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6. Vector spaces

• definition

• linear independence

• basis and dimension

• coordinate and change of basis

• range space and null space

• rank and nullity

6-1



Vector space

a vector space or linear space (over R) consists of

• a set V

• a vector sum + : V × V → V

• a scalar multiplication : R× V → V

• a distinguished element 0 ∈ V

which satisfy a list of properties
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• x+ y ∈ V ∀x, y ∈ V (closed under addition)

• x+ y = y + x, ∀x, y ∈ V (+ is commutative)

• (x+ y) + z = x+ (y + z), ∀x, y, z ∈ V (+ is associative)

• 0 + x = x, ∀x ∈ V (0 is additive identity)

• ∀x ∈ V ∃(−x) ∈ V s.t. x+ (−x) = 0 (existence of additive inverse)

• αx ∈ V for any α ∈ R (closed under scalar multiplication)

• (αβ)x = α(βx), ∀α, β ∈ R ∀x ∈ V (scalar multiplication is associative)

• α(x+ y) = αx+ αy, ∀α ∈ R ∀x, y ∈ V (right distributive rule)

• (α+ β)x = αx+ αy, ∀α, β ∈ R ∀x ∈ V (left distributive rule)

• 1x = x, ∀x ∈ V (1 is multiplicative identity)
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notation

• (V ,R) denotes a vector space V over R

• an element in V is called a vector

Theorem: let u be a vector in V and k a scalar; then

• 0u = 0 (multiplication with zero gives the zero vector)

• k0 = 0 (multiplication with the zero vector gives the zero vector)

• (−1)u = −u (multiplication with −1 gives the additive inverse)

• if ku = 0, then k = 0 or u = 0
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roughly speaking, a vector space must satisfy the following operations

1. vector addition

x, y ∈ V ⇒ x+ y ∈ V

2. scalar multiplication

for any α ∈ R, x ∈ V ⇒ αx ∈ V

the second condition implies that a vector space contains the zero vector

0 ∈ V

in otherwords, if V is a vector space then 0 ∈ V

(but the converse is not true)
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examples: the following sets are vector spaces (over R)

• Rn

• {0}

• Rm×n

• Cm×n: set of m× n-complex matrices

• Pn: set of polynomials of degree ≤ n

Pn = {p(t) | p(t) = a0 + a1t+ · · ·+ ant
n}

• Sn: set of symmetric matrices of size n

• C(−∞,∞): set of real-valued continuous functions on (−∞,∞)

• Cn(−∞,∞): set of real-valued functions with continuous nth
derivatives on (−∞,∞)
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✎ check whether any of the following sets is a vector space (over R)

• {0, 1, 2, 3, . . .}

•

{[

1
2

]

,

[

−1
0

]

,

[

0
0

]}

•

{

x ∈ R2 | x =

[

x1

0

]

, x1 ∈ R

}

•
{

p(x) ∈ P2 | p(x) = a1x+ a2x
2 for some a1, a2 ∈ R

}
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Subspace

• a subspace of a vector space is a subset of a vector space which is
itself a vector space

• a subspace is closed under vector addition and scalar multiplication

examples:

• {0} is a subspace of Rn

• Rm×n is a subspace of Cm×n

•
{

x ∈ R2 | x1 = 0
}

is a subspace of R2

•
{

x ∈ R2 | x2 = 1
}

is not a subspace of R2

•

{[

1 4
−3 2

]

,

[

0 0
0 0

]}

is not a subspace of R2×2

• the solution set {x ∈ Rn | Ax = b} for b 6= 0 is a not subspace of Rn
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examples: two hyperplanes; one is a subspace but the other one is not

2x1 − 3x2 + x3 = 0 (yellow), 2x1 − 3x2 + x3 = 20 (grey)

black = red + blue

x = (−3,−2, 0) & y = (1,−1,−5) are on the yellow plane, and so is x+ y

x = (−3,−2, 20) & y = (1,−1, 15) are on the grey plane, but x+ y is not
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Linear Independence

Definition: a set of vectors {v1, v2, . . . , vn} is linearly independent if

α1v1 + α2v2 + · · ·+ αnvn = 0 =⇒ α1 = α2 = · · · = αn = 0

equivalent conditions:

• coefficients of α1v1 + α2v2 + · · ·+ αnvn are uniquely determined, i.e.,

α1v1 + α2v2 + · · ·+ αnvn = β1v1 + β2v2 + · · ·+ βnvn

implies αk = βk for k = 1, 2, . . . , n

• no vector vi can be expressed as a linear combination of the other
vectors
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examples:

•





1
2
1



 ,





3
1
0



 are independent

•





1
2
1



 ,





3
1
0



 ,





−1
0
1



 are independent

•





1
2
1



 ,





3
1
0



 ,





−1
0
1



 ,





4
2
0



 are not independent

•





1
2
1



 ,





3
1
0



 ,





2
−1
−1



 are not independent

Vector spaces 6-11



Linear span

Definition: the linear span of a set of vectors

{v1, v2, . . . , vn}

is the set of all linear combinations of v1, . . . , vn

span{v1, v2, . . . , vn} = {a1v1 + a2v2 + · · ·+ anvn | a1, . . . , an ∈ R}

example:

span

{[

1 0
0 0

]

,

[

0 1
1 0

]

,

[

0 0
0 1

]}

is the set of 2× 2 symmetric matrices

Fact: if v1, . . . , vn are vectors in V , span{v1, . . . , vn} is a subspace of V
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Basis and dimension

Definition: set of vectors {v1, v2, · · · , vn} is a basis for a vector space V if

• {v1, v2, . . . , vn} is linearly independent

• V = span {v1, v2, . . . , vn}

equivalent condition: every v ∈ V can be uniquely expressed as

v = α1v1 + · · ·+ αnvn

Definition: the dimension of V , denoted dim(V), is the number of
vectors in a basis for V

Theorem: the number of vectors in any basis for V is the same

(we assign dim{0} = 0 )
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examples:

• {e1, e2, e3} is a standard basis for R3 (dimR3 = 3)

•

{[

−1
3

]

,

[

0
2

]}

is a basis for R2 (dimR2 = 2)

• {1, t, t2} is a basis for P2 (dimP2 = 3)

•

{[

1 0
0 0

]

,

[

0 1
0 0

]

,

[

0 0
1 0

]

,

[

0 0
0 1

]}

is a basis for R2×2 (dimR2×2 = 4)

•











1
1
1











cannot be a basis for R3 why ?

•

{[

1
1

]

,

[

1
0

]

,

[

−2
3

]}

cannot be a basis for R2 why ?
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Coordinates

let S = {v1, v2, . . . , vn} be a basis for a vector space V

suppose a vector v ∈ V can be written as

v = a1v1 + a2v2 + · · ·+ anvn

Definition: the coordinate vector of v relative to the basis S is

[v]S = (a1, a2, . . . , an)

• linear independence of vectors in S ensures that ak’s are uniquely

determined by S and v

• changing the basis yields a different coordinate vector
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Geometrical interpretation

new coordinate in a new reference axis

v = (1, 3)

v =

[

1
3

]

= 1

[

1
0

]

+ 3

[

0
1

]

= 2

[

1
1

]

+ 1

[

−1
1

]
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examples:

• S = {e1, e2, e3}, v = (−2, 4, 1)

v = −2e1 + 4e2 + 1e3, [v]S = (−2, 4, 1)

• S = {(−1, 2, 0), (3, 0, 0), (−2, 1, 1)}, v = (−2, 4, 1)

v =





−2
4
1



 =
3

2





−1
2
0



+
1

2





3
0
0



+ 1





−2
1
1



 , [v]S = (3/2, 1/2, 1)

• S = {1, t, t2}, v(t) = −3 + 2t+ 4t2

v(t) = −3 · 1 + 2 · t+ 4 · t2, [v]S = (−3, 2, 4)

• S = {1, t− 1, t2 + t}, v(t) = −3 + 2t+ 4t2

v(t) = −5 · 1− 2 · (t− 1) + 4 · (t2 + t), [v]S = (−5,−2, 4)
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Change of basis

let U = {u1, . . . , un} and W = {w1, . . . , wn} be bases for a vector space V

a vector v ∈ V has the coordinates relative to these bases as

[v]U = (a1, a2, . . . , an), [v]W = (b1, b2, . . . , bn)

suppose the coordinate vectors of wk relative to U is

[wk]U = (c1k, c2k, . . . , cnk)

or in the matrix form as

[

w1 w2 · · · wn

]

=
[

u1 u2 · · · un

]









c11 c12 · · · c1n
c21 c22 · · · c2n
... ... . . . ...

cn1 cn2 · · · cnn
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the coordinate vectors of v relative to U and W are related by









a1
a2
...
an









=









c11 c12 · · · c1n
c21 c22 · · · c2n
... ... . . . ...

cn1 cn2 · · · cnn

















b1
b2
...
bn









, P









b1
b2
...
bn









• we obtain [v]U by multiplying [v]W with P

• P is called the transition matrix from W to U

• the columns of P are the coordinate vectors of the basis vectors in W
relative to U

Theorem ✌

P is invertible and P−1 is the transition matrix from U to W
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example: find [v]U , given

U =

{[

1
1

]

,

[

−1
1

]}

, W =

{[

2
1

]

,

[

1
0

]}

, [v]W =

[

−2
1

]

first, find the coordinate vectors of the basis vectors in W relative to U

[

2 1
1 0

]

=

[

1 −1
1 1

] [

c11 c12
c21 c22

]

from which we obtain the transition matrix

P =

[

1 −1
1 1

]

−1 [

2 1
1 0

]

=
1

2

[

3 1
−1 −1

]

and [v]U is given by

[v]U =
1

2

[

3 1
−1 −1

] [

−2
1

]

=
1

2

[

−5
1

]
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Nullspace

the nullspace of an m× n matrix is defined as

N (A) = {x ∈ Rn | Ax = 0}

• the set of all vectors that are mapped to zero by f(x) = Ax

• the set of all vectors that are orthogonal to the rows of A

• if Ax = b then A(x+ z) = b for all z ∈ N (A)

• also known as kernel of A

• N (A) is a subspace of Rn
✎
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x+ z

x

z

{x | Ax = b} {z | Az = 0}

A =





2 −1
−4 2
−6 3



 , b =





−3
6
9





• N (A) = {x | 2x1 − x2 = 0}

• the solution set of Ax = b is {x | 2x1 − x2 = −3}

• the solution set of Ax = b is the translation of N (A)
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Zero nullspace matrix

• A has a zero nullspace if N (A) = {0}

• if A has a zero nullspace and Ax = b is solvable, the solution is unique

• columns of A are independent

✌ equivalent conditions: A ∈ Rn×n

• A has a zero nullspace

• A is invertible or nonsingular

• columns of A are a basis for Rn
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Range space

the range of an m× n matrix A is defined as

R(A) = {y ∈ Rm | y = Ax for some x ∈ Rn }

• the set of all m-vectors that can be expressed as Ax

• the set of all linear combinations of the columns of A =
[

a1 · · · an
]

R(A) = {y | y = x1a1 + x2a2 + · · ·+ xnan, x ∈ Rn}

• the set of all vectors b for which Ax = b is solvable

• also known as the column space of A

• R(A) is a subspace of Rm
✎
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Full range matrices

A has a full range if R(A) = Rm

✌ equivalent conditions:

• A has a full range

• columns of A span Rm

• Ax = b is solvable for every b

• N (AT ) = {0}
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Bases for R(A) and N (A)

A and B are row equivalent matrices, i.e.,

B = Ek · · ·E2E1A

Facts ✌

• elementary row operations do not alter N (A)

N (B) = N (A)

• columns of B are independent if and only if columns of A are

• a given set of column vectors of A forms a basis for R(A) if and only if
the corresponding column vectors of B form a basis for R(B)
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example: given a matrix A and its row echelon form B:

A =





−1 2 4 1
0 1 2 1
2 3 6 5



 , B =





1 0 0 1
0 1 2 1
0 0 0 0





basis for N (A): from {x | Ax = 0} = {x | Bx = 0}, we read

x1 + x4 = 0, x2 + 2x3 + x4 = 0

define x3 and x4 as free variables, any x ∈ N (A) can be written as

x =









x1

x2

x3

x4









=









−x4

−2x3 − x4

x3

x4









= x3









0
−2
1
0









+ x4









−1
−1
0
1









(a linear combination of (0,−2, 1, 0) and (−1,−1, 0, 1)
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hence, a basis for N (A) is























0
−2
1
0









,









−1
−1
0
1























and dimN (A) = 2

basis for R(A): pick a set of the independent column vectors in B (here
pick the 1st and the 2nd columns)

the corresponding columns in A form a basis for R(A):











−1
0
2



 ,





2
1
3











dimR(A) = 2
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✌ conclusion: if R is the row reduced echelon form of A

• the pivot column vectors of R form a basis for the range space of R

• the column vectors of A corresponding to the pivot columns of R form
a basis for the range space of A

• dimR(A) is the number of leading 1’s in R

• dimN (A) is the number of free variables in solving Rx = 0
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Rank and Nullity

rank of a matrix A ∈ Rm×n is defined as

rank(A) = dimR(A)

nullity of a matrix A ∈ Rm×n is

nullity(A) = dimN (A)

Facts ✌

• rank(A) is maximum number of independent columns (or rows) of A

rank(A) ≤ min(m,n)

• rank(A) = rank(AT )
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Full rank matrices

for A ∈ Rm×n we always have rank(A) ≤ min(m,n)

we say A is full rank if rank(A) = min(m,n)

• for square matrices, full rank means nonsingular (invertible)

• for skinny matrices (m ≥ n), full rank means columns are independent

• for fat matrices (m ≤ n), full rank means rows are independent
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Rank-Nullity Theorem

for any A ∈ Rm×n,

rank(A) + dimN (A) = n

Proof:

• a homogeneous linear system Ax = 0 has n variables

• these variables fall into two categories

– leading variables

– free variables

• # of leading variables = # of leading 1’s in reduced echelon form of A

= rank(A)

• # of free variables = nullity of A
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MATLAB commands

• rref(A) produces the reduced row echelon form of A

>> A = [-1 2 4 1;0 1 2 1;2 3 6 5]

A =

-1 2 4 1

0 1 2 1

2 3 6 5

>> rref(A)

ans =

1 0 0 1

0 1 2 1

0 0 0 0

• rank(A) provides an estimate of the rank of A
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• null(A) gives normalized vectors in a basis for N (A)

>> A

A =

1 -3 2

2 -6 4

3 -9 6

>> U = null(A)

U =

-0.8729 -0.4082

-0.4364 0.4082

-0.2182 0.8165

(and we can verify that AU = 0)
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