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1. Mathematical Proofs

• conditional statements

• sufficient and necessary conditions

• methods of proofs

• disproving statements

• proofs of quantified statements
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Statements

a statement is a declarative sentence that is true or false but not both

examples:

• 3 + 4 = 7

• 5 · 2− 3 = 9

• if x is an integer, then 2x is an even integer

the following sentences are not statements

• Bangkok is a lovely city (it’s a matter of opinion)

• 2x− 3 = 4 (we do not know what x is)
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Conditional statements

for statements P and Q, a conditional statement is the statement:

If P, then Q

and is denoted by P ⇒ Q (also stated as P implies Q)

example: ’if students obtain a score higher than 80 then they will get an A’

truth table

P Q P ⇒ Q
T T T
T F F
F T T
F F T

P ⇒ Q is logically equivalent to

• ¬P ∨Q

• ¬Q ⇒ ¬P

beware ! P ⇒ Q is NOT logically equivalent to Q ⇒ P

Mathematical Proofs 1-3



Biconditional statements

the conjunction of a conditional statement and its converse:

(P ⇒ Q) ∧ (Q ⇒ P )

is called the biconditional of P and Q, which is expressed as

P if and only if Q

and denoted by P ⇔ Q

truth table

P Q P ⇔ Q
T T T
T F F
F T F
F F T

examples:

• x = 2 if and only if 3x = 6

• |x| = 4 if and only if x2 = 16

P ⇔ Q is true only when P and Q have the same truth values
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Sufficient and Necessary conditions

consider a (true) conditional statement: P ⇒ Q, we say

• P is sufficient for Q

• Q is necessary for P

• P only if Q

example: if x = −3 then |x| = 3 (a true conditional statement)

• ’P is sufficient for Q’ means

the truth of x = −3 is sufficient for concluding the truth of |x| = 3

• ’P only if Q’ and ’Q is necessary for P ’ have the same meaning:

x = −3 is true only under the condition that |x| = 3 (because if |x| 6= 3
then x = −3 can’t be true)
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however, |x| = 3 is not a sufficient condition for x = −3

(because if |x| = 3 then x can be either 3 or −3)

i.e., the converse of ’if x = −3 then |x| = 3’ is false

consider a (true) biconditional statement: P ⇔ Q, we say

P is sufficient and necessary for Q

example: |x| = 2 if and only if x2 = 4 (a true biconditional statement)

• saying |x| = 2 is equivalent to saying x2 = 4
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more examples:

• being at least 18 years old is necessary for applying a driver license

i.e.,

– if you’re a driver, everyone knows you must be at least 18 years old

– if you’re younger than 18 then you can’t have a driver license

• if a person holds the title ’Miss Thailand’ then that person must be 1)
female 2) adult and 3) unmarried

i.e.,

– stating that ’Jenny is Miss Thailand’ is sufficient to know that she is
female and she must be old enough (an adult)

– being unmarried is a necessary condition for being Miss Thailand
because if a woman is married, she can’t apply for this position
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Mathematical terminology

• an axiom is a math statement that is self-evidently true w/o proof

• a definition is an agreement as to the meaning of a particular term

• a proof is a sequence of math arguments demonstrating the truth of
given results

• a theorem or a proposition is any mathematical statement that can be
shown to be true using accepted logical and mathematical arguments

• a lemma is a true mathematical statement that was proven mainly to
help in the proof of some theorem

• a corollary is used to refer to a theorem that is easily proven once some
other theorem has been proven
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Direct proofs

a direct proof of P ⇒ Q typically consists of these steps:

1. start from assuming P is true then

2. develop a set of logical arguments to conclude Q

example: show that if x, y ∈ R then x2 + y2 ≥ |xy|

Proof. let x, y ∈ R and consider (|x| − |y|)2

(|x| − |y|)2 = |x|2 + |y|2 − 2|xy|

since the LHS is nonnegative, it follows that

(|x| − |y|)2 = x2 + y2 − 2|xy| ≥ 0

and hence x2 + y2 ≥ 2|xy| ≥ |xy| �
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Proof by contrapositive

a contrapositive proof of a statement P ⇒ Q uses the fact that

P ⇒ Q is logically equivalent to ¬Q ⇒ ¬P

so we can use a direct proof to show that ¬Q ⇒ ¬P is true

example: let x ∈ R. show that if x2 + 2x < 0 then x < 0

Proof. we will show that if x ≥ 0 then x2 + 2x ≥ 0

• if x ≥ 0 then obviously 2x ≥ 0

• x2 is always nonnegative

therefore, the sum of x2 and 2x is nonnegative, finishing the proof �
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Proof by contradiction

idea: ¬(P ⇒ Q) is equivalent to P ∧ ¬Q, so if we do as follows:

1. assume P is true (accept all the hypotheses) and Q is false (negate the
conclusion)

2. try to prove that this leads to a contradiction

then we have shown that ¬(P ⇒ Q) is false or that P ⇒ Q is true

example: show that if n is an even integer then so is n2

Proof. assume n is even but n2 is not

since n is even, we can express n = 2k where k is some positive integer

n2 = (2k)2 = 4k2 = 2(2k2)

since 2k2 is also an integer, n2 must be also even, which is a contradiction

Mathematical Proofs 1-11



Proof by induction

principle of mathematical indunction states that

the statement P (n) is true for all n ∈ N if

1. P (1) is true

2. for each k ∈ N, if P (k) is true then P (k + 1) is also true

example: show that
∑

n

i=1
i = n(n+ 1)/2 for n = 1, 2, . . .

Proof. let P (n) be the statement
∑

n

i=1
i = n(n+ 1)/2

• P (1) is true because 1 = 1 · (1 + 1)/2

• assume P (k) is true and show that P (k + 1) is true:

n+1
∑

i=1

i = n+ 1 +
n
∑

i=1

i = n+ 1 + n(n+ 1)/2 = (n+ 1)(n+ 2)/2
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Disproving statements

a conjecture is any math statement that has not been proved or disproved

disproving a conjecture requires only a single example to show the
conjecture is false

such example is called a counterexample

example: (x+ y)2 = x2 + y2 for all x, y ∈ R (conjecture)

x = 1, y = 1 is a counterexample that disproves the conjecture because

(1 + 1)2 = 4 6= 12 + 12 = 2

(because the conjecture says the identity holds for all x, y, we just gave a
value of x, y that disproves it)
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example: let A be a square matrix. if A2 = I then A = I or −I

the conjecture is false because if we consider

A =

[

0 1
1 0

]

then we can verify that

A2 =

[

0 1
1 0

] [

0 1
1 0

]

=

[

1 0
0 1

]

hence, A2 = I does not necessarily imply that A = I or A = −I

but A could be other matrices (at least the counterexample we just gave)
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Quantifiers

• the quantifying clause ’for every, for all, for each’ is denoted by ∀

• the quantifying clause ’there exists, there is some’ is denoted by ∃

• x ∈ S means ’x is a member of set S’ or ’x belongs to S’

examples:

• for every positive real number x, x3 − 2x2 + x > 0

∀x ∈ R, x3 − 2x2 + x > 0

• there exists a real number x such that x2 − 2x = 4

∃x, x2 − 2x = 4
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Proofs of quantified statements

statements containing ’for some’ or ’there exists’

example: prove or disprove ’∃A ∈ R2×2, det(A) = 1’

to prove that it’s true, we just need to come up with an example of A:

A =

[

1 0
−1 1

]

and show that det(A) = 1

hence, the statement is true

example: prove or disprove ’∃x ∈ R, x4 + 2x2 + 1 = 0’

if x ∈ R, then x4 ≥ 0 and x2 ≥ 0, so x4 + 2x2 + 1 ≥ 1

x4 + 2x2 + 1 can’t be 0 for any x ∈ R, so the statement is false

• proving that the statement is true is typically (but not always) simple

• disproving the statement may require some effort
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statements containing ’for all’ or ’for any’

example: prove or disprove ’∀x, y ∈ R, |x+ y| ≤ |x|+ |y|’

(x+ y)2 = x2 + y2 + 2xy ≤ |x|2 + |y|2 + 2|xy| = (|x|+ |y|)2

so the statement is true

example: prove or disprove ’AB = BA for any square matrices A,B’

disproving it is easy because we can just give an example of A,B:

A =

[

1 1
2 0

]

, B =

[

1 −1
0 1

]

and show that AB =

[

1 1
2 0

]

6= BA =

[

1 −1
0 1

]

(so the statement is false)

• proving the statement is true may require some effort

• disproving the statement is typically easy (by giving a counterexample)
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Common mistakes

example: show that for any α ∈ R, A ∈ Rn×n, det(αA) = |α|n detA

one may show as follows

A =

[

1 2
−1 3

]

=⇒ det(A) = 5 and det(αA) =

∣

∣

∣

∣

α 2α
−α 3α

∣

∣

∣

∣

= 5α2

so det(αA) = α2 det(A) as desired

the above argument cannot be a proof because we just showed for one
particular value of A

in fact, we have to show that the statement is true for all square matrices
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example: show that for any x, y ∈ R, (x+ y)2 ≤ 2(x2 + y2)

if one writes an argument like this:

x2 + 2xy + y2 ≤ 2x2 + 2y2 ⇒ x2 + y2 − 2xy ≥ 0 ⇒ (x− y)2 ≥ 0

then it can’t be a proof because:

• we can’t start a proof from the result we’re going to prove !

• each step of argument must be explained with logical reasoning

• a good proof must be clear by itself; always explain with details

• the lastly obtained result must conclude what you want to prove
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example of proof: for any x, y ∈ R, (x− y)2 is always nonnegative

• expanding (x− y)2 gives

0 ≤ (x− y)2 = x2 − 2xy + y2

• add x2 + 2xy + y2 on both sides

x2 + 2xy + y2 ≤ 2x2 + 2y2

• complete the square and we finish the proof

(x+ y)2 ≤ 2(x2 + y2)
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