2. Vectors and Matrices

- review on vectors
- matrix notation
- special matrices
- matrix operations
- inverse of matrices
- elementary matrices
- determinants
- linear equations in matrix form

Vector notation

 n -vector x :

$$
x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}
$$

• also written as
$$
x = (x_1, x_2, \dots, x_n)
$$

- $\bullet\,$ set of $\mathit{n}\text{-vectors}$ is denoted \textbf{R}^n (Euclidean space)
- \bullet x_i : ith element or component or entry of x
- \bullet x is also called a column vector

•
$$
y = [y_1 \quad y_2 \quad \cdots \quad y_n]
$$
 is called a row vector

unless stated otherwise, ^a vector typically means ^a column vector

Special vectors

zero vectors: $x = (0, 0, \ldots, 0)$

all-ones vectors: $x = (1, 1, \cdots, 1)$ (we will denote it by 1)

 ${\bf standard}$ unit vectors: e_k has only 1 at the k th entry and zero otherwise

$$
e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}
$$

(standard unit vectors in ${\bold R}^3)$

 $\boldsymbol{\mathsf{unit}}$ $\boldsymbol{\mathsf{vectors}}$: any vector u whose norm $\boldsymbol{(\mathsf{magnitude})}$ is $1, \ i.e.,$

$$
||u|| \triangleq \sqrt{u_1^2 + u_2^2 + \dots + u_n^2} = 1
$$

example: $u=(1/\sqrt{2},2/\sqrt{6},-1/\sqrt{2})$

Vectors and Matrices 2-3

Vector operations

 $\boldsymbol{\mathsf{s}}$ calar multiplication of a vector x with a scalar α

$$
\alpha x = \begin{bmatrix} \alpha x_1 \\ \alpha x_2 \\ \vdots \\ \alpha x_n \end{bmatrix}
$$

addition and subtraction of two n -vector x,y

$$
x + y = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{bmatrix}, \qquad x - y = \begin{bmatrix} x_1 - y_1 \\ x_2 - y_2 \\ \vdots \\ x_n - y_n \end{bmatrix}
$$

Geometrical interpretation

for $n\leq 3{:}$ x is a point with coordinates x_i

example: $x = (4, 0), y = (2, 2)$

Inner products

definition: the inner product of two n -vectors x, y is

 $x_1y_1 + x_2y_2 + \cdots + x_ny_n$

also known as the **dot product** of vectors x, y

notation: x^Ty

properties $\textcolor{red}{\otimes}$

• $\bullet \ (\alpha x)^T y = \alpha (x^T y)$ for scalar α

$$
\bullet \ (x+y)^T z = x^T z + y^T z
$$

• $x^Ty = y^Tx$

Euclidean norm

$$
||x|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} = \sqrt{x^T x}
$$

properties

- $\bullet\,$ also written $\|x\|_2$ to distinguish from other norms
- $\bullet \ \|\alpha x\| = |\alpha| \|x\|$ for scalar α
- $\bullet \ \ \|x + y\| \leq \|x\| + \|y\|$ (triangle inequality)
- $||x|| \ge 0$ and $||x|| = 0$ only if $x = 0$

interpretation

- $\bullet \,\, \|x\|$ measures the *magnitude* or length of x
- $\bullet \ \Vert x y \Vert$ measures the *distance* between x and y

Matrix notation

an $m \times n$ matrix A is defined as

$$
A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}, \text{ or } A = [a_{ij}]_{m \times n}
$$

- \bullet $\,a_{ij}$ are the **elements**, or $\,$ coefficients, or entries of A
- set of $m \times n$ -matrices is denoted $\mathbf{R}^{m \times n}$
- \bullet A has m rows and n columns $(m, n$ are the **dimensions**)
- $\bullet\,$ the (i,j) entry of A is also commonly denoted by A_{ij}
- A is called a square matrix if $m = n$

Special matrices

zero matrix: $A = 0$ $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $0 \quad 0 \quad \cdots \quad 0$ $\begin{matrix}0 & 0 & \cdots & 0\\ \vdots & \vdots & \ddots & 0\\0 & 0 & \cdots & 0\end{matrix}$ $\overline{}$ $\overline{}$

$$
a_{ij} = 0
$$
, for $i = 1, ..., m, j = 1, ..., n$

identity matrix: $A = I$

$$
A = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & 1 \end{bmatrix}
$$

a square matrix with $a_{ii} = 1, a_{ij} = 0$ for $i \neq j$

Vectors and Matrices 2-9

diagonal matrix:

$$
A = \begin{bmatrix} a_1 & 0 & \cdots & 0 \\ 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & a_n \end{bmatrix}
$$

a square matrix with $a_{ij} = 0$ for $i \neq j$

triangular matrix:

^a square matrix with zero entries in ^a triangular part

upper triangular	lower triangular
\n $A = \begin{bmatrix}\n a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn}\n \end{bmatrix}$ \n	\n $A = \begin{bmatrix}\n a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn}\n \end{bmatrix}$ \n
\n $a_{ij} = 0 \text{ for } i \geq j$ \n	\n $a_{ij} = 0 \text{ for } i \leq j$ \n

Addition and scalar multiplication

addition of two $m \times n$ -matrices A and B

$$
A + B = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \dots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \dots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \dots & a_{mn} + b_{mn} \end{bmatrix}
$$

 $\boldsymbol{\mathsf{s}}$ calar multiplication of an $m \times n$ -matrix A with a scalar β

$$
\beta A = \begin{bmatrix}\n\beta a_{11} & \beta a_{12} & \dots & \beta a_{1n} \\
\beta a_{21} & \beta a_{22} & \dots & \beta a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
\beta a_{m1} & \beta a_{m2} & \dots & \beta a_{mn}\n\end{bmatrix}
$$

Multiplication

product of $m \times r$ -matrix A with $r \times n$ -matrix B :

$$
(AB)_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{ir}b_{rj} = \sum_{k=1}^{r} a_{ik} b_{kj}
$$

dimensions must be compatible: $\#$ of columns in $A=\#$ of rows in B

- • \bullet $(AB)_{ij}$ is the dot product of the i^{th} row of A and the j^{th} column of B
- $\bullet\; AB \neq BA$ in general ! (even if the dimensions make sense)
- $\bullet\,$ there are exceptions, $\,e.g.,\;AI=IA$ for all square A
- $A(B+C) = AB + AC$

Matrix transpose

the transpose of an $m \times n$ -matrix A is

$$
A^{T} = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix}
$$

properties $\textcolor{red}{\otimes}$

- •• A^T is $n \times m$
- • $(A^T)^T = A$
- $(\alpha A + B)^{T} = \alpha A^{T} + B^{T}$, $\alpha \in \mathbf{R}$
- • $(AB)^T = B^T A^T$
- \bullet a square matrix A is called symmetric if $A=A^T$, i.e., $a_{ij}=a_{ji}$

Block matrix notation

example: 2×2 -block matrix A

$$
A = \begin{bmatrix} B & C \\ D & E \end{bmatrix}
$$

for example, if B,C,D,E are defined as

$$
B = \begin{bmatrix} 2 & 1 \\ 3 & 8 \end{bmatrix}, \quad C = \begin{bmatrix} 0 & 1 & 7 \\ 1 & 9 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 0 & 1 \end{bmatrix}, \quad E = \begin{bmatrix} -4 & 1 & -1 \end{bmatrix}
$$

then A is the matrix

$$
A = \begin{bmatrix} 2 & 1 & 0 & 1 & 7 \\ 3 & 8 & 1 & 9 & 1 \\ 0 & 1 & -4 & 1 & -1 \end{bmatrix}
$$

note: dimensions of the blocks must be compatible

Column and Row partitions

write an $m\times n$ -matrix A in terms of its columns or its rows

$$
A = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} = \begin{bmatrix} b_1^T \\ b_2^T \\ \vdots \\ b_m^T \end{bmatrix}
$$

- \bullet a_j for $j=1,2,\ldots,n$ are the columns of A
- $\bullet\ \ b^T_i$ i_i^T for $i=1,2,\ldots,m$ are the rows of A

example:

$$
A = \begin{bmatrix} 1 & 2 & 1 \\ 4 & 9 & 0 \end{bmatrix}
$$

the column and row vectors are

$$
a_1 = \begin{bmatrix} 1 \\ 4 \end{bmatrix}, \quad a_2 = \begin{bmatrix} 2 \\ 9 \end{bmatrix}, \quad a_3 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad b_1^T = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}, \quad b_2^T = \begin{bmatrix} 4 & 9 & 0 \end{bmatrix}
$$

Matrix-vector product

product of $m \times n$ -matrix A with n -vector x

$$
Ax = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{bmatrix}
$$

 $\bullet\,$ dimensions must be compatible: $\#$ columns in $A=\#$ elements in x

if A is partitioned as $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$ a_{1} a_1 a_2 \cdots a_n], then

$$
Ax = a_1x_1 + a_2x_2 + \cdots + a_nx_n
$$

- \bullet Ax is a linear combination of the column vectors of A
- $\bullet\,$ the coefficients are the entries of x

Product with standard unit vectors

post-multiply with ^a column vector

$$
Ae_k = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} a_{1k} \\ a_{2k} \\ \vdots \\ a_{mk} \end{bmatrix} = \text{ the } k\text{th column of } A
$$

pre-multiply with ^a row vector

$$
e_k^T A = \begin{bmatrix} 0 & 0 & \cdots & 1 & \cdots & 0 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}
$$

=
$$
\begin{bmatrix} a_{k1} & a_{k2} & \cdots & a_{kn} \end{bmatrix} = \text{the } k \text{th row of } A
$$

Trace

Definition:

trace of a square matrix A is the sum of the diagonal entries in A

$$
\mathbf{tr}(A)=a_{11}+a_{22}+\cdots+a_{nn}
$$

example:

$$
A = \begin{bmatrix} 2 & 1 & 4 \\ 0 & -1 & 5 \\ 3 & 4 & 6 \end{bmatrix}
$$

trace of A is $2-1+6=7$

properties $\textcolor{red}{\otimes}$

- • $\bullet\,\, \mathbf{tr}(A^T) = \mathbf{tr}(A)$
- $tr(\alpha A + B) = \alpha tr(A) + tr(B)$
- $tr(AB) = tr(BA)$

Inverse of matrices

Definition:

a *square* matrix A is called **invertible** or **nonsingular** if there exists B s.t.

$$
AB = BA = I
$$

- B is called an inverse of A
- $\bullet\,$ it is also true that B is invertible and A is an inverse of B
- if no such B can be found A is said to be **singular**

assume A is invertible

- $\bullet\,$ an inverse of A is unique
- the inverse of A is denoted by A^{-1}

assume A,B are invertible

Facts \textcircledast

- $(\alpha A)^{-1} = \alpha^{-1} A^{-1}$ for nonzero α
- • \bullet A^T is also invertible and $(A^T)^{-1} = (A^{-1})^T$
- AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$

•
$$
(A + B)^{-1} \neq A^{-1} + B^{-1}
$$

Inverse of 2×2 matrices

the matrix

$$
A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}
$$

is invertible if and only if

$$
ad - bc \neq 0
$$

and its inverse is ^given by

$$
A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}
$$

example:

$$
A = \begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix}, \quad A^{-1} = \frac{1}{7} \begin{bmatrix} 3 & -1 \\ 1 & 2 \end{bmatrix}
$$

Elementary matrices

Definition: a matrix obtained by performing a *single* row operation on the identity matrix I_n is called an **elementary** matrix

examples:

add k times the first row to the third row of I_3

multiply a nonzero k with the second row of I_2

 $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ interchange the second and the third rows of I_3

an elementary matrix is often denoted by E

Inverse operations

row operations on E that produces I and vice versa

$I \rightarrow E$	$E \rightarrow I$
add k times row i to row j	add $-k$ times row i to row j
multiply row i by $k \neq 0$	multiply row i by $1/k$
interchange row i and j	interchange row i and j
$E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ k & 0 & 1 \end{bmatrix} \implies \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -k & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ k & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ \n	
$E = \begin{bmatrix} 1 & 0 \\ 0 & k \end{bmatrix} \implies \begin{bmatrix} 1 & 0 \\ 0 & 1/k \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & k \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ \n	
$E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \implies \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ \n	

Facts

- every elementary matrix is invertible
- the inverse is also an elementary matrix

from the examples in page 2-23

$$
E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ k & 0 & 1 \end{bmatrix} \implies E^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -k & 0 & 1 \end{bmatrix}
$$

$$
E = \begin{bmatrix} 1 & 0 \\ 0 & k \end{bmatrix} \implies E^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1/k \end{bmatrix}
$$

$$
E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \implies E^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}
$$

Row operations by matrix multiplication

assume A is $m \times n$ and E is obtained by performing a row operation on I_m

 $EA=$ the matrix obtained by performing this same row operation on A

example:

$$
A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & -1 \\ 1 & 1 & 0 \end{bmatrix}
$$

• add -2 times the third row to the second row of A

$$
E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \quad EA = \begin{bmatrix} 1 & 2 & 3 \\ -2 & -1 & -1 \\ 1 & 1 & 0 \end{bmatrix}
$$

 $\bullet\,$ multiply 2 with the first row of A

$$
E = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad EA = \begin{bmatrix} 2 & 4 & 6 \\ 0 & 1 & -1 \\ 1 & 1 & 0 \end{bmatrix}
$$

 $\bullet\,$ interchange the first and the third rows of A

$$
E = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \quad EA = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & -1 \\ 1 & 2 & 3 \end{bmatrix}
$$

Inverse via row operations

assume A is invertible

 \bullet $\ A$ is reduced to I by a finite sequence of row operations

$$
E_1, E_2, \ldots, E_k
$$

such that

$$
E_k\cdots E_2E_1A=I
$$

- \bullet the reduced echelon form of A is I
- $\bullet\,$ the inverse of A is therefore given by the product of elementary matrices

$$
A^{-1} = E_k \cdots E_2 E_1
$$

example: write the augmented matrix $\begin{bmatrix} A & | & I \end{bmatrix}$

and apply row operations until the left side is reduced to I

$$
R_3/(-2) \rightarrow R_3 \qquad \begin{array}{c|cccc} & 1 & 2 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & -2 & 0 & 0 \\ 0 & 1 & 0 & \frac{3}{2} & -\frac{5}{2} & -\frac{1}{2} \\ & & 1 & 2 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & \frac{3}{2} & -\frac{5}{2} & -\frac{1}{2} \\ & & 0 & 0 & 1 & 1 & -2 & 0 \end{array}
$$

$$
-2R_2 + R_1 \rightarrow R_1 \qquad \begin{array}{c|cccc} & 1 & 0 & 1 & -3 & 6 & 1 \\ 0 & 1 & 0 & \frac{3}{2} & -\frac{5}{2} & -\frac{1}{2} \\ & & 0 & 0 & 1 & 1 & -2 & 0 \\ & & & 1 & 0 & 0 & -4 & 8 & 1 \\ -R_3 + R_1 \rightarrow R_1 \qquad & 0 & 1 & 0 & \frac{3}{2} & -\frac{5}{2} & -\frac{1}{2} \\ & & & 0 & 0 & 1 & 1 & -2 & 0 \end{array}
$$

 $\begin{bmatrix} -4 & 8 & 1 \\ \frac{3}{2} & -\frac{5}{2} & -\frac{1}{2} \\ 1 & -2 & 0 \end{bmatrix}$

the inverse of A is

Vectors and Matrices 2-29

Invertible matrices

- $\textcolor{blue}{\textcircledast}$ Theorem: for a square matrix A , the following statements are equivalent
- 1. A is invertible
- 2. $Ax = 0$ has only the trivial solution $(x = 0)$
- 3. the reduced echelon form of A is I
- 4. A is expressible as a product of elementary matrices

Inverse of special matrices

diagonal matrix

$$
A = \begin{bmatrix} a_1 & 0 & \cdots & 0 \\ 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & a_n \end{bmatrix}
$$

^a diagonal matrix is invertible iff the diagonal entries are all nonzero

$$
a_{ii} \neq 0, \quad i = 1, 2, \dots, n
$$

the inverse of A is given by

$$
A^{-1} = \begin{bmatrix} 1/a_1 & 0 & \cdots & 0 \\ 0 & 1/a_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 1/a_n \end{bmatrix}
$$

the diagonal entries in A^{-1} are the inverse of the diagonal entries in A

Vectors and Matrices 2-31

triangular matrix:

upper triangular lower triangular $A =$ $\sqrt{}$ $\begin{array}{c} \hline \end{array}$ $\begin{matrix} a_{11} & a_{12} & \cdots & a_{1n} \end{matrix}$ $\begin{matrix}0 & a_{22} & \cdots & a_{2n} \end{matrix}$
: $\begin{matrix} \vdots & \ddots & \end{matrix}$ $\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix} \quad A = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$ $a_{ij} = 0$ for $i \geq j$ and $a_{ij} = 0$ for $i \leq j$

^a triangular matrix is invertible iff the diagonal entries are all nonzero

$$
a_{ii} \neq 0, \quad \forall i = 1, 2, \dots, n
$$

more is true ...

- product of lower (upper) triangular matrices is lower (upper) triangular
- $\bullet\,$ the inverse of a lower (upper) triangular matrix is lower (upper) triangular

symmetric matrix: $A = A^T$

✎

• \bullet for any square matrix A , AA^T and A^TA are always symmetric

- if A is symmetric and invertible, then A^{-1} is symmetric
- \bullet if A is invertible, then AA^T and A^TA are also invertible

Determinants

the determinant is a *scalar value* associated with a square matrix A

commonly denoted by $\det(A)$ or $|A|$

determinants of 2×2 matrices:

$$
\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc
$$

determinants of 3×3 matrices: let $A=\{a_{ij}\}$

$$
\det A = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}
$$

$$
-(a_{31}a_{22}a_{13} + a_{32}a_{23}a_{11} + a_{33}a_{21}a_{12})
$$

for ^a square matrix of any order, it can be computed by

- cofactor expansion
- performing elementray row operations

Minor and Cofactor

Minor of entry a_{ij} : denoted by M_{ij}

 $\bullet\,$ the determinant of the resulting submatrix after deleting the i th row and j th column of A

Cofactor of entry a_{ij} : denoted by C_{ij}

$$
\bullet \ \ C_{ij} = (-1)^{(i+j)} M_{ij}
$$

example:

$$
A = \begin{bmatrix} 3 & 1 & -2 \\ 5 & 0 & 2 \\ 1 & -1 & 2 \end{bmatrix}, \quad M_{23} = \begin{vmatrix} 3 & 1 \\ 1 & -1 \end{vmatrix} = -4, \quad C_{23} = (-1)^{(2+3)}M_{23} = 4
$$

Determinants by Cofactor Expansion

Theorem: the determinant of an $n \times n$ -matrix A is given by

$$
\det(A) = a_{1j}C_{1j} + a_{2j}C_{2j} + \dots + a_{nj}C_{nj}
$$

and

$$
\det(A) = a_{i1}C_{i1} + a_{i2}C_{i2} + \cdots + a_{in}C_{in}
$$

regardless of which row or column of A is chosen

example: pick the first row to compute $\det(A)$

$$
A = \begin{bmatrix} 3 & 1 & -2 \\ 5 & 0 & 2 \\ 1 & -1 & 2 \end{bmatrix}, \quad \det(A) = a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13}
$$

\n
$$
\det(A) = 3(-1)^2 \begin{vmatrix} 0 & 2 \\ -1 & 2 \end{vmatrix} + 1(-1)^3 \begin{vmatrix} 5 & 2 \\ 1 & 2 \end{vmatrix} - 2(-1)^4 \begin{vmatrix} 5 & 0 \\ 1 & -1 \end{vmatrix}
$$

\n
$$
= 3(1)(2) + (-1)(8) - 2(1)(-5) = 8
$$

Basic properties of determinants

 $\mathscr{\mathscr{B}}$ let A,B be any square matrices

- det(A) = det(A^T $^{T}) \$
- if A has a row of zeros or a column of zeros, then $\det(A) = 0$
- det $(A + B) \neq \det(A) + \det(B)$!

determinants of special matrices:

 $\bullet\,$ the determinant of a diagonal or triangular matrix is given by the product of the diagonal entries

• det $(I)=1$

(these properties can be proved from the def. of cofactor expansion)

✌ another basic properties; suppose the following is true

- \bullet A and B are equal except for the entries in their k th row (column)
- C is defined as that matrix identical to A and B except that its k th row (column) is the sum of the k th rows (columns) of A and B

then we have

$$
\det(C) = \det(A) + \det(B)
$$

example:

$$
A = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 1 \\ 1 & 2 & -1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 1 \\ 3 & 0 & 2 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 1 \\ 4 & 2 & 1 \end{bmatrix}
$$

$$
det(A) = 0, \quad det(B) = -1, \quad det(C) = -1
$$

Determinants under row operations

 $\bullet\,$ multiply k to a row or a column

 $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$

 $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$

$$
\begin{vmatrix} ka_{11} & ka_{12} & ka_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{vmatrix} = k \begin{vmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{vmatrix}
$$

• interchange between two rows or two columns

$$
\begin{array}{cc|c} a_{21} & a_{22} & a_{23} \ a_{11} & a_{12} & a_{13} \ a_{31} & a_{32} & a_{33} \end{array} = - \begin{array}{ccc|c} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{array}
$$

 \bullet add k times the i th row (column) to the j th row (column)

$$
\begin{array}{ccc}\na_{11} + ka_{21} & a_{12} + ka_{22} & a_{13} + ka_{23} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}\n\end{array}\n=\n\begin{array}{ccc}\na_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}\n\end{array}
$$

 $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ (the proof of determinants under row operations is left as an exercise)

example: B is obtained by performing the following operations on A

$$
R_2 + 3R_1 \rightarrow R_2, \quad R_3 \leftrightarrow R_1, \quad -4R_1 \rightarrow R_1
$$

$$
A = \begin{bmatrix} 2 & 3 & -2 \\ 3 & 1 & 0 \\ -3 & -3 & 3 \end{bmatrix} \implies \det(B) = (-4) \cdot (-1) \cdot 1 \cdot \det(A)
$$

the changes of det. <code>under</code> elementary operations lead to obvious facts $\textcircled*$

•
$$
\det(\alpha A) = \alpha^n \det(A)
$$
, $\alpha \neq 0$

 \bullet If A has two rows (columns) that are equal, then $\det(A)=0$

Determinants of elementary matrices

let B be obtained by performing a row operation on A then

$$
B = EA \text{ and } \det(B) = \det(EA)
$$

\n
$$
E = \begin{bmatrix} k & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \det(B) = k \det(A) \quad (\det(E) = k)
$$

\n
$$
E = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \det(B) = -\det(A) \quad (\det(E) = -1)
$$

\n
$$
E = \begin{bmatrix} 1 & k & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \det(B) = \det(A) \quad (\det(E) = 1)
$$

conclusion: $\det(EA) = \det(E) \det(A)$

Vectors and Matrices 2-42

Determinants of product and inverse

 $\mathscr{\mathscr{E}}$ let A,B be $n\times n$ matrices

- \bullet A is invertible if and only if $\det(A) \neq 0$
- if A is invertible, then $\det(A^{-1}) = 1/\det(A)$
- det $(AB) = det(A) det(B)$

Adjugate formula

the adjugate of A is the transpose of the matrix of cofactors from A

$$
adj(A) = \begin{bmatrix} C_{11} & C_{21} & \cdots & C_{n1} \\ C_{12} & C_{22} & \cdots & C_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ C_{1n} & C_{2n} & \cdots & C_{nn} \end{bmatrix}
$$

if A is invertible then

$$
A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A)
$$

Proof.

• the cofactor expansion using the cofactors from different row is zero

$$
a_{i1}C_{k1} + a_{i2}C_{k2} + \ldots + a_{in}C_{kn} = 0, \quad \text{for } i \neq k
$$

•
$$
A \text{adj}(A) = \det(A) \cdot I
$$

Linear equation in matrix form

the linear system of m equations in n variables

$$
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1
$$

\n
$$
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2
$$

\n
$$
\vdots = \vdots
$$

\n
$$
a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m
$$

in matrix form: $Ax=b$ where

$$
A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}
$$

Applications

a set of linear equations $Ax = b$ (with $A \in \mathbf{R}^{m \times n}$) is

• square if
$$
m = n
$$
 (A is square)

$$
\begin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_1 \ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \ b_2 \end{bmatrix}
$$

• underdetermined if $m < n$ $n \qquad (A$

$$
\begin{bmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \end{bmatrix} \begin{bmatrix} x_1 \ x_2 \ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \ b_2 \end{bmatrix}
$$

• overdetermined if $m > n$

$$
n \qquad (A \text{ is skinny})
$$

 $(A \text{ is fat})$

$$
\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}
$$

Cramer's rule

consider a linear system $Ax = b$ when A is **square**

if A is invertible then the solution is unique and given by

$$
x = A^{-1}b
$$

each component of x can be calculated by using the Cramer's rule

Cramer's rule

$$
x_1 = \frac{|A_1|}{|A|}, \quad x_2 = \frac{|A_2|}{|A|}, \quad \dots \quad, \quad x_n = \frac{|A_n|}{|A|}
$$

where A_j is the matrix obtained by replacing b in the j th column of A

(its proof is left as an exercise)

example:

$$
A = \begin{bmatrix} 3 & 1 & -2 \\ 5 & 0 & 2 \\ 1 & -1 & 2 \end{bmatrix}, \quad b = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}
$$

since $\det(A) = 8$, A is invertible and the solution is

$$
x = A^{-1}b = \frac{1}{8} \begin{bmatrix} 2 & 0 & 2 \\ -8 & 8 & -16 \\ -5 & 4 & -5 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ -5 \\ -2 \end{bmatrix}
$$

using Cramer's rule ^gives

$$
x_1 = \frac{1}{8} \begin{vmatrix} 2 & 1 & -2 \\ 1 & 0 & 2 \\ 2 & -1 & 2 \end{vmatrix}, \quad x_2 = \frac{1}{8} \begin{vmatrix} 3 & 2 & -2 \\ 5 & 1 & 2 \\ 1 & 2 & 2 \end{vmatrix}, \quad x_3 = \frac{1}{8} \begin{vmatrix} 3 & 1 & 2 \\ 5 & 0 & 1 \\ 1 & -1 & 2 \end{vmatrix}
$$

which ^yields

$$
x_1 = 1
$$
, $x_2 = -5$, $x_3 = -2$

MATLAB commands

some commonly used commands for working with matrices

- $\bullet\,$ eye(n) produces an identity matrix of size n
- $\bullet\,$ ze ${\tt ros}$ (m,n) creates a zero matrix of size $m\times n$
- \bullet inv(A) finds the inverse of A
- \bullet det(A) finds the determinant of A
- $\bullet\,$ trace(A) finds the trace of A

to solve $Ax=b$ when A is square use

• $A \backslash b$

(compute $A^{-1}b$)

References

Chapter 1-2 in

H. Anton, Elementary Linear Algebra, 10th edition, Wiley, ²⁰¹⁰

Lecture note on

Matrices and Vectors, EE103, L. Vandenberghe, UCLA