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6. Vector spaces

e definition

e linear independence

e basis and dimension

e coordinate and change of basis
e range space and null space

e rank and nullity
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Vector space

a vector space or linear space (over R) consists of

e aset)V
e avectorsum +: VxV =V
e a scalar multiplication : Rx VYV — V

e a distinguished element 0 € V

which satisfy a list of properties

Vector spaces
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e xt+ycly VxyeV (closed under addition)

e rt+ty=y+ax Ve,yecy (+ is commutative)
e (z4+y)t+z=x+Wy+2), Vr,y,z €V (+ is associative)
e 0+zx=ux VeV (0 is additive identity)

e VxeVi(—xz)eVst o+ (—x)=0 (existence of additive inverse)
e ar €V for any o € R (closed under scalar multiplication)

o (af)x = a(fx), Va, B € RVx €V (scalar multiplication is associative)

e a(r+vy)=ar+ay, Va € RVx,y eV (right distributive rule)
e (a+fB)r=ar+ay, Yo, ER Vr eV (left distributive rule)
e lx =2, VeV (1 is multiplicative identity)
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notation

e (V,R) denotes a vector space V over R

e an element in V is called a vector

Theorem: let u be a vector in V and &k a scalar; then

e Ou=20 (multiplication with zero gives the zero vector)
e K0=0 (multiplication with the zero vector gives the zero vector)
e (—lu=-u (multiplication with —1 gives the additive inverse)

o if ku=0,thenk=0o0ru=20
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roughly speaking, a vector space must satisfy the following operations

1. vector addition
z,yeV = x4+yecV

2. scalar multiplication

forany a€eR, z€V = axecV

the second condition implies that a vector space contains the zero vector

0eVy

in otherwords, if V) is a vector space then 0 € V

(but the converse is not true)
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examples: the following sets are vector spaces (over R)
e R"”
* 10}

Ran

C™”"™: set of m X n-complex matrices

e P, : set of polynomials of degree < n

P,={p() | p(t) =ao+ait + -+ ant™}

e S": set of symmetric matrices of size n
o (J(—00,00): set of real-valued continuous functions on (—o0, 00)

e (" (—00,00): set of real-valued functions with continuous nth
derivatives on (—o0, c0)
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2 check whether any of the following sets is a vector space (over R)

UG
. {:I:ER2 . [351], xleR}

o {p(ac) € Py | p() = a1z + asx® for some ay,as € R}
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Subspace

e a subspace of a vector space is a subset of a vector space which is
itself a vector space

e a subspace is closed under vector addition and scalar multiplication

examples:

e {0} is a subspace of R"

Rm><n .

is a subspace of C™*"

[
o {z¢c R* |z, = 0} is a subspace of R*

o {z¢c R? |z = 1} is not a subspace of R*

1 4 0 O . 2X2
o {[_3 2] : [O O]} Is not a subspace of R

e the solution set {x € R" | Ax = b} for b # 0 is a not subspace of R"
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examples: two hyperplanes; one is a subspace but the other one is not

201 — 3x2+x3 =0 (yellow), 2z —3zs+ 23 =20 (grey)

black = red + blue

r=(-3,-2,0) & y = (1,—1,—5) are on the yellow plane, and so is = + ¥

r=(-3,-2,20) & y = (1,—1,15) are on the grey plane, but = + y is not
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Linear Independence

Definition: a set of vectors {v1,vs,...,v,} is linearly independent if
a1+ o+ -+ o, =0— a1 = =---=a«, =0
equivalent conditions:
e coefficients of ayv1 + asvy + - - - 4+ @, v, are uniquely determined, i.e.,
a1V + Qo2 + -+ QU = Brug + Pova + -+ Brop
implies a, = f, for k=1,2,....n

e no vector v; can be expressed as a linear combination of the other
vectors
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examples:

11 T30
e |2|,|1]| areindependent
_1_ _O_
1] [3] [-1]
e (2] ,]|1|,] O | are independent
1] (0] [T
1] [3] [-1] [4
o |2(.(1],] 0|, [2] are not independent
1] (0] [ 1] |0
1] [3] [ 2]
e (2|, |1, |—1| are not independent
1] (0] [—1
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Linear span

Definition: the linear span of a set of vectors

{Ula V2, ... 7vn}
is the set of all linear combinations of vy, ..., v,
Span{'vl,vg, cee 7Un} — {&1,01 + a2v2 + -+ AnUn ‘ A1y ...,0n < R}

example:

10 01 00 Is the set of 2 X 2 symmetric matrices
spany 1o ol 11 ol lo 1l ('S y ! !

Fact: if vq,...,v, are vectors in V, span{vy,...,v,} is a subspace of V
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Basis and dimension

Definition: set of vectors {vy,vs, -+ ,v,} is a basis for a vector space V if
o {v1,v9,...,v,} is linearly independent
o )= Span {’Ul,’Ug, ce ,’Un}

equivalent condition: every v € V can be uniquely expressed as
V= Q1v1 + -+ apu,

Definition: the dimension of V, denoted dim(V), is the number of
vectors in a basis for V

Theorem: the number of vectors in any basis for V is the same
(we assign dim{0} =0 )
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examples:

e {e1,e9, €3} is a standard basis for R® (dim R® = 3)
—1 0 . . 2 . 2

o |+ |g] (152 basis for R (dim R* = 2)

e {1,t,t%} is a basis for P (dim Py = 3)
1 0 (0O 1| (0 O] |0 Of]. . 2%2 /10 B2X2

o {[O O] : [O O] : [1 O] : [O 1]} is a basis for R“*“ (dim R""* = 4)
1)

o 1| } cannot be a basis for R®  why ?
1
I

1] 1] [-2 . 2 .
o {[1] : _O] : [ 3 ]} cannot be a basis for R  why -
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Coordinates

let S = {v1,v2,...,v,} be a basis for a vector space V

suppose a vector v € V can be written as
V= aiV1 + aoVo + - + anUn
Definition: the coordinate vector of v relative to the basis S is
vls = (a1,az2,...,a,)

e linear independence of vectors in S ensures that ay's are uniquely
determined by S and v

e changing the basis yields a different coordinate vector

Vector spaces
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Geometrical interpretation

new coordinate in a new reference axis
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examples:
o S={e1,e9,e3}, v=1(-2,4,1)

v=—2e1 +4dey+ les, |v]g =(—-2,4,1)

e S=1{(-1,2,0),(3,0,0),(=2,1,1)}, v = (=2,4,1)

-2] . [-1] |3 —2
v=|4 =212+ |0/ +1] 1|, Pls=(3/21/21)
1 0 0 1

o S ={1,t,t%}, v(t) = —3 + 2t + 4t>

v(t) = -3 -1+2-t+4-1*, [v]g=(-3,2,4)

o S={1,t—1,t>+1t}, v(t) = =3 + 2t + 4¢°
v(t)=—=5-1—-2-(t—1)+4-(t*+1t), [v]g=(-5,—-2,4)
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Change of basis

let U = {uq,...,u,} and W = {w,...,w,} be bases for a vector space V

a vector v € V has the coordinates relative to these bases as

vy = (a1, a9,...,a,), |vlw = (b1,b2,...,b,)

suppose the coordinate vectors of wy, relative to U is

(wi|u = (c1k, 2Ky - - - Cnk)
or in the matrix form as
_011
C
[wl w2 P wn] — |:u1 u2 . .. un} ?1
_Cnl

Vector spaces
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the coordinate vectors of v relative to U and W are related by

aj C11 C12 -+ Cin bl bl
2|  |C1 C22 - Ca2p bo 2 p bo
_an_ _Cnl Cn2 e Cnn_ _bn_ _bn_

e we obtain [v]y by multiplying [v]yw with P
e P is called the transition matrix from W to U
e the columns of P are the coordinate vectors of the basis vectors in W

relative to U

Theorem &

P is invertible and P~1! is the transition matrix from U to W
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example: find [v]y, given

B B T

first, find the coordinate vectors of the basis vectors in W relative to U

21_1—1611612
1 0] |1 17 |cor coo

from which we obtain the transition matrix

r=[i 3R =305

and [v]y is given by
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Nullspace

the nullspace of an m x n matrix is defined as

N(A) ={z € R"| Az =0}

e the set of all vectors that are mapped to zero by f(x) = Ax
e the set of all vectors that are orthogonal to the rows of A

o if Ax =0bthen A(x + z) =0b for all z € N(A)

e also known as kernel of A

e NV(A) is a subspace of R" S
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E{x|Ax:bi} {zz\Az:O}

o N(A)I{ZC‘2ZC1—ZI?2=O}
e the solution set of Ax =bis {x | 221 — x5 = —3}

e the solution set of Ax = b is the translation of N(A)
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Zero nullspace matrix

e A has a zero nullspace if N(A) = {0}
e if A has a zero nullspace and Ax = b is solvable, the solution is unique

e columns of A are independent

¥ equivalent conditions: A € R"*"

e A has a zero nullspace
e A is invertible or nonsingular

e columns of A are a basis for R"
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Range space

the range of an m X n matrix A is defined as
R(A) ={y € R" | y = Az for some =z € R" }
e the set of all m-vectors that can be expressed as Ax
e the set of all linear combinations of the columns of A = [al e an]

RA) ={y|y=z1a1 + 2202+ -+ x10,, x€R"}

e the set of all vectors b for which Az = b is solvable

e also known as the column space of A

e R(A) is a subspace of R™ SN

Vector spaces 6-24



Full range matrices

A has a full range if R(A) = R™

¥ equivalent conditions:

e A has a full range
e columns of A span R™

e Ax = b is solvable for every b

o N(AT) = {0}
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Bases for R(A) and N (A)

A and B are row equivalent matrices, 7.e.,
B=F,.---F,FA
Facts &

e clementary row operations do not alter N'(A)

e columns of B are independent if and only if columns of A are

e a given set of column vectors of A forms a basis for R(A) if and only if
the corresponding column vectors of B form a basis for R(B)
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example: given a matrix A and its row echelon form B:

1 2 4 1 100 1
A=|0 1 2 1|, B=1]0 1 2 1
2 3 6 5 00 0 0

basis for N(A): from {z | Az =0} = {x | Bz = 0}, we read
r1+x4=0, x9+2x3+x24=0

define x3 and x4 as free variables, any x € N(A) can be written as

1 — T4 0 —1
2| | 7223 — 4| —2 —1

v x| x3 — " + 2 0
_$4_ ] L4 i i 0 i i 1 i

(a linear combination of (0, —2,1,0) and (—1,—1,0,1)
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s O 7] __1_ )
: : —2 —1 :
hence, a basis for N'(A) is < Ll o > and dim N (A) = 2
\ L O - » 1 d J

basis for R(A): pick a set of the independent column vectors in B (here
pick the 1st and the 2nd columns)

the corresponding columns in A form a basis for R(A):

S
01,1
— 2 — _3_

dimR(A) =2
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% conclusion: if R is the row reduced echelon form of A

e the pivot column vectors of R form a basis for the range space of R

e the column vectors of A corresponding to the pivot columns of R form
a basis for the range space of A

e dimR(A) is the number of leading 1's in R

e dim N (A) is the number of free variables in solving Rz = 0
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Rank and Nullity

rank of a matrix A € R™*" is defined as
rank(A) = dim R(A)

Rm><n .

nullity of a matrix A € IS

nullity (A) = dim N (A)

Facts &

e rank(A) is maximum number of independent columns (or rows) of A

rank(A) < min(m,n)
e rank(A) = rank(AT)
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Full rank matrices

for A € R™*™ we always have rank(A) < min(m,n)

we say A is full rank if rank(A) = min(m,n)

e for square matrices, full rank means nonsingular (invertible)
e for skinny matrices (m > n), full rank means columns are independent

e for fat matrices (m < n), full rank means rows are independent
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Rank-Nullity Theorem

for any A € R™*"™,

rank(A) + dimN(A) =n

Proof:

e a homogeneous linear system Az = 0 has n variables

e these variables fall into two categories

— leading variables
— free variables

e # of leading variables = # of leading 1's in reduced echelon form of A
= rank(A)

e # of free variables = nullity of A
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e rref (A) produces the reduced row echelon form of A

> A =1[-1241;0121;2 3 6 5]

A =

>> rref (A)

ans

e rank(A) provides an estimate of the rank of A

Vector spaces

-1
0
2

1
0
0

2
1
3

—

MATLAB commands

4
2
6

N

[ —

[ —

6-33



e null(A) gives normalized vectors in a basis for N'(A)

>> A

A:
1 -3 2
2 -6 4
3 -9 6

>> U = null(A)
U =
-0.8729 -0.4082

-0.4364 0.4082
-0.2182 0.8165

(and we can verify that AU = 0)
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