Jitkomut Songsiri

6. Vector spaces

- definition
- linear independence
- basis and dimension
- coordinate and change of basis
- range space and null space
- rank and nullity

Vector space

a vector space or linear space (over \mathbf{R}) consists of

- \bullet a set ${\cal V}$
- a vector sum + : $\mathcal{V} \times \mathcal{V} \rightarrow \mathcal{V}$
- a scalar multiplication : $\textbf{R}\times \mathcal{V} \rightarrow \mathcal{V}$
- a distinguished element $0 \in \mathcal{V}$

which satisfy a list of properties

•
$$x + y \in \mathcal{V} \quad \forall x, y \in \mathcal{V}$$
 (closed under addition)
• $x + y = y + x, \forall x, y \in \mathcal{V}$ (+ is commutative)
• $(x + y) + z = x + (y + z), \forall x, y, z \in \mathcal{V}$ (+ is associative)
• $0 + x = x, \forall x \in \mathcal{V}$ (0 is additive identity)
• $\forall x \in \mathcal{V} \exists (-x) \in \mathcal{V} \text{ s.t. } x + (-x) = 0$ (existence of additive inverse)
• $\alpha x \in \mathcal{V}$ for any $\alpha \in \mathbf{R}$ (closed under scalar multiplication)
• $(\alpha\beta)x = \alpha(\beta x), \forall \alpha, \beta \in \mathbf{R} \forall x \in \mathcal{V}$ (scalar multiplication is associative)
• $\alpha(x + y) = \alpha x + \alpha y, \forall \alpha \in \mathbf{R} \forall x, y \in \mathcal{V}$ (right distributive rule)
• $(\alpha + \beta)x = \alpha x + \alpha y, \forall \alpha, \beta \in \mathbf{R} \forall x \in \mathcal{V}$ (left distributive rule)
• $1x = x, \forall x \in \mathcal{V}$ (1 is multiplicative identity)

notation

- $(\mathcal{V}, \mathbf{R})$ denotes a vector space \mathcal{V} over \mathbf{R}
- an element in \mathcal{V} is called a **vector**

Theorem: let u be a vector in \mathcal{V} and k a scalar; then

- 0u = 0 (multiplication with zero gives the zero vector)
- k0 = 0 (multiplication with the zero vector gives the zero vector)
- (-1)u = -u (multiplication with -1 gives the additive inverse)
- if ku = 0, then k = 0 or u = 0

roughly speaking, a vector space must satisfy the following operations

1. vector addition

$$x, y \in \mathcal{V} \quad \Rightarrow \quad x + y \in \mathcal{V}$$

2. scalar multiplication

for any
$$\alpha \in \mathbf{R}, x \in \mathcal{V} \Rightarrow \alpha x \in \mathcal{V}$$

the second condition implies that a vector space contains the zero vector

 $0\in \mathcal{V}$

in otherwords, if ${\mathcal V}$ is a vector space then $0\in {\mathcal V}$

(but the converse is *not true*)

Vector spaces

examples: the following sets are vector spaces (over **R**)

- \mathbf{R}^n
- {0}
- $\mathbf{R}^{m \times n}$
- $\mathbf{C}^{m \times n}$: set of $m \times n$ -complex matrices
- \mathbf{P}_n : set of polynomials of degree $\leq n$

$$\mathbf{P}_{n} = \{ p(t) \mid p(t) = a_{0} + a_{1}t + \dots + a_{n}t^{n} \}$$

- **S**ⁿ: set of symmetric matrices of size n
- $C(-\infty,\infty)$: set of real-valued continuous functions on $(-\infty,\infty)$
- $C^n(-\infty,\infty)$: set of real-valued functions with continuous nth derivatives on $(-\infty,\infty)$

 \otimes check whether any of the following sets is a vector space (over **R**)

- $\{0, 1, 2, 3, \ldots\}$
- $\left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} -1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0 \end{bmatrix} \right\}$
- $\left\{ x \in \mathbf{R}^2 \mid x = \begin{bmatrix} x_1 \\ 0 \end{bmatrix}, x_1 \in \mathbf{R} \right\}$
- $\{ p(x) \in \mathbf{P}_2 \mid p(x) = a_1 x + a_2 x^2 \text{ for some } a_1, a_2 \in \mathbf{R} \}$

Subspace

- a **subspace** of a vector space is a *subset* of a vector space which is itself a vector space
- a subspace is closed under vector addition and scalar multiplication

examples:

- $\{0\}$ is a subspace of \mathbf{R}^n
- $\mathbf{R}^{m \times n}$ is a subspace of $\mathbf{C}^{m \times n}$

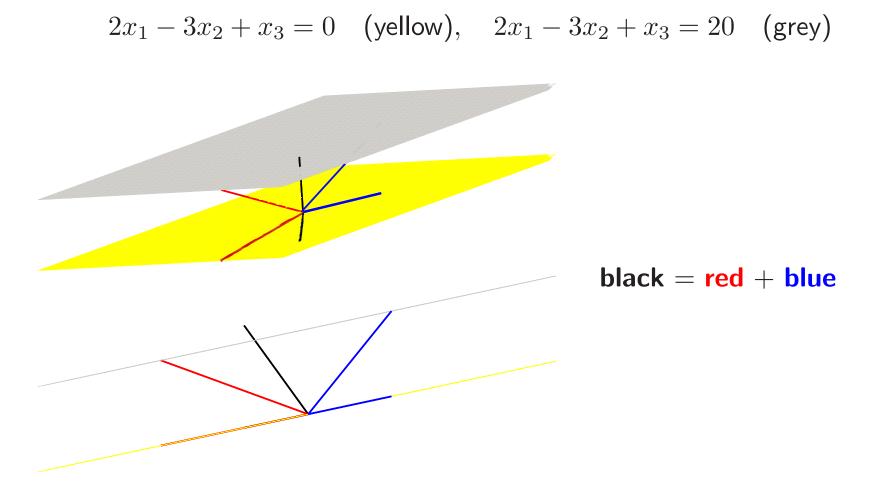
•
$$\left\{ x \in \mathbf{R}^2 \mid x_1 = 0 \right\}$$
 is a subspace of \mathbf{R}^2

• $\left\{ x \in \mathbf{R}^2 \mid x_2 = 1 \right\}$ is not a subspace of \mathbf{R}^2

•
$$\left\{ \begin{bmatrix} 1 & 4 \\ -3 & 2 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \right\}$$
 is not a subspace of $\mathbf{R}^{2 \times 2}$

• the solution set $\{x \in \mathbf{R}^n \mid Ax = b\}$ for $b \neq 0$ is a not subspace of \mathbf{R}^n

examples: two hyperplanes; one is a subspace but the other one is not



x = (-3, -2, 0) & y = (1, -1, -5) are on the yellow plane, and so is x + yx = (-3, -2, 20) & y = (1, -1, 15) are on the grey plane, but x + y is not

Linear Independence

Definition: a set of vectors $\{v_1, v_2, \ldots, v_n\}$ is **linearly independent** if

$$\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n = 0 \Longrightarrow \alpha_1 = \alpha_2 = \dots = \alpha_n = 0$$

equivalent conditions:

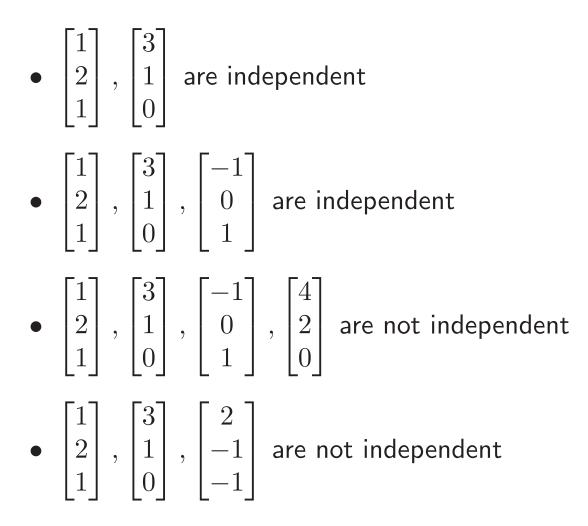
• coefficients of $\alpha_1v_1 + \alpha_2v_2 + \cdots + \alpha_nv_n$ are uniquely determined, i.e.,

$$\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n = \beta_1 v_1 + \beta_2 v_2 + \dots + \beta_n v_n$$

implies $\alpha_k = \beta_k$ for $k = 1, 2, \ldots, n$

• no vector v_i can be expressed as a linear combination of the other vectors

examples:



Linear span

Definition: the linear span of a set of vectors

 $\{v_1, v_2, \ldots, v_n\}$

is the set of all linear combinations of v_1, \ldots, v_n

$$\operatorname{span}\{v_1, v_2, \dots, v_n\} = \{a_1v_1 + a_2v_2 + \dots + a_nv_n \mid a_1, \dots, a_n \in \mathbf{R}\}$$

example:

span $\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ is the set of 2×2 symmetric matrices

Fact: if v_1, \ldots, v_n are vectors in \mathcal{V} , span $\{v_1, \ldots, v_n\}$ is a subspace of \mathcal{V}

Basis and dimension

Definition: set of vectors $\{v_1, v_2, \cdots, v_n\}$ is a **basis** for a vector space \mathcal{V} if

- $\{v_1, v_2, \ldots, v_n\}$ is linearly independent
- $\mathcal{V} = \operatorname{span} \{v_1, v_2, \dots, v_n\}$

equivalent condition: every $v \in V$ can be uniquely expressed as

$$v = \alpha_1 v_1 + \dots + \alpha_n v_n$$

Definition: the dimension of \mathcal{V} , denoted $\dim(\mathcal{V})$, is the number of vectors in a basis for \mathcal{V}

Theorem: the number of vectors in *any* basis for \mathcal{V} is the same

(we assign $\dim\{0\} = 0$)

examples:

• $\{e_1, e_2, e_3\}$ is a standard basis for \mathbf{R}^3 $(\dim \mathbf{R}^3 = 3)$ • $\left\{ \begin{vmatrix} -1 \\ 3 \end{vmatrix}, \begin{vmatrix} 0 \\ 2 \end{vmatrix} \right\}$ is a basis for \mathbb{R}^2 $(\dim \mathbf{R}^2 = 2)$ • $\{1, t, t^2\}$ is a basis for \mathbf{P}_2 $(\dim \mathbf{P}_2 = 3)$ • $\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ is a basis for $\mathbf{R}^{2 \times 2}$ (dim $\mathbf{R}^{2 \times 2} = 4$) • $\left\{ \begin{array}{c} 1\\1\\1 \end{array} \right\}$ cannot be a basis for \mathbb{R}^3 why ? • $\left\{ \begin{vmatrix} 1 \\ 1 \end{vmatrix}, \begin{vmatrix} 1 \\ 0 \end{vmatrix}, \begin{vmatrix} -2 \\ 3 \end{vmatrix} \right\}$ cannot be a basis for \mathbb{R}^2 why ?

Coordinates

let $S = \{v_1, v_2, \dots, v_n\}$ be a basis for a vector space \mathcal{V}

suppose a vector $v \in \mathcal{V}$ can be written as

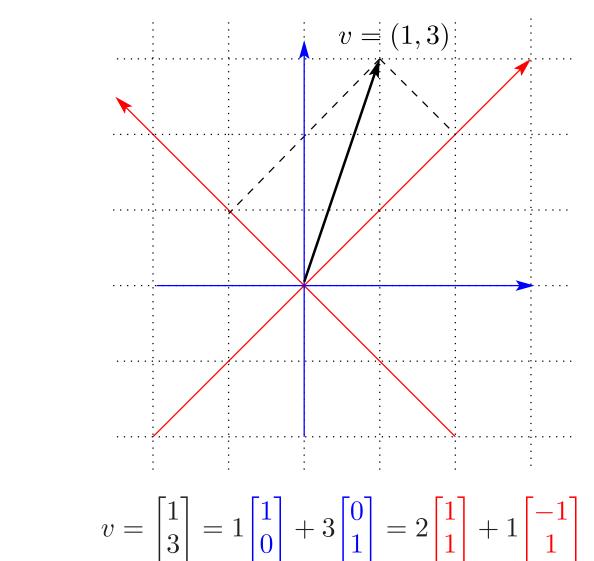
$$v = a_1v_1 + a_2v_2 + \dots + a_nv_n$$

Definition: the coordinate vector of v relative to the basis S is

$$[v]_S = (a_1, a_2, \dots, a_n)$$

- linear independence of vectors in S ensures that a_k 's are *uniquely* determined by S and v
- changing the basis yields a different coordinate vector

Geometrical interpretation



new coordinate in a new reference axis

examples:

•
$$S = \{e_1, e_2, e_3\}, v = (-2, 4, 1)$$

 $v = -2e_1 + 4e_2 + 1e_3, [v]_S = (-2, 4, 1)$
• $S = \{(-1, 2, 0), (3, 0, 0), (-2, 1, 1)\}, v = (-2, 4, 1)$
 $v = \begin{bmatrix} -2\\4\\1 \end{bmatrix} = \frac{3}{2} \begin{bmatrix} -1\\2\\0 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 3\\0\\0 \end{bmatrix} + 1 \begin{bmatrix} -2\\1\\1 \end{bmatrix}, [v]_S = (3/2, 1/2, 1)$
• $S = \{1, t, t^2\}, v(t) = -3 + 2t + 4t^2$
 $v(t) = -3 \cdot 1 + 2 \cdot t + 4 \cdot t^2, [v]_S = (-3, 2, 4)$
• $S = \{1, t - 1, t^2 + t\}, v(t) = -3 + 2t + 4t^2$

 $v(t) = -5 \cdot 1 - 2 \cdot (t-1) + 4 \cdot (t^2 + t), \quad [v]_S = (-5, -2, 4)$

Change of basis

let $U = \{u_1, \ldots, u_n\}$ and $W = \{w_1, \ldots, w_n\}$ be bases for a vector space \mathcal{V} a vector $v \in \mathcal{V}$ has the coordinates relative to these bases as

$$[v]_U = (a_1, a_2, \dots, a_n), \quad [v]_W = (b_1, b_2, \dots, b_n)$$

suppose the coordinate vectors of w_k relative to U is

$$[w_k]_U = (c_{1k}, c_{2k}, \dots, c_{nk})$$

or in the matrix form as

$$\begin{bmatrix} w_1 & w_2 & \cdots & w_n \end{bmatrix} = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix} \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{bmatrix}$$

the coordinate vectors of v relative to U and W are related by

$$\begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} \quad \triangleq P \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

- we obtain $[v]_U$ by multiplying $[v]_W$ with P
- P is called the **transition** matrix from W to U
- the columns of ${\cal P}$ are the coordinate vectors of the basis vectors in W relative to U

Theorem 🕉

 ${\cal P}$ is invertible and ${\cal P}^{-1}$ is the transition matrix from U to W

example: find $[v]_U$, given

$$U = \left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix} \right\}, \quad W = \left\{ \begin{bmatrix} 2\\1 \end{bmatrix}, \begin{bmatrix} 1\\0 \end{bmatrix} \right\}, \quad [v]_W = \begin{bmatrix} -2\\1 \end{bmatrix}$$

first, find the coordinate vectors of the basis vectors in \boldsymbol{W} relative to \boldsymbol{U}

$\left\lceil 2\right\rceil$	1]	 [1	-1	$[c_{11}]$	c_{12}
1	0	 1	$\begin{bmatrix} -1\\1 \end{bmatrix}$	c_{21}	c_{22}

from which we obtain the transition matrix

$$P = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 3 & 1 \\ -1 & -1 \end{bmatrix}$$

and $[v]_U$ is given by

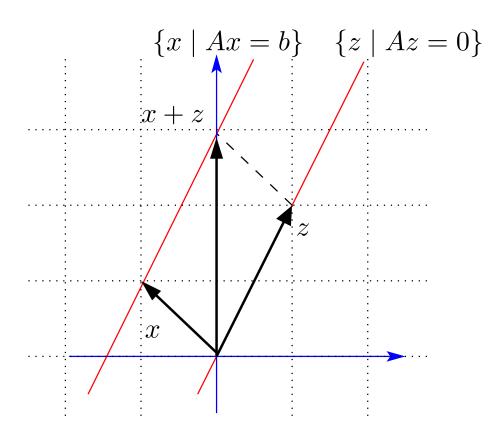
$$\begin{bmatrix} v \end{bmatrix}_U = \frac{1}{2} \begin{bmatrix} 3 & 1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} -2 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -5 \\ 1 \end{bmatrix}$$

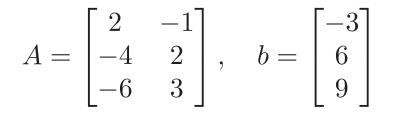
Nullspace

the **nullspace** of an $m \times n$ matrix is defined as

$$\mathcal{N}(A) = \{ x \in \mathbf{R}^n \mid Ax = 0 \}$$

- the set of all vectors that are mapped to zero by f(x) = Ax
- the set of all vectors that are orthogonal to the rows of ${\cal A}$
- if Ax = b then A(x + z) = b for all $z \in \mathcal{N}(A)$
- also known as kernel of A
- $\mathcal{N}(A)$ is a subspace of \mathbf{R}^n





•
$$\mathcal{N}(A) = \{x \mid 2x_1 - x_2 = 0\}$$

- the solution set of Ax = b is $\{x \mid 2x_1 x_2 = -3\}$
- the solution set of Ax = b is the translation of $\mathcal{N}(A)$

Zero nullspace matrix

- A has a zero nullspace if $\mathcal{N}(A) = \{0\}$
- if A has a zero nullspace and Ax = b is solvable, the solution is unique
- $\bullet\,$ columns of A are independent

- \mathscr{B} equivalent conditions: $A \in \mathbf{R}^{n \times n}$
- A has a zero nullspace
- A is invertible or nonsingular
- columns of A are a basis for \mathbf{R}^n

Range space

the **range** of an $m \times n$ matrix A is defined as

$$\mathcal{R}(A) = \{ y \in \mathbf{R}^m \mid y = Ax \text{ for some } x \in \mathbf{R}^n \}$$

- the set of all m-vectors that can be expressed as Ax
- the set of all linear combinations of the columns of $A = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix}$

$$\mathcal{R}(A) = \{ y \mid y = x_1 a_1 + x_2 a_2 + \dots + x_n a_n, \quad x \in \mathbf{R}^n \}$$

- the set of all vectors b for which Ax = b is solvable
- also known as the **column space** of A
- $\mathcal{R}(A)$ is a subspace of \mathbf{R}^m

Vector spaces

Full range matrices

A has a full range if $\mathcal{R}(A) = \mathbf{R}^m$

& equivalent conditions:

- A has a full range
- columns of A span \mathbf{R}^m
- Ax = b is solvable for every b

• $\mathcal{N}(A^T) = \{0\}$

Bases for $\mathcal{R}(A)$ and $\mathcal{N}(A)$

A and B are row equivalent matrices, *i.e.*,

$$B = E_k \cdots E_2 E_1 A$$

Facts 🕉

• elementary row operations do not alter $\mathcal{N}(A)$

$$\mathcal{N}(B) = \mathcal{N}(A)$$

- columns of B are independent if and only if columns of A are
- a given set of column vectors of A forms a basis for $\mathcal{R}(A)$ if and only if the corresponding column vectors of B form a basis for $\mathcal{R}(B)$

example: given a matrix A and its row echelon form B:

$$A = \begin{bmatrix} -1 & 2 & 4 & 1 \\ 0 & 1 & 2 & 1 \\ 2 & 3 & 6 & 5 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

basis for $\mathcal{N}(A)$: from $\{x \mid Ax = 0\} = \{x \mid Bx = 0\}$, we read

$$x_1 + x_4 = 0, \quad x_2 + 2x_3 + x_4 = 0$$

define x_3 and x_4 as free variables, any $x \in \mathcal{N}(A)$ can be written as

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -x_4 \\ -2x_3 - x_4 \\ x_3 \\ x_4 \end{bmatrix} = x_3 \begin{bmatrix} 0 \\ -2 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -1 \\ -1 \\ 0 \\ 1 \end{bmatrix}$$

(a linear combination of (0, -2, 1, 0) and (-1, -1, 0, 1)

Vector spaces

hence, a basis for
$$\mathcal{N}(A)$$
 is $\left\{ \begin{bmatrix} 0\\-2\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\-1\\0\\1 \end{bmatrix} \right\}$ and $\dim \mathcal{N}(A) = 2$

basis for $\mathcal{R}(A)$: pick a set of the independent column vectors in B (here pick the 1st and the 2nd columns)

the corresponding columns in A form a basis for $\mathcal{R}(A)$:

$$\left\{ \begin{bmatrix} -1\\0\\2 \end{bmatrix}, \begin{bmatrix} 2\\1\\3 \end{bmatrix} \right\}$$

 $\dim \mathcal{R}(A) = 2$

Vector spaces

- \mathcal{B} conclusion: if R is the row reduced echelon form of A
- the pivot column vectors of R form a basis for the range space of R
- the column vectors of A corresponding to the pivot columns of R form a basis for the range space of A
- $\dim \mathcal{R}(A)$ is the number of leading 1's in R
- $\dim \mathcal{N}(A)$ is the number of free variables in solving Rx = 0

Rank and Nullity

rank of a matrix $A \in \mathbf{R}^{m \times n}$ is defined as

 $\mathbf{rank}(A) = \dim \mathcal{R}(A)$

nullity of a matrix $A \in \mathbf{R}^{m \times n}$ is

 $\mathbf{nullity}(A) = \dim \mathcal{N}(A)$

Facts 🕈

• rank(A) is maximum number of independent columns (or rows) of A

 $\operatorname{rank}(A) \le \min(m, n)$

•
$$\operatorname{rank}(A) = \operatorname{rank}(A^T)$$

Full rank matrices

for $A \in \mathbf{R}^{m \times n}$ we always have $\operatorname{rank}(A) \leq \min(m, n)$

we say A is **full rank** if $\operatorname{rank}(A) = \min(m, n)$

- for **square** matrices, full rank means nonsingular (invertible)
- for skinny matrices $(m \ge n)$, full rank means columns are independent
- for fat matrices $(m \le n)$, full rank means rows are independent

Rank-Nullity Theorem

for any $A \in \mathbf{R}^{m \times n}$,

$$\operatorname{\mathbf{rank}}(A) + \dim \mathcal{N}(A) = n$$

Proof:

- a homogeneous linear system Ax = 0 has n variables
- these variables fall into two categories
 - leading variables
 - free variables
- # of leading variables = # of leading 1's in reduced echelon form of A = rank(A)
- # of free variables = nullity of A

MATLAB commands

 \bullet rref(A) produces the reduced row echelon form of A

>> $A = [-1 \ 2 \ 4 \ 1; 0 \ 1 \ 2 \ 1; 2 \ 3 \ 6 \ 5]$ A = -1 2 4 1 0 1 2 1 2 3 6 5 >> rref(A) ans = 10010121 0 0 0 0

• rank(A) provides an estimate of the rank of A

• null(A) gives normalized vectors in a basis for $\mathcal{N}(A)$

(and we can verify that AU = 0)

References

Chapter 4 in

H. Anton, Elementary Linear Algebra, 10th edition, Wiley, 2010

Lecture note on

Linear algebra review, EE263, S. Boyd, Stanford University

Lecture note on

Theory of linear equations, EE103, L. Vandenberghe, UCLA