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12. Series

e limit and convergence
e Taylor series
e Maclaurin series

e Laurent series
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Convergence of sequences

an infinite sequence
K1g Ry e ooy Ryysyees
of complex numbers has a limit z, denoted by

lim z, =z
n—oo
if for each € > 0, there exists a positive integer IV such that

|z, — 2| <€ whenver n >N

(z,, becomes arbitrarily close to z as n increases)

e if a limit exists it must be unique
e when the limit exists, the sequence is said to converge to z

e if the sequence has no limit, it diverges
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Limit of complex-valued sequences
suppose that z, = x,, + jy, and z = x + jy; then

lim z, =z
n—oo

if and only if

lim z,, =2 and lim y, =1y
n—oo n—oo

example: zn:%—kjforn:lﬂ,...

: : 1 - .
limz, = lm —4+j5 lim 1=0+4+75=

moreover, we can see that for each ¢ > 0

. 1 1
|z, — J| = 3 whenver n > 173
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Convergence of series

an infinite series

0
sz:Z1+Z2+"'+Zk+"°
k=1

of complex numbers converges to the sum S if the sequence

n

Sn:sz:zl+z2—|—-~-—|—zn (n=1,2,...

k=1

of partial sums converges to S; then we can write

n—oo

Y =5 if lim 8,=S5
k=1

® a series can have at most one sum

e when a series does not converge, we say it diverges

Series
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Limit of complex-valued series

suppose that z,, = x,, + jy, and S = X + jY’; then

Z Rl — S
n=1
if and only if

iazn:X and iyn:Y
n=1 n=1

Facts:

e if a series converges, the nth term converges to zero as n — oo

e the absolute convergence of a series implies the convergence of that series

©. @) (©.@)
E |2,| converges — E Zn CONVerges
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example: the geometric series > - 2"

the nth partial sum of the geometric series is given by

n
Sn:sz: l4+z+224- 420
k=0
multiply both sides by 1 — 2

(1_2)Sn:1—Z+Z—22+---+z”_1—z”+z”—z”+1:1—z”+1

1

— 2

if |2] <1 then 2™ — 0and S, — as m — 00

the limit of the partial sum exists, and hence

1
k
= 1
E = 2| <
k=0
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Taylor series

Taylor’s theorem: suppose f is analytic throughout a disk |z — zy| < rg then

f(z) has the power series representation

£ (20) (2 — 20)* £ (20)(z — 20)" N

F(2) = f(20) + f'(20)(z = 20) + =2 - o

for each z inside the disk, 7.e.,

z— 29| < 1o

meaning: the power series converges to f(z) when |z — zg| < 7g

f(z) = i f (20) (2 — 20)" r y
— n! \ |

04
\\N 7
Somm———

the expansion of f(z) is called the Taylor series of f about the point 2
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Maclaurin series

when zg = 0, the Taylor series becomes

% £(n) ()27
=3 L0 <)

n!
n=0

and it is called a Maclaurin series
example: f(z) = €?
since €7 is entire, it has a Maclaurin representation that is valid for all z

f(n>:6Z7 ’I’L:O,l,2,.,,, — f(n)(O):l for all n

and it follows that

(©.@) Zn
e = ZW (|z] < o0)
n=0
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example: Maclaurin representation of f(z) =1/(1 — z)

f(z) is analytic throughout the open disk |z| < 1 and its derivatives are

O =g = 0= (=012,

therefore, the Maclaurin series is given by

=l4z+22 442" =Y 2" (g < 1)

n=0

1 — 2z

it is simply a geometric series where z is the common ratio of adjacent terms

agree with the result on page 12-6
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example: Maclaurin representation of f(z) =sinz

ejz . e—jz
we write sin z = = and note that sin z is entire
J
then we can use the Maclaurin series of e* for expanding e*7?
1 (= (J2)" = (—j2)" 1 "
sinz = — - — 5 1= (=1)"
72 (Z n! Z n! jQZ[ (=1 n!

but (1 — (—1)™) = 0 when n is even and 2 otherwise, so we replace n by 2n + 1

1 o0 2j2n—i—122n—|—1 o0 ZQn—I—l

S jQ; (2n+1)! nz:%( S anr <o)
B 23 22 2

the series contains only odd powers of z
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Maclaurin series

for |z| < oo

Sin 2

COS 2

sinh 2z

cosh z

Series

expansion
B n=0 n!
00 (2n+1)
<
N ngo(_ ) (2n +1)!
0% (2n)
ya
— -1\
n;O( ) (277’)'
o Z(Zn—i—l)
- n=0 (2n+1)'

1 Z2 23
bbb
23 Z5 27
TR T
22 24 Z6
TR TR T
23 25 Z7
Frgr Ty
Z2 Z4 Z6
1
TR

! _+_ o« o

! + ..
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Proof of Taylor’'s theorem

assumption: f is analytic on |z| < rg

> F()(0) 2
proof for special case: zy = 0; f(z) = Z f (' )? (|z] < ro)
n!
n=0

___________
” ~
,/ ~

. e (U is a positively oriented circle |z| = rq

e z is any point with |z| =7 and r <71 < g

<
)

- -“~\
~
~
\\
\
A Y
=
—
(VN
4
’
’
’/
\/

e s is a point on contour C

e f is analytic inside and on the circle C}

’
’
PR
Scaa—=-""

we will expand f(z) from the Cauchy integral formula

fo) == [ I

 j2m cyS— %
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expand the integral term

. 1 1 1
e rewrite 1/(s — z) as — .
s—z s 1—(z/s)

e for any z # 1,

1 zN N Z n (f | divisi )
p— Z rom ion IvVISIONn
- g

e then we can write

N-1
1 2N 2"
e B
s—z sV(s—z) "

e multiply by f(s) and integrate with respect to s along C

1) dS:ZN/ (sfz d8+z 5n+1 ds
c, (85—

018—2
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characterize the remainder term

e the second term on RHS can be computed from the Cauchy integral formula

fs) o F0)

ds =
gn+l1 J n!

(n=20,1,2,...)
Cq

o from f(z /(s >ds we obtain

]27‘(‘ fC’

B 2N f(s) f(”)
fz) = J2m /01 sN(s — z2) dJ+ Z

Ry (2)

e we obtain Taylor's representation if we can show that limy ., Ry(2) =0
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___________
- ~

’ ~,

’ N,

N id
~o s
S~ -
]

the remainder term goes to zero as n — o©

o |s—z|>||ls|—|z|]|=r1—r;hence 1/(s—2) <1/(ry —r)

o if |[f(s)| < M on C then

/01 N{( : 2%

r\"  Mr
— (_> 1 0, as N — oo because r/r; <1
ri) (r1—7)

N N

z r M
< : - length of ('
— 27 (7“1—7“)7"{\7 N gv >

[Bn(2)] =

j2m

271ry

e we finished the proof for the special case of Taylor's theorem; when z5 =0
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generalize the result to 2y # 0

assumption: f is analytic on |z — zg| < 7g
e f(z+ zp) must be analytic when |(z + 2zp) — 20| <719  (composite function)

e hence, g(z) = f(z + zp) is analytic on |z| < rq, so its Maclaurin series is

(n)(0

239 (2] < 7o)

e this is equivalent to

= ™) (20)2"
Fletz) =3 LB )

n!
n=0
e replace z by z — 2z, we obtain the Taylor's series
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1+ 22
2

example: expand f(z) = to a series involving powers of z

23 4+ 2

we cannot find a Maclaurin series for f since it is not analytic at z =0

however, for |z| # 0, we can write

1 1422 1 1
p— . p— . 2 R
/(z) 22 14z 22 ( 1+ z)

1

:?-(2—(1—z—|—z2—23—|—z4—---)) (]2] < 1)
1

:?(1+z—z2+z3—24+---) (0< |2l <1)
11 ,
2?2z

the expansion of f contains both negative and positive powers of z
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remarks:

e if f fails to be analytic at a point 2z, we cannot apply Taylor's theorem there

e example in page 12-17 shows that however, it is possible to find a series for
f(z) involving both positive and negative powers of (z — z)

_z3+22_z2_;+z_z L

f(z)

e such a representation is known as Laurent series, which includes the Taylor
series as a special case

e with the Laurent series, we can expand f about a singular point
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Laurent series
Theorem: if all of the following assumptions hold

1. D is an annular domain ry < |z — zp| < o
2. Cis any positively oriented simple closed contour around zy and lies inside D

3. f is analytic throughout D

then f has the series representation; called the Laurent series

o0 o0 bn ‘y
z) = an(z —20)" +
fz) nz::O ( 0 nz::l (z — z)"
where a, = i /() dz, (n=0,1,...)
727 Jo (2 — zp)nH1
b, = f<z)_ dz, (n=1,2,...)

Series 12-19



remarks:

e we cannot apply the Cauchy integral formula to compute the coefficient a,,

1 f(2)
tn = g2 /C (z — zo)”ﬂdz

because f is NOT analytic in C

e if the annular domain is specified, a Laurent series of f(z) about 2 is unique
e the annulus D is the region of convergence for the obtained Laurent series
e the coeff a,, and b,, given by the formula are generally difficult to compute

e so, we use another way such as computing a partial fraction of f and use

=14+z2+2°+2°+-  |z]<1

1 — 2z

to expand the partial fraction as an infinite series
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—1
example: find power series representation of f(z) = -1 -2 in

D1 :|z] < 1, Dy:1 < 2| <2, D3 :2 < |z| < o0
Dy:0<|z—-1|<1, Ds:1<|z—1|, Dg:0<|z—=2|<1, D7;:1<]|z—2|

..............
/” DQ\\\\ \\\\
P ST \\‘
/
D1 y—4 b
‘\\ ]_ 2 /,]. l', 2 1 2
’
~ /’ ~,
____________________
D5 Dy
\\\\\\ ’——~~\ ’——-N\
Dy /" Dg 4
\ y \
\\~_1—’, 2 \\~}—’, 2 1 \\~?—’, 1 \‘—?—"

f is not analyticat z =1 and z — 2
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e domain D;: |z]| < 1 (|]z| < 1and |z/2| <1forall z€ Dy )

-1 1/2
_1—z+1—(z/2)

— N2y (g)n =Y et on, 2 <1

=0 n=0

the representation is a Maclaurin series

e domain Ds: 1 < |z] < 2 (|1/z] <1 and |z/2| < 1 for all z € D»)
1 1 1 1
&= T T 1=
| = 2" =1 = 2"
=2 amtlgm = et g (A<kl<?)
n=0 n=0 n=1 n=0

this is the Laurent series for f in Dy where a,, = 1/2""! and b, = 1
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e domain D3: 2 < |z] < 00 (12/z]| < 1andso |1/z| < 1 for all z € Dj3)

1 1 1 1
f<2>:2'1—(1/z)_2'1—(2/z)
=~ 1 >, on > (1 —2n1
:Zznﬂ_zznﬂzz( n )> (2 <|z] < o0)
n=0 n=0 n=1

this is the Laurent series for f in D3 where a,, =0 and b,, =1 — 2"~}

e domain Dy: 0 < |z —1| <1

1 1

LS e

! +§:(z—1)” 0<|z—1|<1)

z—1

this is the Laurent series for f in Dy where by = 1,0, =0,k > 2 and a,, = 1
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e domain Ds5: 1 < |z — 1| (1/|z—1| < 1 for all z € Ds)

—1 -1 1
(z—D(z—1-1) (z—1)2 1—-1/(z—1)

- 1
:—E — (1< |z—1] < o0)
(z = 1)
n=0

this is the Laurent series for f in D5 where a,, =0, by =0,b,, = —1,n > 2

e domain Dg: 0 < |2 —2| < 1

1 1 1 1

f(z):z—l_z—2:(1+z—2)_z—2

"z —2)" 0<]z—2| <1)

this is the Laurent series for f in D4 with by = —-1,b, =0,n > 2, a, = (—1)"
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e domain D;: 1 < |z — 2| (1/|z—2| <1 forall z € Dr)

-1 -1 1
(z—2+1(z-2) (=22 1+1/(z—2)

flz) =

n—|—1
_Zz+2n+2’ (1< ]z—-2| < )

the Laurent series for f in D7 where a,, =0, by = 0,b, = (—=1)""1, n > 2

remark: we can find related integrals from the coefficients of the Laurent series

for example, let C' be a simple positive closed contour lying in D7

Je = 1>z gdz = [ f( — jomb, = 0
Je (z—l)(z—2)2 dz = |, i(zQ))dZ = j2mag = 0
Jo oo 42 = [ f()(z-2)dz = j2mhy = —j2«
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ez

example: find a Laurent series for f(z) = EEE in a certain domain

for any z, since e* has a Maclaurin series about 0, we can write

oo

e B 6Z-I—l B 1 Z (Z T 1)n
(z4+1)2 e(z+1)2 e “—nl(z+1)?
I (2 1)n2
e — n!

(0 < |z+ 1] < o)

1 Z(z+1)” 1 1

e (n+2)!+z+1+(z+1)2 ’

n=0

this is the Laurent series for f in the domain 0 < |z + 1| < co where

1/e

blzl/e, b2:1/6, kaO,VkZ:g, an:(n+2)'
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