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12. Series

• limit and convergence

• Taylor series

• Maclaurin series

• Laurent series
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Convergence of sequences

an infinite sequence
z1, z2, . . . , zn, . . .

of complex numbers has a limit z, denoted by

lim
n→∞

zn = z

if for each ε > 0, there exists a positive integer N such that

|zn − z| < ε whenver n > N

(zn becomes arbitrarily close to z as n increases)

• if a limit exists it must be unique

• when the limit exists, the sequence is said to converge to z

• if the sequence has no limit, it diverges
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Limit of complex-valued sequences

suppose that zn = xn + jyn and z = x+ jy; then

lim
n→∞

zn = z

if and only if
lim
n→∞

xn = x and lim
n→∞

yn = y

example: zn = 1
n3

+ j for n = 1, 2, . . .

lim
n→

zn = lim
n→∞

1

n3
+ j lim

n→∞
1 = 0 + j = j

moreover, we can see that for each ε > 0

|zn − j| =
1

n3
whenver n >

1

ε1/3
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Convergence of series

an infinite series ∞∑
k=1

zk = z1 + z2 + · · ·+ zk + · · ·

of complex numbers converges to the sum S if the sequence

Sn =

n∑
k=1

zk = z1 + z2 + · · ·+ zn (n = 1, 2, . . .)

of partial sums converges to S; then we can write

∞∑
k=1

zk = S if lim
n→∞

Sn = S

• a series can have at most one sum

• when a series does not converge, we say it diverges
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Limit of complex-valued series

suppose that zn = xn + jyn and S = X + jY ; then

∞∑
n=1

zk = S

if and only if
∞∑
n=1

xn = X and
∞∑
n=1

yn = Y

Facts:

• if a series converges, the nth term converges to zero as n→∞

• the absolute convergence of a series implies the convergence of that series

∞∑
n=1

|zn| converges =⇒
∞∑
n=1

zn converges
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example: the geometric series
∑∞
k=0 z

k

the nth partial sum of the geometric series is given by

Sn =

n∑
k=0

zk = 1 + z + z2 + · · ·+ zn−1 + zn

multiply both sides by 1− z

(1− z)Sn = 1− z + z − z2 + · · ·+ zn−1 − zn + zn − zn+1 = 1− zn+1

if |z| < 1 then zn+1 → 0 and Sn →
1

1− z
as n→∞

the limit of the partial sum exists, and hence

∞∑
k=0

zk =
1

1− z
, |z| < 1
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Taylor series

Taylor’s theorem: suppose f is analytic throughout a disk |z − z0| < r0 then
f(z) has the power series representation

f(z) = f(z0) + f ′(z0)(z − z0) +
f ′′(z0)(z − z0)2

2!
+ · · ·+ f (n)(z0)(z − z0)n

n!
+ · · ·

for each z inside the disk, i.e., |z − z0| < r0

meaning: the power series converges to f(z) when |z − z0| < r0

f(z) =

∞∑
n=0

f (n)(z0)(z − z0)n

n!

the expansion of f(z) is called the Taylor series of f about the point z0

Series 12-7



Maclaurin series

when z0 = 0, the Taylor series becomes

f(z) =

∞∑
n=0

f (n)(0)zn

n!
(|z| < r0)

and it is called a Maclaurin series

example: f(z) = ez

since ez is entire, it has a Maclaurin representation that is valid for all z

f (n) = ez, n = 0, 1, 2, . . . , =⇒ f (n)(0) = 1 for all n

and it follows that

ez =

∞∑
n=0

zn

n!
(|z| <∞)
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example: Maclaurin representation of f(z) = 1/(1− z)

f(z) is analytic throughout the open disk |z| < 1 and its derivatives are

f (n)(z) =
n!

(1− z)n+1
=⇒ f (n)(0) = n! (n = 0, 1, 2, . . .)

therefore, the Maclaurin series is given by

1

1− z
= 1 + z + z2 + · · ·+ zn + · · · =

∞∑
n=0

zn (|z| < 1)

it is simply a geometric series where z is the common ratio of adjacent terms

agree with the result on page 12-6

Series 12-9



example: Maclaurin representation of f(z) = sin z

we write sin z =
ejz − e−jz

j2
and note that sin z is entire

then we can use the Maclaurin series of ez for expanding e±jz

sin z =
1

j2

( ∞∑
n=0

(jz)n

n!
−
∞∑
n=0

(−jz)n

n!

)
=

1

j2

∞∑
n=0

[1− (−1)n]j
nzn

n!

but (1− (−1)n) = 0 when n is even and 2 otherwise, so we replace n by 2n+ 1

sin z =
1

j2

∞∑
n=0

2j2n+1z2n+1

(2n+ 1)!
=

∞∑
n=0

(−1)n z2n+1

(2n+ 1)!
(|z| <∞)

= z − z
3

3!
+
z5

5!
− z

7

7!
+ · · ·

the series contains only odd powers of z
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Maclaurin series expansion

for |z| <∞

ez =
∞∑
n=0

zn

n!
= 1 + z +

z2

2!
+
z3

3!
+ · · ·

sin z =
∞∑
n=0

(−1)n
z(2n+1)

(2n+ 1)!
= z −

z3

3!
+
z5

5!
−
z7

7!
+ · · ·

cos z =
∞∑
n=0

(−1)n
z(2n)

(2n)!
= 1−

z2

2!
+
z4

4!
−
z6

6!
+ · · ·

sinh z =
∞∑
n=0

z(2n+1)

(2n+ 1)!
= z +

z3

3!
+
z5

5!
+
z7

7!
+ · · ·

cosh z =
∞∑
n=0

z(2n)

(2n)!
= 1 +

z2

2!
+
z4

4!
+
z6

6!
+ · · ·
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Proof of Taylor’s theorem

assumption: f is analytic on |z| < r0

proof for special case: z0 = 0; f(z) =

∞∑
n=0

f (n)(0)zn

n!
(|z| < r0)

• C1 is a positively oriented circle |z| = r1

• z is any point with |z| = r and r < r1 < r0

• s is a point on contour C1

• f is analytic inside and on the circle C1

we will expand f(z) from the Cauchy integral formula

f(z) =
1

j2π

∫
C1

f(s)

s− z
ds
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expand the integral term

• rewrite 1/(s− z) as
1

s− z
=

1

s
·

1

1− (z/s)

• for any z 6= 1,

1

1− z
=

zN

1− z
+

N−1∑
n=0

zn (from long division)

• then we can write
1

s− z
=

zN

sN(s− z)
+

N−1∑
n=0

zn

sn+1

• multiply by f(s) and integrate with respect to s along C1∫
C1

f(s)

s− z
ds = zN

∫
C1

f(s)

(s− z)sN
ds+

N−1∑
n=0

zn
∫
C1

f(s)

sn+1
ds
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characterize the remainder term

• the second term on RHS can be computed from the Cauchy integral formula

∫
C1

f(s)

sn+1
ds = j2π

f (n)(0)

n!
(n = 0, 1, 2, . . .)

• from f(z) = 1
j2π

∫
C1

f(s)
s−zds, we obtain

f(z) =
zN

j2π

∫
C1

f(s)

sN(s− z)
ds︸ ︷︷ ︸

RN(z)

+

N−1∑
n=0

f (n)(0)zn

n!

• we obtain Taylor’s representation if we can show that limN→∞RN(z) = 0
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the remainder term goes to zero as n→∞

• |s− z| ≥ ||s| − |z|| = r1 − r; hence 1/(s− z) ≤ 1/(r1 − r)

• if |f(s)| ≤M on C1 then

|RN(z)| =
∣∣∣∣ zNj2π

∣∣∣∣ ∣∣∣∣∫
C1

f(s)

sN(s− z)
ds

∣∣∣∣ ≤ rN

2π
· M

(r1 − r)rN1
· length of C1︸ ︷︷ ︸

2πr1

=

(
r

r1

)N
Mr1

(r1 − r)
→ 0, as N →∞ because r/r1 < 1

• we finished the proof for the special case of Taylor’s theorem; when z0 = 0
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generalize the result to z0 6= 0

assumption: f is analytic on |z − z0| < r0

• f(z + z0) must be analytic when |(z + z0)− z0| < r0 (composite function)

• hence, g(z) = f(z + z0) is analytic on |z| < r0, so its Maclaurin series is

g(z) =

∞∑
n=0

g(n)(0)zn

n!
(|z| < r0)

• this is equivalent to

f(z + z0) =

∞∑
n=0

f (n)(z0)z
n

n!
(|z| < r0)

• replace z by z − z0, we obtain the Taylor’s series
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example: expand f(z) =
1 + 2z

z3 + z2
to a series involving powers of z

we cannot find a Maclaurin series for f since it is not analytic at z = 0

however, for |z| 6= 0, we can write

f(z) =
1

z2
· 1 + 2z

1 + z
=

1

z2
·
(
2− 1

1 + z

)
=

1

z2
·
(
2− (1− z + z2 − z3 + z4 − · · · )

)
(|z| < 1)

=
1

z2
(1 + z − z2 + z3 − z4 + · · · ) (0 < |z| < 1)

=
1

z2
− 1

z
+ z − z2 + · · ·

the expansion of f contains both negative and positive powers of z
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remarks:

• if f fails to be analytic at a point z0, we cannot apply Taylor’s theorem there

• example in page 12-17 shows that however, it is possible to find a series for
f(z) involving both positive and negative powers of (z − z0)

f(z) =
1 + 2z

z3 + z2
=

1

z2
− 1

z
+ z − z2 + · · ·

• such a representation is known as Laurent series, which includes the Taylor
series as a special case

• with the Laurent series, we can expand f about a singular point
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Laurent series

Theorem: if all of the following assumptions hold

1. D is an annular domain r1 < |z − z0| < r2

2. C is any positively oriented simple closed contour around z0 and lies inside D

3. f is analytic throughout D

then f has the series representation; called the Laurent series

f(z) =

∞∑
n=0

an(z − z0)n +
∞∑
n=1

bn
(z − z0)n

where an =
1

j2π

∫
C

f(z)

(z − z0)n+1
dz, (n = 0, 1, . . .)

bn =
1

j2π

∫
C

f(z)

(z − z0)−n+1
dz, (n = 1, 2, . . .)
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remarks:

• we cannot apply the Cauchy integral formula to compute the coefficient an

an =
1

j2π

∫
C

f(z)

(z − z0)n+1
dz

because f is NOT analytic in C

• if the annular domain is specified, a Laurent series of f(z) about z0 is unique

• the annulus D is the region of convergence for the obtained Laurent series

• the coeff an and bn given by the formula are generally difficult to compute

• so, we use another way such as computing a partial fraction of f and use

1

1− z
= 1 + z + z2 + z3 + · · · |z| < 1

to expand the partial fraction as an infinite series
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example: find power series representation of f(z) =
− 1

(z − 1)(z − 2)
in

D1 : |z| < 1, D2 : 1 < |z| < 2, D3 : 2 < |z| <∞
D4 : 0 < |z − 1| < 1, D5 : 1 < |z − 1|, D6 : 0 < |z − 2| < 1, D7 : 1 < |z − 2|

f is not analytic at z = 1 and z − 2
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• domain D1: |z| < 1 (|z| < 1 and |z/2| < 1 for all z ∈ D1 )

f(z) = f(z) =
−1
1− z

+
1/2

1− (z/2)

= −
∞∑
n=0

zn + (1/2)

∞∑
n=0

(z
2

)n
=

∞∑
n=0

(2−n−1 − 1)zn, |z| < 1

the representation is a Maclaurin series

• domain D2: 1 < |z| < 2 (|1/z| < 1 and |z/2| < 1 for all z ∈ D2)

f(z) =
1

z
· 1

1− (1/z)
+

1

2
· 1

1− (z/2)

=

∞∑
n=0

1

zn+1
+

∞∑
n=0

zn

2n+1
=

∞∑
n=1

1

zn
+

∞∑
n=0

zn

2n+1
, (1 < |z| < 2)

this is the Laurent series for f in D2 where an = 1/2n+1 and bn = 1
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• domain D3: 2 < |z| <∞ ( |2/z| < 1 and so |1/z| < 1 for all z ∈ D3)

f(z) =
1

z
· 1

1− (1/z)
− 1

z
· 1

1− (2/z)

=

∞∑
n=0

1

zn+1
−
∞∑
n=0

2n

zn+1
=

∞∑
n=1

(1− 2n−1)

zn
, (2 < |z| <∞)

this is the Laurent series for f in D3 where an = 0 and bn = 1− 2n−1

• domain D4: 0 < |z − 1| < 1

f(z) =
1

z − 1
+

1

1− (z − 1)

=
1

z − 1
+

∞∑
n=0

(z − 1)n (0 < |z − 1| < 1)

this is the Laurent series for f in D4 where b1 = 1, bk = 0, k ≥ 2 and an = 1
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• domain D5: 1 < |z − 1| ( 1/|z − 1| < 1 for all z ∈ D5)

f(z) =
−1

(z − 1)(z − 1− 1)
=

−1
(z − 1)2

· 1

1− 1/(z − 1)

= −
∞∑
n=0

1

(z − 1)n+2
, (1 < |z − 1| <∞)

this is the Laurent series for f in D5 where an = 0, b1 = 0, bn = −1, n ≥ 2

• domain D6: 0 < |z − 2| < 1

f(z) =
1

z − 1
− 1

z − 2
=

1

(1 + z − 2)
− 1

z − 2

= − 1

z − 2
+

∞∑
n=0

(−1)n(z − 2)n (0 < |z − 2| < 1)

this is the Laurent series for f in D4 with b1 = −1, bn = 0, n ≥ 2, an = (−1)n
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• domain D7: 1 < |z − 2| ( 1/|z − 2| < 1 for all z ∈ D7)

f(z) =
−1

(z − 2 + 1)(z − 2)
=

−1
(z − 2)2

· 1

1 + 1/(z − 2)

=

∞∑
n=0

(−1)n+1

(z + 2)n+2
, (1 < |z − 2| <∞)

the Laurent series for f in D7 where an = 0, b1 = 0, bn = (−1)n+1, n ≥ 2

remark: we can find related integrals from the coefficients of the Laurent series

for example, let C be a simple positive closed contour lying in D7∫
C

−1
(z−1)(z−2) dz =

∫
C
f(z)dz = j2πb1 = 0∫

C
−1

(z−1)(z−2)2 dz =
∫
C

f(z)
(z−2)dz = j2πa0 = 0∫

C
−1

(z−1) dz =
∫
C
f(z)(z − 2)dz = j2πb2 = −j2π
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example: find a Laurent series for f(z) =
ez

(z + 1)2
in a certain domain

for any z, since ez has a Maclaurin series about 0, we can write

ez

(z + 1)2
=

ez+1

e(z + 1)2
=

1

e

∞∑
n=0

(z + 1)n

n!(z + 1)2

=
1

e

∞∑
n=0

(z + 1)n−2

n!

=
1

e

[ ∞∑
n=0

(z + 1)n

(n+ 2)!
+

1

z + 1
+

1

(z + 1)2

]
, (0 < |z + 1| <∞)

this is the Laurent series for f in the domain 0 < |z + 1| <∞ where

b1 = 1/e, b2 = 1/e, bk = 0,∀k ≥ 3, an =
1/e

(n+ 2)!
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