrix} 1 & -1 \ 0 & 1 \end{bmatrix}$ (so the statement is false)

- proving the statement is true may require some effort
- disproving the statement is typically *easy* (by giving a counterexample)

Common mistakes

example: show that for any $\alpha \in \mathbf{R}, A \in \mathbf{R}^{n \times n}$, $\det(\alpha A) = |\alpha|^n \det A$ one may show as follows

$$
A = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix} \implies \det(A) = 5 \text{ and } \det(\alpha A) = \begin{vmatrix} \alpha & 2\alpha \\ -\alpha & 3\alpha \end{vmatrix} = 5\alpha^2
$$

so $\det(\alpha A) = \alpha^2 \det(A)$ as desired

the above argument cannot be a proof because we just showed for one particular value of ^A

in fact, we have to show that the statement is true for all square matrices

example: show that for any $x, y \in \mathbf{R}$, $(x+y)^2 \leq 2(x^2+y^2)$

if one writes an argument like this:

$$
x^{2} + 2xy + y^{2} \le 2x^{2} + 2y^{2} \implies x^{2} + y^{2} - 2xy \ge 0 \implies (x - y)^{2} \ge 0
$$

then it can't be ^a proof because:

- we can't start ^a proof from the result we're going to prove !
- each step of argument must be explained with logical reasoning
- ^a good proof must be clear by itself; always explain with details
- the lastly obtained result must conclude what you want to prove

example of proof: for any $x,y\in{\bf R}$, $(x-y)^2$ is always nonnegative

• expanding $(x - y)^2$ gives

$$
0 \le (x - y)^2 = x^2 - 2xy + y^2
$$

• add
$$
x^2 + 2xy + y^2
$$
 on both sides

$$
x^2 + 2xy + y^2 \le 2x^2 + 2y^2
$$

• complete the square and we finish the proof

$$
(x+y)^2 \le 2(x^2+y^2)
$$

References

G. Chartrand, A. D. Polimeni, and P. Zhang, Mathematical Proofs: ^a Transition to Advanced Mathematics, Addison-Wesley, ²⁰⁰³

T. Sundstrom, Mathematical Reasoning: Writing and Proof, Pearson, ²⁰⁰⁷

R. J. Rossi, Theorems, Corollaries, Lemmas, and Methods of Proof, Wiley-Interscience, ²⁰⁰⁶