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How to read this handout

readers are assumed to have a background on uni-variate random variables and
statistics in undergrad level (sophomore year)

the note is used with lecture in EE501 (you cannot master this topic just by
reading this note) — class lectures include

m graphical concepts, math derivation of details/steps in between
m computer codes to illustrate examples

pay attention to the symbol &; you should be able to prove such & result

each chapter has a list of references; find more formal details/proofs from in-text
citations

almost all results in this note can be Googled; readers are encouraged to

‘stimulate neurons’ in your brain by proving results without seeking help from the
Internet first

[@ typos and mistakes can be reported to jitkomut@gmail.com
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Outlines

m definition

m types of random processes
m examples

m statistics

m statistical properties

m analysis of wide-sense stationary process
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From RV to RP

extension of how to specify RPs

m definition, elements of RPs
m pdf, cdf, joint pdf

B mean, variance, correlation, other statistics
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Types of random processes

m continuous/discrete-valued
m continuous/discrete-time

m stationary/nonstationary
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Typical examples

m Gaussian: popularly used by its tractability

m Markov: population dynamics, market trends, page-rank algorithm

m Poisson: number of phone calls in a varying interval

m White noise: widely used by its independence property

m Random walk: genetic drifts, slowly-varying parameters, neuron firing
m ARMAX: time series model in finance, engineering

Wiener/Brownian: movement dynamics of particles
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Examples of random signals

m sinusoidal signals with random frequency and phase shift

m a model of signal with additive noise (received = transmitted + noise)
m sum process: S[n] = X[1] + X[2] + - - - + X|[n]

m pulse amplitude modulation (PAM)

m random telegraph signal

m electro-cardiogram (ECG, EKG)

m solar/wind power

m stock prices

above examples are used to explain various concepts of RPs
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Statistical properties

stationary processes (strict and wide senses, cyclostationary)

independent processes

m correlated processes

ergodic processes
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Wide-sense stationary processes

m autocovariance, autocorrelation

m power spectral density

B cross-covariance, cross-correlation
B Cross spectrum

m linear system with random inputs

m designing optimal linear filters
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Questions involving random processes

dependency of variables in the random vectors or processes

probabilities of events in question

m long-term average

statistical properties of transformed process (under linear system)

m model estimation from data corrupted with noise
m signal/image/video reconstruction from noisy data

and many more questions varied by application of interest
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Terminology in Random Processes

m definition and specification of RPs
m statistics: pdf, cdf, mean, variance

m statistical properties: independence, correlation, orthogonal, stationarity
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Definition of a random process

elements to be considered:

m let © be a random variable (that its outcome, 6 is mapped from a sample space S)

m let ¢ be a deterministic value (referred to as 'time') and t € T
definition:
a family (or ensemble) of random variables indexed by ¢
{X(t,0),t eI}
is called a random (or stochastic) process

X(t,0) when © is fixed, is called a realization or sample path
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Example: Sinusoidal wave form

sinusoidal wave forms with random amplitude and phase
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Example: Random telegraph

signal

Random telegraph signal
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Specifying RPs
consider an RP {X (¢,0),t € T} when © is mapped from a sample space S

we often use the notation X (¢) to refer to an RP (just drop ©)
m if T is a countable set then X (¢, ©) is called discrete-time RP
m if 7' is an uncountable set then X (¢, ©) is called continuous-time RP
m if S is a countable set then X (¢,0) is called discrete-valued RP
m if S is an uncountable set then X (¢,0) is called continuous-valued RP

another notation for discrete-time RP is X [n] where n is the time index
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From RV to RP

terms RV RP

cdf Fx(x) Fx ()

pdf (continuous-valued) fx(z) Ix@ (@)

pmf (discrete-valued) p(z p(x)

mean m = E[X] m(t) = E[X(?)]

autocorrelation E[X?] R(t1,t2) = E[X (t1) X (t2)]
variance var|X] var| X (t)]

autocovariance C(t1,t2) = cov[X(t1), X (t2)]
cross-correlation E[XY] Rxy (ti,t2) = E[X (t1)Y (t2)]
cross-covariance cov(X,Y) Cxy(ti,t2) = cov[X(t1),Y (t2)]
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Distribution functions of RP (time sampled)
let sampling RP X (¢,©) at times t1,ta,... 1tk
X1 =X(t1,0), Xo=X(t2,0),..., X =X (t,0)
this (X1,..., Xk) is a vector RV

cdf of continuous-valued RV
F(xy,xe,...,x) = P[X(t1) <@1,..., X(tg) < 4]

pdf of continuous-valued RV

flxy, 20, op)dey - - - dy, =
P[.’L‘l <X(t1) <z +dxy,...,TL <X(tk) <xk+da:k]
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PMF of discrete-valued RV

p(xl,xg,...,a:k) :P[X(tl) ::cl,...,X(tk) :xk]

m we have specified distribution functions from any time samples of RV
m the distribution is specified by the collection of kth-order joint cdf/pdf/pmf

m we have droped notation fx, . x,(z1,...,zx) tosimply f(x1,...,2%)
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Statistics

the mean function of an RP is defined by

m(t) = BX(1)] = / £ (@)dz

—00

var[X (t)] = E[(X () — m(1))*] = /Oo (& —m(t))* fx(2)dz

—0o0

m both mean and variance functions are deterministic functions of time

m for discrete-time RV, another notation may be used: m[n] where n is time index
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Autocorrelation

the autocorrelation of X (t) is the joint moment of RP at different times

(e 9]

Rty ta) = BIX (1) X ()] = / 2y e X () (& 9) derdy

—00

the autocovariance of X (¢) is the covariance of X (¢1) and X (¢2)

C(t1,t2) = E[(X (t1) — m(t1)) (X (t2) — m(t2))]
relations:

m C(t1,t2) = R(t1,t2) — m(t1)m(t2)
m var[X(t)] = C(t,1)

another notation for discrete-time RV: R(m,n) or C'(m,n) where m,n are (integer)
time indices
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Joint distribution of RPs

let X(¢t) and Y (¢) be two RPs
let (t1,...,tx) and (71,...,7%) be time samples of X (¢) and Y (t), resp.

we specify joint distribution of X (¢) and Y (¢) from all possible time choices of time
samples of two RPs

fXY(xlw' . 7$kay1:---7yk)d$1 dwkdyl dyk =
Plry < X(t1) < z1 +dzy, ..., x5 < X(tg) < xp + dxg,
y1 <Y(m) <y +dys, .y <Y () <y + dy]

note that time indices of X (¢) and Y (¢) need not be the same
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Statistics of multiple RPs

the cross-correlation of X (¢) and Y (¢) is defined by

Rxy (t1,t2) = E[X (t1)Y (t2)]

(correlation of two RPs at different times)

the cross-covariance of X (¢) and Y (¢) is defined by
Cxy (1, t2) = B[(X(t1) — mx (t1)) (Y (t2) — my (t2))]

relation: CXy(tl, tg) = RXY(tla t2) - mX<t1)mY(t2)
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Independence, Uncorrelated, Orthogonal

more definitions:

two RPs X (¢) and Y'(t) are said to be
m independent if
their joint cdf can be written as a product of two marginal cdf’s

mathematically,

FXY(x17~"7$k7y17"'7yk) :FX(xla--'7xk)FY(y17"'7yk)

m uncorrelated if
Cxy(t1,t2) =0, for all t; and to

m orthogonal if
Rxvy(t1,t2) =0, for all t; and to
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Stationary process

an RP is said to be stationary if the kth-order joint cdf’s of
X(t1),...,X(tx), and X(t1+47),...,X(tx+7)

are the same, for all time shifts 7 and all & and all choices of ¢1,...,t;
in other words, randomness of RP does not change with time
results: a stationary process has the following properties

m the mean is constant and independent of time: m(t) = m for all ¢

m the variance is constant and independent of time

Random Processes and Applications Jitkomut Songsiri 27 / 176



more results on stationary process:

m the first-order cdf is independent of time
FX(t)(.CU) = FX(t+‘r)(x> = FX (.T), Vt, T
m the second-order cdf only depends on the time difference between samples

Fx(4),X (t2) (%1, T2) = Fix(0), X (ta—t,) (%1, T2), Vi1, 2
m the autocovariance and autocorrelation can depend only on £ — t;

R(tl,tg) :R(tg—tl), C(tl,tQ) :C(tQ—tl), th,tg
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Wide-sense stationary process

if an RP X (¢) has the following two properties:
m the mean is constant: m(t) = m for all ¢

m the autocovariance is a function of to — 1 only:
C(tl,tz) = C’(tl — tg), Vi, to

then X () is said to be wide-sense stationary (WSS)

all stationary RPs are wide-sense stationary (converse is not true)

WSS is related to the concept of spectral density (later discussed)
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Independent identically distributed processes

let X[n] be a discrete-time RP and for any time instances ny, ..., ng
X1:X[’I’L1],X2:X[7’LQ], Xk:X[nk]

definition: iid RP X[n| consists of a sequence of independent, identically distributed
(iid) random variables

X17X27"'7Xk‘

with common cdf (in other words, same statistical properties)

this property is commonly assumed in applications for simplicity
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IID processes

results: an iid process has the following properties

m the joint cdf of any time instances factors to the product of cdf’s

F(ml,...,xk):P[Xl §x1,...,XkSxk]:F(azl)F(azg)---

m the mean is constant
m[n] = E[X[n]] =m, Vn

m the autocovariance function is a delta function

C(ny,n2) =0, for ny #ny, C(n,n)=0c>2E[X[n]—-m))?

m the autocorrelation function is given by

R(ni,n2) = C(ny1,ne) + m?
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Independent and stationary increment property

let X (t) be an RP and consider the interval t; < to

defitions:
m X (t2) — X(t1) is called the increment of RP in the interval t; <t < 9
m X (¢) is said to have independent increments if

X(ta) — X(t1), X(t3) — X(t2), ..., X (ty) — X(tp—1)

are independent RV where t; < to < --- <t} (non-overlapped times)

m X () is said to have stationary increments if
PIX(t2) = X(1) =y = PIX(t2 = t1) = 9

the increments in intervals of the same length have the same distribution
regardless of when the interval begins
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results:

m the joint pdf of X (¢1),..., X (k) is given by the product of pdf of X (¢1) and the
marginals of individual increments

we will see this result in the properties of a sum process
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Jointly stationary process

X(t) and Y (t) are said to be jointly stationary if the joint cdf's of
X(tl, oo ,tk) and Y(Tl,. .. ,Tk)

do not depend on the time origin for all k and all choices of (¢y,...,tx) and
(T1yeey Tk)

Random Processes and Applications Jitkomut Songsiri 34 /176



Periodic and Cyclostationary processes

X (t) is called wide-sense periodic if there exists 7" > 0,
mm(t)=m(t+T) forall t (mean is periodic)
m Cty,t2) =C(t1 +T,t2) = Clt1,t2 +T) =Clth + T, t2 + 1),

for all ¢1,ts, (covariance is periodic in each of two arguments)

X (t) is called wide-sense cyclostationary if there exists 7' > 0,
mm(t)=m(t+T)forall t (mean is periodic)
[ C(tl,tg) = C(tl +T,to + T) for all t1, 15

(covariance is periodic in both of two arguments)
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Useful facts

m sample functions of a wide-sense periodic RP are periodic with probability 1
X(t)=X(t+1T), forallt

except for a set of outcomes of probability zero

m sample functions of a wide-sense cyclostationary RP need NOT be periodic

examples:

m sinusoidal signal with random amplitude (page 88) is wide-sense cyclostationary
and sample functions are periodic

m PAM signal (page 103) is wide-sense cyclostationary but sample functions are not
periodic

Random Processes and Applications Jitkomut Songsiri 36 / 176



Stochastic periodicity
definition: a continuous-time RP X (¢) is mean-square periodic with period T, if
E[(X(t+T) - X(£)%] = 0
let X (t) be a wide-sense stationary RP

X (t) is mean-square periodic if and only if
R(t)=R(r+T), forallr

i.e., its autocorrelation function is periodic with period T
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Ergodic random process

the time average of a realization of a WSS RP is defined by

the time-average autocorrelation function is defined by

T
()t + 7)) :Tli_EI;OQlT/_Tx(t)x(t+7')dt

m if the time average is equal to the ensemble average, we say the RP is ergodic in
mean

m if the time-average autocorrelation is equal to ensemble autocorrelation then the
RP is ergodic in the autocorrelation
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Definition of ergodic RP

a WSS RP is ergodic if ensemble averages can be calculated using time averages of
any realization of the process

m ergodic in mean: (z(t)) = E[X(t)]
m ergodic in autocorrelation: (z(t)x(t + 7)) = E[X ()X (t + 7)]

calculus of random process (derivative, integrals) is discussed in mean-square sense

see Leon-Garcia, Section 9.7.2-9.7.3
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Important random processes
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Outlines

definitions, properties, and applications

m Random walk: genetic drifts, slowly-varying parameters, neuron firing

Gaussian: popularly used by its tractability

Wiener/Brownian: movement dynamics of particles

White noise: widely used by its independence property

Markov: population dynamics, market trends, page-rank algorithm

Poisson: number of phone calls in a varying interval
m ARMAX: time series model in finance, engineering

Random Processes and Applications Jitkomut Songsiri 42 / 176



Bernoulli random process

a (time) sequence of indepenent Bernoulli RV is an iid Bernoulli RP

example:

m [[n] is an indicator function of the event at time n where I[n] = 1 when success
and I[n] = 0 when fail

m let D[n| = 2I[n] — 1 and it is called random step process
Din]=1or —1

DIn] can represent the deviation of a particle movement along a line
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Sum process
the sum of a sequence of iid random variables, X1, X5, ...
Shl=X1+Xo+---+X,, n=12,...

where S[0] = 0, is called the sum process
m we can write S[n] = S[n — 1] + X, (recursively)

m the sum process has independent increments in nonoverlapping intervals
Sn]—=Sn-1=X,, Snh-1-Sn-2]=X,_1,...,52] — S[1] = Xo

(since X}'s are iid)

m the sum process has stationary increments
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Autocovariance of a sum process

m assume X's have mean m and variance o2

m E[S[n]] = nm (Xj's are iid)
m var[S[n]] = no? (Xi's are iid)
we can show that
C(n,k) = min(n, k)a2

the proof follows from letting n < k, and so n = min(n, k)

C(n,k) = E[(S[n] — nm)(S[k] — km)]
= E[(S[n] — nm){(S[n] — nm) + (S[k] — km) — (S[n] — nm)}]
= E[(S[n] — nm)?] + E[(S[n] — nm)(S[k] — S[n] — (k — n)m)]
= E[(S[n] — nm)°] + E[(S[n] — nm)|E[(S[k] — S[n] — (k —n)m)]

(apply that S[n] has independent increments and E[S[n] — nm| = 0)
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Properties of a sum process

m the joint pdf/pmf of S(1),...,S(n) is given by the product of pdf of S(1) and
the marginals of individual increments

m X;'s are integer-valued
m X}'s are continuous-valued

m the sum process is a Markov process (more on this)
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Binomial counting process
let I[n] be iid Bernoulli random process
the sum process S[n] of I[n] is then the counting process

m it gives the number successses in the first n Bernoulli trial
m the counting process is an increasing function

m S[n] is binomial with parameter p (probability of success)

Random Processes and Applications Jitkomut Songsiri
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Random walk
let D[n] be iid random step process where

1, with probability p
Din] =
—1, with probability p

m the random walk is a sum process

m we can show that E[X[n]] =n(2p — 1)

m the random walk has a tendency to either grow if p > 1/2 or to decrease if
p<1/2
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a random walk example as

the sum of Bernoulli sequences with p = 1/2

100

paths of random walk

100
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40

20

X[n]

0 200 400 600 800 1000

E[X(n)] = 0 and var[X (n)] = n (variance grows over time)
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Properties of a random walk

m X|[n] has independent stationary increments in nonoverlapping time intervals
P[X[m] — X[n] = y] = P[X[m —n] = y]

(increments in intervals of the same length have the same distribution)

m a random walk is related to an autoregressive process since
X[n+1] = X[n]+ D[n + 1]
(widely used to model financial time series, biological signals, etc)
stock price: log X[n + 1] =log X[n] + D[n + 1]

m extension: if D[n] is a Gaussian process, we say X[n| is a Gaussian random walk
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Gaussian process
an RP X (t) is a Gaussian process if the samples
X1 = X(t1), Xo = X(t2), Xp = X(t1)
are jointly Gaussian RV for all k£ and all choices of ¢1,...,tx

that is the joint pdf of samples from time instants is given by

1 —(1/2)(z—m)TE " (z—m
le,...,Xk(mla--'axk) = We ( / )( ) ( )
m(t1) C(ty,t1) C(ti,t2) --- Clt1,tg)
m(tg) C(tQ,tl) C(tQ,tz) cee C(tg,tk)
m = . U= . . .
m(tx) C(ty,t1) X Ctr,tr)
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Properties of Gaussian processes

m Gaussian RPs are specified completely by the mean and covariance functions
m Gaussian RPs can be both continuous-time and discrete-time

m linear operations on Gaussian RPs preserve Gaussian properties
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Example of Gaussian process |

let X (t) be a zero-mean Gaussian RP with
C(tl, tg) = 46_3|t1_t2|

find the joint pdf of X (¢) and X (¢ + s)
we see that
C(t,t+s) = 473, var[X (t)] = C(t,t) =4

therefore, the joint of pdf of X (¢) and X (¢ + s) is the Gaussian distribution
parametrized by

T
1 -(1/2) |:«T1} DE |:x1:| 4 4e—38

_ T2 L2 _
fX(t),X(t-i—s)(xl?xQ) - (QW)’E‘I/Ze ; U= [4635 4 :|
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Example of Gaussian process |l
let X (t) be a Gaussian RP and let Y (t) = X (¢t + d) — X (¢)

m mean of Y (¢) is

m the autocorrelation of Y'(¢) is

Ry(t1,t2) = E[(X(t1 + d) — X(t1))(X (t2 + d) — X(t2))]
= Rm(tl +d,ts + d) — Rx(h +d, tz) — Rx(tl,tz + d) + Rm(tl,tg)

m the autocovariance of Y'(¢) is then

Cy(t1,t2) = E[(X(t1 + d) — X(t1) — my(t1))(X (b2 + d) — X(t2) — my(t2))]
= Cp(ty + d,ty + d) — Colty + d, ta) — Cu(ty, ta + d) + Ca(t1, t2)
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since Y (¢) is the sum of two Gaussians then Y (t) must be Gaussian

m any k-time samples of Y'(#)
Y (t1),Y(t2),...,Y (t)

is linear transformation of jointly Gaussians, so Y (t1),..., Y (tx) have jointly
Gaussian pdf
m for example, find joint pdf of Y(¢) and Y (¢ + s): need only mean and covariance

m my(t) and my(t +s)
m covariance is given by

Cy(t,t) Cy(t,t+s)

X = Cyt,t+5) Cy(t+s,t+s)
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Wiener process
consider the random step on page 43

symmetric walk (p = 1/2), magnitude step of M, time step of h seconds

let X},(t) be the accumulated sum of random step up to time ¢
m Xp(t) = M(D[1] 4+ D[2] + - -- + D[n]) = MS[n] where n = [t/h]
= E[X,()] =0
m var[X,(t)] = M?n

Wiener process X (t): obtained from X} () by shrinking the magnitude and time step
to zero in a precise way

h—0, M —0, with M =+ ah where o > 0 is constant

(meaning; if v = M /h represents a particle speed then v — oo as displacement M
goes to 0)
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Properties of Wiener (Wiener-Levy) process

m E[X(t)] = 0 (zero mean of all time)
m var[X (t)] = (vVah)? - (t/h) = at (stays finite and nonzero)
m X (t) = limy,_yo M(D[1] + --- + D[n]) = lim,, o \/@%
approaching the sum of an infinite number of RV
m by CLT, pdf X (t) approaches Gaussian with mean zero and variance at

1 o2

fxw(x) = 5

:

m X (¢) has independent stationary increments (from random walk form)

m Wiener process is a Gaussian random process (X (¢) is obtained as linear
transformation of increments))
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Properties of Wiener (Wiener-Levy) process

m used to model (movement of particles in fluid)

m the covariance function of Wiener process is
C(tl,tg) = amin(tl,tg), a>0
to show this, let t; > t9,

Clt1,t2) = B[X(t1) X (t2)] = B[(X (t1) — X (t2) + X (t2)) X (t2)]
= B[(X (1) — X(t2)) X (t2)] + var[X (t2)]
=0+ ato

using X (t1) — X (t2) and X (t2) are independent (when ¢; > t)

if to < t1, we do the same and obtain C(t1,t2) = aty
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Sample paths of Wiener process

when o = 2
100 realizations of Wiener process

0.2

at (variance grows over time)

E[X(t)] = 0 and var[X ()]
59 / 176
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White noise process

definition: a random process X (t) is white noise if

m E[X(t)]=0 (zero mean for all t)
m E[X(t)X(s)] =0fort#s (uncorrelated with another time sample)

in another word,
m the correlation function of a white noise is an impulse function

R(tl,tg) = CM(S(tl — tg), a>0

m power spectral density is flat (more on this): S(w) =a, Yw

m X (¢) has infinite power, varies extremely rapidly in time, and is most unpredictable
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White noise and Wiener processes
those two properties of white noise are derived from the definition that

white Gaussian noise process is the time derivative of Wiener process

recall the correlation of Wiener process is Ryiener(t1,%2) = amin(ty,t2)

0 0
R(tla t2) = E[X(tl)X(tQ)] =E 7Xwiener(t1) : 7Xwiener(t2)
ot1 Oto
o 0 (t ; ) 0o 0 ate, to <1y
8t1 8t Wlener 1,02 8t1 6t2 Oétl, tg Z tl

= —oau(ty —t2), u is the step function
oty

but u is not differentiable at ¢; = ¢, so the second derivative does not exist
instead, we generalize this notion using delta function

R(tl,tQ) = Oé(S(tl — tQ)
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Example of white noise

white noise Gaussian process with variance 2

White noise Gaussian process

: ﬁ ﬂ I ) HUTWT o] ﬂ%
A gl

X[n]

0.05

o

-0.05

Rin]
oW

mean

WWNWWM WWWWMWWW

0

n
autocorrelation

1000

m mean function (averaged over 10,000 realizations) is close to zero
m sample autocorrelation is close to a delta function where R(0) ~ 2
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Poisson process
let N(t) be the number of event occurrences in the interval [0, ¢]

properties:
m non-decreasing function (of time t)
m integer-valued and continuous-time RP
assumptions:
m events occur at an average rate of A\ events per seconds
m the interval [0,¢] is divided into n subintervals and let h = t/n
m the probability of more than one event occurrences in a subinterval is negligible
compared to the probability of observing one or zero events
m whether or not an event occurs in a subinterval is independent of the outcomes in
other subintervals
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Meaning of Poisson process

m the outcome in each subinterval can be viewed as a Bernoulli trial

m these Bernoulli trials are independent

m N(t) can be approximated by the binomial counting process
Binomial counting process:

m let the probability of an event occurrence in subinterval is p

m average number of events in [0,t] is A\t = np

mlet n — 0o (h=t/n— 0) and p — 0 while np = At is fixed

m from the following approximation when n is large

P(N(t) =k) = ( Z >pk(1 —p)"F W)ke*M, k=0,1,...

N(t) has a Poisson distribution and is called a Poisson process

Random Processes and Applications Jitkomut Songsiri 64 / 176



Example of Poisson process (A = 0.5 )

m generated by taking cumulative sum of n-sequence Bernoulli with and p = \T'/n
where n = 1000 and T' = 50
Poisson process with A=05

35 20 mean and variance function
30 ——realization 1 ' ' ' '
25 realization 3 25 | |——sample variance
20
__ 20
X 15 L 15
10 + 10 |
5t 5|
0 — . : : : 0 . . . .
0 10 20 30 40 50 0 10 20 30 40 50
t time

m the rate of Poisson process grows as At for ¢t € [0, 7]
m the mean and variance functions (approximate over 100 runs) have linear trend
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Poisson process: joint pmf
joint pmf: for t; < to,

P[N(t1) =i, N(t2) = J]

P[N(t1) = i|P[N(t2) = N(t1) = j — i
P[N(t1) = i]P[N(ty —t1) = j — i
()\tl)ie_)‘tl ()\(252 — tl))je_A(tQ_tl)

autocovariance: C(t1,t2) = Amin(ty,te)

for tl < t2,
C(t1,t2) = E[(N(t1) — At1)
= E[(N(t1) — A1)
— E[(N(t) - \1)|E
= Ay

—

N(t2) = N(t1) —
(N(t2) = N(t1) = A(t2 — t1)] + var[N (t1)

N(t2) — At2)]

Aty + M1 + (N (1) — M)}
]

we have used independent and stationary increments property
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Applications of Poisson processes

examples:
m random telegraph signal
m the number of car accidents at a site or in an area
m the requests for individuals documents on a web server

m the number of customers arriving at a store

Random Processes and Applications Jitkomut Songsiri
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Time between events in Poisson process

let T be the time between event occurrences in a Poisson process

m the probability involving T' follows

P[T > t] = P[no events in t seconds|] = (1 — p)"

A"
:(1—> —>e_)‘t, as n — oo
n

T is an exponential RV with parameter A

m the interarrival time in the underlying binomial proces are independent geometric
RV

m the sequence of interarrival times T'[n] in a Poisson process form an iid sequence
of exponential RVs with mean 1/

m the sum S[n| = T'[1] + --- + T[n] has Erlang distribution
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Markov process
for any time instants, t] <ty < --- <tp < tp4, if

discrete-valued

PX (tht1) = xpy1 | X(t) = g, ..., X(01) = 1] =
PX (tpt1 = Tpg1 | X(t) = o]

continuous-valued
flapn | X(t) = a0, X(0) = o) = flapn | X)) = ap)
then we say X (¢) is a Markov process

joint pdf conditioned on several time instants reduce to pdf conditioned on the
time instant
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Properties of Markov process

pmf and pdf of Markov processes are conditioned on several time instants can
reduce to pmf/pdf that is only conditioned on the most recent time instant

an integer-valued Markov process is called a Markov chain (more details on this)

the sum of iid sequence where S[0] = 0 is a Markov process

a Poisson process is a continuous-time Markov process

m a Wiener process is a continuous-valued Markov process

in fact, any independent-increment process is also Markov
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to apply the independent-increment property, consider a discrete-valued RP,

[ (te1) = 2o | X () = 28, -, X (1) = 21]
PX(trr1) = X () = w1 — x| X () = 2y -, X (1) = 4]
P[X (tg41) — X(tx) = xg+1 — x| X(tg) = x| by independent increments
P[X (tk41) = w41 | X (k) = @]

more examples of Markov process

m birth-death Markov chains: transitions only between adjacent states are allowed
p(t+1) = Pp(t), P is tri-diagonal
m M/M/1 queue (a queuing model): continuous-time Markov chain

p(t) = Qp(t)
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Discrete-time Markov chain

a Markov chain is a random sequence that has n possible states:
X(t) e{1,2,...,n}
with the property that
prob( X(t+1) =i | X(1) =7 ) = pi

where P = [p;;] € R™*"
m p;; is the transition probability from state j to state ¢
m P is called the transition matrix of the Markov chain
m the state X (¢) still cannot be determined with certainty

m {1,2,...,n} is called /abel (simply mapped to integers)
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Example of DT Markov chain

a customer may rent a car from any of three locations and return to any of the three
locations

Rented from location

1 2 3

0.8 03 02]1
0.1 02 062
0.1 05 02]3

Returned to location
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Properties of transition matrix

let P be the transition matrix of a Markov chain
m all entries of P are real nonnegative numbers

m the entries in any column are summed to 1 or 17 P = 17"
p1j+p2i+ -+ pnj =1

(a property of a stochastic matrix)

1 is an eigenvalue of P

if ¢ is an eigenvector of P corresponding to eigenvalue 1, then

Pkg =g, forany k=0,1,2,...
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Probability vector
we can represent probability distribution of x(t) as n-vector

prob(z(t)=1)

p(t) = ;
prob( z(t) =n)

m p(t) is called a state probability vector at time ¢
m Y pi(t)=1or1Tp(t) =1
m the state probability propagates like a linear system:

p(t+1) = Pp(t)
m the state PMF at time ¢ is obtained by multiplying the initial PMF by P!
p(t) = P'p(0), fort=0,1,...
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Example: a Markov model for packet speech

m the transition matrix is P = [

0.8 04
0.2 0.6
m the initial state probability is p(0) = (1,0)

m two states of packet speech: contain 'silent activity' or 'speech activity’
m the packet in the first state is 'silent’ with certainty

0.8

0.2

Prd

2
Random Processes and Applications
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eigenvalues of P are 1 and 0.4

calculate P! by using 'diagonalization’ or 'Cayley-Hamilton theorem’ or
diagonalization approach

pt — [(5/3)(0440.2- 0.4%)  (2/3)(1 — 0.4%)
N [ (1/3)(1 — 0.4%) (5/3)(0.2 + 0.451)

. [2/3 2/3
P %[1/3 1/3

25 2] -

] ast — oo (all columns are the same in limit!)

limy o0 p(t) = [
p(t) does not depend on the initial state probability as t — oo
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0 1
i = ?
what if P [1 O] /
m we can see that

1 0 01
2 3
P -_— {. 1] ) P -_— {1 O] RG]

m P! does not converge but oscillates between two values

under what condition p(t) converges to a constant vector as t — oo ?

definition: a transition matrix is regular if some integer power of it has all positive
entries

fact: if P is regular and let w be any probability vector, then
lim Plw = q
t—o0

where ¢ is a fixed probability vector, independent of ¢
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Steady state probabilities

we are interested in the

q= tlggop(t) (if converges)

m the steady-state vector ¢ of a regular transition matrix P satisfies
lim p(t +1) = P lim p(t) = Pg=q
t—o0 t—o0

(in other words, ¢ is an eigenvector of P corresponding to eigenvalue 1)

m if we start with p(0) = ¢ then
p(t) = P'p(0) =1'qg =¢q, forallt
q is also called the stationary state PMF of the Markov chain
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Example: weather model

probabilities of weather conditions given the weather on the preceding day:

0.4 0.2
P= [0.6 0.8}

(probability that it will rain tomorrow given today is sunny, is 0.2)

given today is sunny with probability 1, calculate the probability of a rainy day in long
term
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Gauss-Markov process
let W[n] be a white Gaussian noise process with W[1] ~ N(0,02)
definition: a Gauss-Markov process is a first-order autoregressive process

X[1]=W[l], X[n]=aX[n—-1]+Win], n>1, |a/<1

m clearly, X[n] is Markov since the state X [n| only depends on X [n — 1]
m X|[n] is Gaussian because if we let

Xp=X[k], Wp=WIk], k=1,2,...,n (time instants)
rx, ] [ 1 0 -+ 0 0] 1w
X5 a 1 -~ 00 W
Xn-1 a2 g3 1 0| |Wna
X, _an L gn— a 1_ i Whn ]

pdf of (X1,...,X,) is Gaussian for all n
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Questions involving a Gauss-Markov process

setting:
m we can observe Y[n] = X[n] + V[n] where V' represents a sensor noise
m only Y can be observed, but we do not know X

question: can we estimate X [n] from information of Y [n] and statistical properties of
W and V?

solution: yes we can. one choice is to apply a Kalman filter
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example: a = 0.8, Y[k] = 2X[k]| + V[k]

25
—o—state
o —e—output
——estimated state

X k] is estimated by Kalman filter

Random Processes and Applications Jitkomut Songsiri 83 /176



References

Chapter 9 in A. Leon-Garcia, Probability, Statistics, and Random Processes for
Electrical Engineering, 3rd edition, Pearson Prentice Hall, 2009

Chapter 9 in H. Stark and J. W. Woods, Probability, Statistics, and Random
Processes for Engineers, 4th edition, Pearson, 2012

Random Processes and Applications Jitkomut Songsiri 84 / 176



Examples of random processes
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Outlines

m sinusoidal signals

m random telegraph signals
m signal plus noise

m ARMA time series
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Sinusoidal signals
consider a signal of the form

X (t) = Asin(wt + ¢)

m randomness occurrs in in each of following settings: random frequency, random

amplitude, random phase
m questions involving this example: find pdf, mean, variance, correlation function

idal signals with random phase

idal signals with random amplitude

X(t)

X(t)

wwwwwwwwww
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Sinusoidal signal: random amplitude

AeU[-1,1] whilew=mand ¢ =0
X(t) = Asin(nt)

(continuous-valued RP and sample function is periodic)
m find pdf of X (%)

m when t is integer, we see X (t) =0 for all A
P(X(t)=0)=1, P(X(t)= other values) =0
m when ¢ is not integer, X (¢) is just a scaled uniform RV

X (t) € U[—sin(rt), sin(mt)]
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Sinusoidal signal: random amplitude

= find mean of X (%)
m(t) = E[X(t)] = E[A]sin(7t)

(could have zero mean if sin(nt) =0 )

m find correlation function
R(t1,t2) = E[Asin(rt1) Asin(nty)] = BE[A?]sin(rt;) sin(nts)
m find covariance function: C(t1,t2) = R(t1,t2) — m(t1)m(t2)

C(t1,t2) = E[A?]sin(nty) sin(nts) — (E[A])? sin(nty) sin(nto)

= var|A] sin(7ty ) sin(7t2)

m X (t) is wide-sense cyclostationary, i.e.,, m(t) = m(t +T') and
C(t1,t2) =C(t1 +T,t2 +T) for some T’
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Sinusoidal signal: random phase shift
A=1l,w=1and ¢ ~U[—7, ]

X (t) =sin(t + ¢) (continuous-valued RP)

m find pdf of X (¢): view x = sin(t + ¢) as a transformation of ¢
r=sin(t+¢) e ¢ =sin Hx) —t,¢p =7 —sinH(x) —t
the pdf of X (¢) can be found from the formula
d
¢ ! 1<z<1
dx

o TVI—a? T

(pdf of X (t) does not depend on t; hence, X (t) is

Fxw@) =Y fler)
!
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Sinusoidal signal: random phase shift

m find the mean function

E[X(t)] = E[sin(t + ¢)] = L /ﬂ sin(t + ¢)d¢p =0

27 J_,

m find the covariance function

C(tl, tg) = R(tl, tg) = E[Sin(t1 + ¢) Sin(tg + (;3)]
= % » %[cos(tl —t9) — cos(ty + ta + 2¢)|d¢

= (1/2) cos(t1 — t2)

(depend only on t; — t3)

m X (t) is wide-sense stationary (also conclude from the fact that X (¢) is
stationary)
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Random telegraph signal

a signal X (t) takes values in {1, —1} randomly in the following setting:

m X(0) =1 or X(0) = —1 with equal probability of 1/2

m X (t) changes the sign with each occurrence follows a Poisson process of rate «
questions involving this example:

m obviously, X (¢) is a discrete-valued RP, so let's find its pmf

m find the covariance function

B examine its stationary property
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Random telegraph: PMF
based on the fact that

X(t) has the same sign as X(0) <= number of sign changes in [0,] is even
X (t) and X (0) differ in sign <= number of sign changes in [0,¢] is odd

P(X(t) = 1) = P(X(t) = 1|X(0) = 1) P(X(0) = 1)

no. of sign change is even

+ P(X(t) = 1|X(0) = —1) P(X(0) = —1)

no. of sign change is odd

let N(t) be the number of sign changes in [0 t] (which is Poisson)

P(N(t) = even integer) = o — (1/2)(1 4 %)

: kO:O (at)2k+1 —at —2at
P(N(t) = odd integer) = 2 me =(1/2)(1 — e =)
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Random telegraph: PMF

pmf of X (t) is then obtained as
P(X(t) = 1) = (1/2)(1+e7>)(1/2) + (1/2)(1 — e7>*)(1/2)

=1/2
PX(t)=—-1)=1-P(X(t)=1) =1/2

m pmf of X (¢) does not depend on ¢
m X (t) takes values in {—1,1} with equal probabilities
if X(0) =1 with probability p # 1/2 then how the pmf of X (¢) would change ?
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Random telegraph: mean and variance

m mean function:

E[X(1)] = S anP(X(t) = o) = 1+ (1/2) + (—1) - (1/2) = 0
k

m variance:

var[X (1)) = E[X(1)*] - (E[X(1)])* = ) 2R P(X (1) = a)
k

= (12 (1/2) + (-1 (1/2) =1

both mean and variance functions do not depend on time
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Random telegraph: covariance function
since mean is zero and by definition
C(t1,t2) = E[X (t1) X (t2)]
= (1)*P[X(t1) = 1,X(t2) = 1] + (-1)*P[X (1) = —1, X (t2) = —1]
+ (1)(-1)P[X(t1) =1,X(t2) = —1] + (-1)(1)P[X(t1) = —1, X (t2) = 1]
from above, we need to find joint pmf obtained via conditional pmf
P(X(t1> = xl,X(tg) = :L'Q) = P(X(tg) = X9 ’ X(tl) = 1‘1) P(X(t1> = .%'1)

depend on sign change known

m X (¢1) and X (t2) have the same sign

P(X(ty) =21 | X(t1) = 1) = P(N(ty — t1) = even) = (1/2)(1 4 e~ 2(tz—t0))
m X (¢1) and X (t2) have different signs

P(X(tz) = —z1 | X(t1) = 21) = P(N(t2 — t1) = odd) = (1/2)(1 — e~2(2=1))
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Random telegraph: covariance function

the covariance is obtained by

C(t1,t2) = P(X(t1) = X(t2)) + P(X(t1) # X(t2))

=2-(1/2)(1 + e =21)(1/2) — 2 (1/2)(1 — e *(271)) . (1/2)
_ e—2a\t2—t1|

it depends only on the time gap t2 — 1, denoted as 7 = to — t;

= we can rewrite C(7) = e~27l

m as 7 — 0o, values of X (¢) at different times are less correlated

X (t) (based on the given setting) is wide-sense stationary
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Random telegraph: covariance function
covariance function of random telegraph signal: set « = 0.5

covariance function of random telegraph signal

09 |
08 |
07 |
06 |

Eos b
04|
03 |

0.2

O'L’Q?T ¢,

-5 0
time gap

m left: C(ty,t2) = e~20l2=11 a5 3 function of (t1,12)
m right: C(t1,t2) = C(7) as a function of 7 only
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Random telegraph: revisit
revisit telegraph signal: when X (0) = 1 with probability p # 1/2
m how would pmf of X (¢) change ?
m examine stationary property under this setting
pmf of X (%)

P(X(t)=1) = (1/2)1+e*)(p)+(1/2)1 - *)(1-p)
= 1/24+e**(p—1/2)
P(X(t)=-1) = 1-P(X(t)=1)
= 12— (p—1/2)

m when p # 1/2, pmf of X (¢) varies over time but pmf converges to uniform as
t — oo, regardless of the value of p
m if p=1 (X (0) is deterministic) then pmf still varies over time:

P(X(t) = 1) = (1/2)(1+ e %), P(X(t) = —1) = (1/2)(1 — )
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Random telegraph: stationary property
stationary property: X (¢) is stationary if
P(X () =21,..., X(tk) = ap) = P(X(t1 +7) = 2p, ..., X (b + 7) = 21)

forany t; <ty <--- <tpandanyrt

examine by characterizing pmf as product of conditional pmf’s
p(x1,. . 2k) = p(aklzr—1, . 2)p(@k-1|TR—2, ..., 21) - p(z2]21)p(21)

which reduces to

P(X(tl) :fL‘l,...,X(tk) :l'k) =
P(X(tk) = .’Ek|X(tk_1) == xk;—l) s P(X(tg) = $2|X(t1) = fL‘l)P(X(tl) = 1‘1)

using independent increments property of Poisson process
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Random telegraph: stationary property
because

m for example, if X (¢;) don't change sign
P(X(tk) = SUk|X(tk_1) = xk_l) = P(N(tk - tk—l) = even)

if X(tp—1) is given, values of X () are determined solely by N (t) in intervals
(tj,tj—1) which is independent of the previous intervals

m only knowing xj_1 is enough to know conditional pmf:
P(xp|zg—1, k-2, ..., 21) = P(ag|rp_1)
then, we can find each of the conditional pmf's

(1/2)(1 + e=20(0=t0)) for 2y, = 2,

P(X(tg) = 2| X (th—1) = 2p—1) = {(1/2)(1 — em20{tit51)) for ay = —zp_y
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Random telegraph: stationary property

with the same reasoning, we can write the joint pmf (with time shift) as

P(X(tl—i—T):$1,...,X(tk+7):$k):
PX(tp+7)=ap|X(tp_1+7)=m2p_1) -
P(X(t2+T):$2|X(t1+T):.Tl)P(X(tl—i—T):l‘l)

where these are equal
P(X(tg) = k| X (tg—1) = zp-1) = P(X(ts + 7) = 2| X (tp—1 + 7) = 2p-1)

because it depends only on the time gap (from page 101)
as a result, to examine stationary property, we only need to compare

P(X(tl) :$1) VS P(X(t1+7') :CL‘l)

which only equal in steady-state sense (as t; — oo) from page 99
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Pulse amplitude modulation (PAM)

setting: to send a sequence of binary data, transmit 1 or —1 for 1" seconds

X(t)= > Auwp(t—nT)

n=—oo

where Ay is random amplitude (£1) and p(¢) is a pulse of width T
m m(t) =0 since E[4,] =0
m C(t1,t2) is given by

E[X(t1)?] if nT <ty,ts < (n+1)T

B t1 =1,
C(t1,t2) = {E[X(tl)]E[X(tQ)] =0, otherwise

m X (t) is wide-sense cyclostationary but clearly sample function of X (¢) is not
periodic
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Signal with additive noise

most applications encounter a random process of the form

Y(t) = X(t) + W(t)

m X (¢) is transmitted signal (could be deterministic or random) but unknown
m Y(¢) is the measurement (observable to users)
m W (t) is noise that corrupts the transmitted signal
common questions regarding this model:
m if only Y (¢) is measurable can we reconstruct/estimate what X (¢) is 7
m if we can, what kind of statistical information about W (t) do we need 7

m if X () is deterministic, how much W affect to Y in terms of fluctuation?
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Example: signal with additive noise

U I 'HH“W”'”!‘( ‘lh “m‘

| B3 2'50"3239
) i
[T

555555
555555555555555555555555555555555555
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Signal with additive noise

simple setting: let us make X and W independent
cross-covariance: let X and W be the mean removed versions

Couy(t1,t2) = E[(X(t1) — my(t1)) (Y (t2) — my(t2))]
= E[(X(t1) — ma(t1)) (X (t2) + W (t2) — my(t2) — my(t2))]
= E[X (t1)(X(t2) + W (t2))]
= Cy(t1,t2) +0

cross-covariance can never be zero as Y is a function of X
autocovariance:

Cy(tr,t2) = E[(Y(t1) — my(t1)) (Y (t2) — my(t2))]
= E[(X(t1) + W (t1) (X (t2) + W(t2))]
= Cy(t1,t2) + Cult1,t2) + 0

the variance in Y is always higher than X; the increase is from the noise
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Signal with additive noise

simple setting: let us make X and W independent
cross-covariance:

Ray(t,t2) = E[X(0)Y (t2)] = E[X (02)(X (t2) + W (22)]
= E[X(t1) X (t2)] + E[X (t1)W (22)]
= Ry (tr, t2) + ma(t)ma (t2)

cross-covariance can never be zero as Y is a function of X

autocovariance:

Ry(t1,t2) = E[Y (t1)Y (t2)] = E[(X (t1) + W (t1))(X (t2) + W (t2)]
= E[X(t1) X (t2)] + E[W (t1)W (t2)] + E[X ()W (t2) + W (t1) X (t2)]
= Ry (t1,t2) + Ry (t1, t2) + mg(tr)muw(t2) + me(t2)mw(t1)
the variance in Y is always higher than X; the increase is from the noise
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Autoregressive Moving Average

let e(t) be a white noise process, an ARMA process is described by
y(t) = ary(t — 1) + agy(t —2) + -+ + apy(t — p)
+e(t)+cie(t—1)+ -+ cqe(t — q)

y(t) depends on its own history (autoregressive) and noise history (moving average)
define the lag operator, Ly(t) = y(t — 1)

recursive equation of ARMA can be expressed as

1= (aL+- +apLP)y(t) = [1+ 1L + - - + cgL9e(t) < A(L)y(t) = C(L)e(t)

m A(L)=1— (a1L + -+ a,LP): autoregressive (AR) polynomial of order p
m C(L)=1+c1L+ -+ ¢cgL9% moving average (MA) polynomial of order ¢

coefficients of AR and MA polynomials affect several properties of ARMA processes
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Sample paths of ARMA

MA ARMA

AR

m A(L)=1—(1.4L — 0.8L?) for AR and C(L) =1+ 0.7L + 0.2L for MA

m each sample path is driven by different realizations of white noise
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Stationary ARMA processes

m an ARMA process is wide-sense stationary (WSS) if the roots of
AR polynomial: A(L) =1 — (a1L + asL + - -- + a,LP) lie outside the unit circle
m the ARMA process is invertible if the roots of
MA polynomial: C(L) =1+ c¢1L+ coL + --- 4+ ¢4L?) lie outside the unit circle
the transfer function from e to y is

H(z):N(Z): L+ecrz7l 4 ez
_ -1 -2 ... -p
D(z) 1—(a1z7'+agz=2+ - +apz7P)

refer to page 154, X is WSS if H(z) is stable, i.e., poles of H(z) or roots of D(z) lie
inside the unit circle — equivalent to condition on A(L)

Random Processes and Applications Jitkomut Songsiri 110 / 176



ACF and PACF of ARMA processes
MATLAB shows ACF (autocovariance) and PACF (partial autocovariance)

1 AR-ACF 1 AR-PACF
w 05 5 0% N
2 <
g |t [ g0
05 -
o 2 4 6 8 10 12 14 16 18 20 o 2 4 6 8 10 12 14 16 18 20
Lag Lag
1 MA-ACF 1 MA-PACF
" w
53
os } Qos ‘
< <
= s 1
T T T } ° : f . —
T
0 pu—i T T T |
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Lag Lag
, ARMA-ACF , ARMA-PACF
5 05 5 os ‘
5]
g ‘ ] Ll Tk |
£’ : T 0 :
Il =
z [ z
20 Zos
1 1
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Lag Lag

m PACF of AR(p) cuts off after lag p
m ACF of MA(q) cuts off after lag ¢
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AR process: autocorrelation

the autocorrelation of AR(p) process:
y(t) = ary(t — 1) + agy(t —2) + - + apy(t — p) + e(t)
also progresses as another autoregressive process known as Yule-Walker equation
R(t)=a1R(t — 1)+ aR(t —2) + -+ - + a,R(t — p)
YW equation can be expressed as a Toeplitz system, e.g., AR(3)

R(1) R(0) R(~1) R(-2)] [as
R2)| = |R1) RO) R(-1)| |as
R(3) R2) R(1) R(0) | |as

—~

we can use Toeplitz structure in Yule-Walker equation to solve AR coefficients

Random Processes and Applications Jitkomut Songsiri 112 / 176



Stationarity via differencing

a process y(t) does not seem to be stationary (slowly decaying ACF)
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yo fluctuates around a constant and ACF decays to zero
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Integrated process

denote L a lag operator; a process y(t) is integrated of order d if

(I = L)%y(1)

is WSS (after d*® differencing)
m we use I(d) to denote the integrated model of order d
m random walk is the first-order integrated model

m the lag of differencing is used to reduce a series with a trend
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ARIMA process
y(t) is an ARIMA(p, d, q) process if the dth differences of y(t) is an ARMA(p,q)
A(L)I — L)%(t) = C(L)e(t)

examples of scalar ARIMA models
my(t) =y(t—1)+e(t)+ ce(t — 1) can be arranged as

(1 —=L)y(t) = (1 +cL)e(t)

which is ARIMA(0,1,1) or sometimes called
my(t)=ay(t—1)+y(t—1)— ay(t — 2) 4 e(t) can be arranged as

(1 —aLl)(1 = L)y(t) = e(t)

which is ARIMA(1,1,0)
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Pure seasonal ARMA

an ARMA(P, Q)5 process takes the form

A(L%)y(t) = C(L?)
where s is the seasonal period (positive integer)
m A(L®) =1— (a1 L° + apL?* + - - - + apL’?) is called seasonal AR polynomial
m C(L%) =1+ 1 L%+ caL? + - + ¢gL?) is called seasonal MA polynomial
example: y(t) = a1y(t — 12) + a2y(t — 24) + e(t) + cre(t — 12)
[1— (a1L® + aoL**)]y(t) = [1 + c1 L¥)e(t)

and s=12,P=2,Q =1
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Behavior of ACF and PACF

stationary ARMA processes

AR(p) MA(q) ARMA(p, q)
ACF tails off cuts off after lag ¢ tails off
PACF cuts off after lag p tails off tails off

pure SARMA processes

AR(P), MA(Q)s ARMA(P, Q)
ACF  tails off at lags ks, cuts off after lag Qs tails off at lags ks
k=1,2,...,
PACF cuts off after lag Ps tails off at lags ks, tails off at lags ks
k=1,2,...,
note: the values at nonseason lags 7 # ks, for k =1,2,..., are zero
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Wide-sense stationary processes
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Outlines

m definition

m properties of correlation function

m power spectral density (Wiener — Khinchin theorem)
m cross-correlation

B Cross spectrum

m linear system with random inputs

B non-stationary processes
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Definition

the second-order joint cdf of an RP X (¢) is

Fx (11),x (12) (1, T2)
(joint cdf of two different times)

we say X (t) is wide-sense (or second-order) stationary if

Fx(11),x (t2) (%1, T2) = Fx (4, 47), X (to+7) (T1, T2)
the second-order joint cdf do not change for all ¢1,t and for all 7

results:

m E[X(¢)] = m (mean is constant)
m R(t1,t2) = R(ta — t1) (correlation depends only on the time gap)
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Properties of correlation function
let X (t) be a wide-sense scalar real-valued RP with correlation function R(t1,t2)
m since R(t1,t2) depends only on t; — t2, we usually write R(7) with 7 =¢; — to
m R(0) = E[X(¢)?] for all ¢

m R(7) is an even function of 7
R(T)2EX(t+7)X(#)] =EX®X(t+7)] £ R(—7)
m |R(7)| < R(0) (correlation is maximum at lag zero)
E[(X(t+7)—X(t)?] > 0= 2E[X(t+7)X(t)] <E[X(t+ 1) + E[X(t)?]
m the autocorrelation is a measure of rate of change of a WSS

P(X(t+71)—X®t)|>e)=P(|X(t+7)— X)) > €)
< E[IX(t+7) - X(®)"]  2(R(0) — R(7))

- €2 €2

Random Processes and Applications Jitkomut Songsiri 121 / 176



m for complex-valued RP, R(7) = R*(—7)
R(r) 2E[X(t+7)X*#t)] =EX#®)X*(t—7)] =E[X(t — 7)X*(t)] £ R*(-7)

m if R(0) = R(T') for some T" then R(7) is periodic with period T" and X (¢) is
mean square periodic, i.e.,

E[(X(t+T) - X(1)*]=0

R(7) is periodic because
(R(r+T) = R(7))* ={E[(X(t+7+T) - X(t+7)X(t)]}*
<E[(X(t+7+T)— X(t+7))%E[X?(t)] (Cauchy-Schwarz ineq)
= 2[R(0) — R(T)]R(0) =0
X (t) is mean square periodic because
E[(X(t+T) - X(1))*] = 2(R(0) — R(T)) = 0
m let X(t) =m + Y (t) where Y (¢) is a zero-mean process
Ry(1) = m? + Ry(7)
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Example of WSS processes

sinusoid with random phase

random telegraph signal

autocorrelation
autocorrelation

m sinusoids with random phase: R(7) = ATQcos(wT)

m random telegraph signal: R(7) = e 2°/"]
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Nonnegativity of correlation function

let X(t) be a real-valued WSS and let Z = (X (¢1), X (t2),..., X(tn))

the correlation matrix of Z, which is always nonnegative, takes the form

R(0) R(t1 — t2) o R(t1 —tn)

R(ty — 1) R(0)

R = (symmetric)

Rity —t) - Rltw—tya)  R(0)

since by assumption,
m X(t) can be either CT or DT random process
m N (the number of time samples) can be any number
m the choice of t;'s are arbitrary
we then conclude that R > 0 holds for all sizes of R (N =1,2,...)
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Nonnegativity of correlation matrix

the nonnegativity of R can also be checked from the definition:
a’Ra >0, forall a=(ay,ag,...,ay)

which follows from
N N N N
Y oY alRti—tj)a; = > Ela] X(t:)X(t))"ay]
i=1 j=1 i
2
= E (Za?X(tﬂ) >0
i=1

important note: the value of R(t) at some fixed ¢ can be negative !
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Example
example: R(7) = e I"1/2 and let t = (t,ta,...,t5)

k=4 ; rng('default'); t = abs(randn(k,1)); t = sort(t); % t = (t1,...,tk)
R1 = exp(-0.5%abs(t-t')); Y’ broadcast t-t' as all possible subtractions
R = zeros(k);
for i=1:k

for j=1:k

R(i,j) = exp(-0.5%abs(t(i)-t(j))); % Slower in loop

end
end
R1 =

1.0000 0.8502 0.5230 0.4229
0.8502 1.0000 0.6152 0.4974
0.5230 0.6152 1.0000 0.8086
0.4229 0.4974 0.8086 1.0000

eig(R) =
0.1385 0.1847 0.8144 2.8624

showing that R > 0 (try with any k)
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Block Toeplitz structure of correlation matrix
CT process: if X (t) are sampled as Z = (X(¢1), X (t2),..., X (tn)) where
tiv1 —ti=constant=s ,i=1,...,N—1
(times have constant spacing, s > 0 and no need to be an integer)

we see that R = E[ZZ7] has a symmetric block Toeplitz structure

R(0) R(—s) -+ R(—(N—-1)s)
R = R(_S) R(0) (symmetric)
: . . R(—s)
R(N—-1)s) ---  R(s) R(0)

if X(t) is WSS then R > 0 for any integer N and any s > 0
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Example

example: R(7) = e~ I71/2

>> t=0:0.5:2; R

1.0000

.0000
.7788
.6065
.4724
.3679

O O O O ¥

eig(T) =

0.1366

O O O~ O

0.

= exp(—O.S*abs t)) H

.7788

.7788
.0000
.7788
.6065
L4724

1839
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O O = O O

.6065

.6065
L7788
.0000
L7788
.6065

.3225

0.

O = O O O

T = Toeplitz(R)

4724

L4724
.6065
L7788
.0000
L7788

.8416

0.3679

.3679
.4724
.6065
L7788
.0000

= O O O O

3.5154
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Covariance matrix of DT process

DT process: time indices are integers, so Z = (X (1), X(2),...,X(N))
times also have constant spacing

R = E[ZZ7] also has a symmetric block Toeplitz structure

R(O)  R(-1) --- R(1-N)
R1)  R(0)
: . R(-1)
R(N-1) - R  R(0)

if X(t) is WSS then R > 0 for any positive integer N
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Example
example: R(7) = cos(T)

>> t=0:2; R = cos(t); T = Toeplitz(R)

R =
1.0000 0.5403 -0.4161
T =
1.0000 0.5403 -0.4161
0.5403 1.0000 0.5403
-0.4161 0.5403 1.0000
eig(T) =
0.0000
1.4161
1.5839

R(7) at some 7 can be negative !
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Power spectral density

Wiener-Khinchin Theorem: if a process is wide-sense stationary, the autocorrelation
function and the power spectral density form a Fourier transform pair:

S(w) = / e “TR(7)dr continuous-time FT
S(w) = Z R(k)e w* discrete-time FT
k=—o00
L[> : :
R(7) = 2/ e“TS(w)dw continuous-time IFT
m —0o0
Y
R(r) = 2/ TS (w)dw discrete-time IFT
7T —T

S(w) indicates a density function for average power versus frequency
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Example: PSD

examples: sinusoid with random phase and random telegraph

R0)= %‘as (w,7) 8 )=S0y
AMA L L
ok W l2r
_ 4X
e 8% $66)- Garigrr

m (left) X (t) = Asin(wot + ¢) and ¢ ~ U(—m, )
m (right) X (¢) is random telegraph signal
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Example: PSD of white noise

2107 Tt Discrdlefimz
a0 e St5)
¢
—o et —ev o0
- alz 12 F
L) : §(¢) SR olavans—fime
/
= 3

White nole 9o cess

m (left) DT white noise process has a spectrum as a rectangular window

m (right) CT white noise process has a flat spectrum
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Spectrum of MA

let X (n) be a DT white noise process with variance o2
Y(n)=X(n)+aX(n—-1), a€R
then Y(n) is an RP with autocorrelation function

(14 a?0?), 7=0,
Ry(r) = ad?, 7| =1,
0, otherwise

the spectrum of DT process (is periodic in f € [—1/2,1/2]) is given by

S(f)= D, By(k)e "

k=—o00
— (1+a202) +ao_2(ei27rf_|_e—i27rf)
= 0%(1+a® + 2acos(27f))
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Spectrum of MA

examples: moving average process with 02 = 2 and a = 0.8

o5 R(7) (Analytical) ] Normalized ACF ; S(f)
0.8 6
5 .
S 5
T 06
15 © 4
g
8 0.4 3
1 2 5
© 0.2
Q.
0.5 g ] !
' @» 0 3 3 3 T 0
0 -0.2 1
5 0 5 0 2 4 6 1 -0.5 0 0.5 1
T T f

m R(7) cuts off at lag 2
m normalized ACF is calculated based on sample auto-correlation (tails at lag > 2)

m spectrum is periodic in f € [-1/2,1/2]
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Band-limited white noise

given a (white) process whose spectrum is flat in the range —B < f < B

s s . R(1)

2 -1 0 1 2 T 2 [3 2 4
f .

the magnitude of the spectrum is N/2
what will the (continuous-valued) process look like ?
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Autocorrelation via IFT

autocorrelation function is obtained from IFT

B
RmzmwM“#W#

N ei27rBT _ efi27rBT

2 27T

Nsin(2rB
_ Nsin@rBT) _ y pne(2nBr)
2rT

m X(t) and X (¢t + 7) are uncorrelated at 7 = £k/2B for k =1,2,...

m if B — oo, the band-limited white noise becomes a white noise

(=" v B)= "0
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Properties of power spectral density

consider real-valued RPs, so R(7) is real-valued
m S(w) is real-valued and even function (" R(7) is real and even)
m R(0) indicates the average power

R(0) = B[X(1)?] = % / " S(w)dw

m S(w) >0 for all w and for all wy > wy
1

o . S(w)dw

is the average power in the frequency band (wq,w1)
(see proof in Chapter 9 of H. Stark)
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Power spectral density as a time average
let X[0], X[1],..., X [N — 1] be N observations from DT WSS process

discrete Fourier transform of the time-domain sequence is

N-—1
Xk =" X[nle ¥, k=0,1,...,N -1
n=0

m X[k] is a complex-valued sequence describing DT Fourier transform with only
discrete frequency points

m X[k] is a measure of energy at frequency 27k /N

m an estimate of power at a frequency is then
S(k) = XK
N

and is called periodogram estimate for the power spectral density
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Example of PSD
example: X (t) = sin(407t) + 0.5sin(607t)

Periodogram Power Spectral Density Estimate

0 E
noiseless signal
o corrupted signal
50 o NPTy & L]
) RN e || &
? -100 \‘ corrupted signal g -100 H H
% ‘ / %450 H H
g
[ § 200
: (-
( =
i 200 ﬂwwmwmﬁmm“ Y ‘m[[m”ﬂwmpmm,mm % 250 J [ I
m W & [ )
-250 .

20

30

Frequency (Hz)

0.2

0.4

0.6

0.8

Normalized Frequency (  x radisample)

m signal has frequency components at 20 and 30 Hz

m peaks at 20 and 30 Hz are clearly seen

m when signal is corrupted by noise, spectrum peaks can be less distinct

m the plots are done using pspectrum and periodogram in MATLAB
Random Processes and Applications
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Frequency analysis of solar irradiance
data are irradiance with sampling period of 7" = 30 min

m ACF is a normalized autocorrelation function (by R(0)) and appears to be periodic

m spectral density appears to have three peaks corresponding to 0,12, 24 uHz

m the frequencies of 12,24 uHz correspond to the periods of one day and half day
respectively

m ACF and spectral density are computed by autocorr and pwelch
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Cross correlation and cross spectrum

cross correlation between processes X (t) and Y () is defined as
Rxy (1) =E[X(t+ 7)Y (t)]
cross-power spectral density between X (¢) and Y (t) is defined as
Sxy(w) = / €_iWTny(T)dT
properties:
m Sxy(w) is complex-valued in general, even X (t) and Y'(¢) are real
m Ryx(7) = Rxy(—7)
m Syx(w) = Sxy(—w)
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Example: Solar time series
solar power (P), solar irradiance (I), temperature (T), wind speed (WS)

Cross-correlation of P and |
T . T Coherence of Pand |

T AT T
J / |

0.8 r WY
L ! |
0.6 i i

st ey i - L L
60 40 20 0 20 40 60 0 50 100 150 200 250
Frequency ( pHz)
Coherence of Pand T

mn T

| M) Mo I
N L T T |
* [ Y AP AN A
0.50 -40 -20 0 20 40 60 0 50 100 150 200 250
Frequency ( uHz)

Coherence of P and WS

I

M \ | 1
0 WA J\«"N‘/\‘"‘A‘. “'\J/\/W\x M A MU bt W VLARN
0 50 100 150 200 250
Frequency ( uHz)

m (normalized) cross correlations are computed by xcorr in MATLAB
m (normalized) coherence functions are computed by mscohere:

_ [Say(H)?
Cay(f) = W&z(i)
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Example: cross covariance function

Cross-covariance of P and |

-5 -4 -3 -2 -1 0 1 2 3 4 5
Cross-covariance of Pand T

m P and [ are highly correlated while P and WS are least correlated
m cross covariance functions are almost periodic (daily cycle) with slightly decaying

envelopes
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Extended definitions

extension: let X (¢) be a complex-valued vector random process
denote * Hermittian transpose, i.e., X* = YT

correlation function: R(7) = E[X (t + 7)X (¢)*]

covariance function: C(7) = R(1) — pp*

Ryx (1) = Ry (-7)

Syx(w) = Sxy(—w)

S(w) is self-adjoint, i.e., S(w) = S*(w) and S(w) = 0

(cross) correlation and (cross) spectral density functions are matrices
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Theorems on correlation function and spectrum

Theorem 1: a necessary and sufficient condition for R(7) to be a correlation function
of a WSS is that it is positive semidefinite
m proof of sufficiency part: if R(7) is positive semidefinite then there exists a WSS
whose correlaction function is R(7)
m if R(7) is psdf then its Fourier transform is positive semidefinite (a proof is not
obvious)
m let us call S(w) =F(R(r)) =0
m by spectral factorization theorem, there exists a stable filter H(w) such that
S(w) = H(w)H*(w) — more advanced topic
m the existence of a WSS is given by applying a white noise to the filter H(w) — the
topic we will learn next on page 154

m proof of necessity part: if a process is WSS then R(7) is positive semidefinite —
shown on page 124
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Theorem: Fourier pair
Theorem 2: let S(w) be a self-adjoint and nonnegative matrix and

o0
/ tr(S(w))dw < oo
— 0

then its inverse Fourier transform:

R(t) L /OO eIt S (w)dw

- 2 J_
is nonnegative, i.e., .0, > g ajR(t; —ty)ag > 0
al” R(0) R(t1 —t2) e R(t1 —tn)
az R(tQ — tl) R(O) ' :
an R(ty —t1) R(ty —tn—1) R(0)
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Proof: non-negativity of R(7)

consider N = 3 case (can be extended easily)

*

al R(O) R(tl — tz tl — t3 al
A = (a2 R(t2 — t1) R(O) tg — t3 a2
as R(t3 — tl) R(t3 — tz as
w [a11” eiw(tﬁtl)s(w) etw(ti— tz)S (w) eiw(trts)s(w) a
= / as eiw(tzftl)s(w) etw(ta— tz)s(w) eiw(tzfts)s(w) as | dw
- |qgg eiw(tgftl)s(w) zw(tg tg)S(w) eiw(tS*t‘”’)S(w) as
o 677,‘wt1a1 * 51/2((4.)) 677th1a,1
= / e "“2ay SY2(w)| [SY*(w) SYE(w) SY2(w)] e “ay | dw
— 00 e—zwtg as 51/2 (OJ) e—zwtg as

/ Y™ ( w)dw = 0

because the integrand is nonnegative definite for all w

(we have used the fact that S(w) > 0 and has a square root)
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Theorem: non-negativity of PSD

Theorem 3: let R(t) be a continuous correlation matrix function such that

0
/ |Rij (t)|dt < 00, VZ,]

then the spectral density matrix
S(w) = / ¢ R (1)t

is self-adjoint and positive semidefinite

m matrix case: proof by Balakrishnan, Introduction to Random Process in
Engineering, page 79

m scalar case: proof by Starks and Woods, page 607 (need to learn the topic on
page 154 first)
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simple proof (from Starks): let wy > w; , define a filter transfer function
Hw)=1, we€ (wi,ws), H(w) =0, otherwise
let X (¢) and Y (¢) be input/output to this filter, then
Syy(w) = Sxx(w), w € (wi,wa), Syy(w) =0, elsewhere
since E[Y (t)?] = R,(0) and it is nonnegative, it follows that

w2
Ry(0) = — [ Sy(w)dw > 0

I

this must holds for any ws > w;

hence, choosing wy ~ w; we must have S, (w) > 0 — the power spectral density must
be nonnegative
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Conclusion
a function R(7) is nonnegative if and only if
it has a nonnegative Fourier transform

m a valid spectral density function therefore can be checked by its nonnegativity and
it is easier than checking the nonnegativity condition of R(7)
m analogy for probability density function

(zw{mliﬂd)
b £ s
| r ©
oUw\sH:(y ° e
nche, Aenchon
(vongative 7o) ( ywij'ftVb)

¢ . 9
Stza«ri'f;\ aﬁMsdy @ %ﬂ&(ﬁ&w

s
(wku ntve s1070) Lo ‘f?Ve,)
’ ' R o
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Linear system with random inputs

consider a linear system with input and output relationship through
y=Hx

which represents many applications (filter, transformation of signals, etc.)

questions regarding this setting:
m if x is a random signal, how can we explain about randomness of y?
m if z is wide-sense stationary, how about y? under what condition on H?

m if y is also wide-sense, how about relations between correlation/power spectral
density of x and y?
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Recap on linear systems
recall the definitions

m linear system:
H(xy + axe) = Hry + aHzxy

m time-invariant system: it commutes with shift operator
Hx(t—T)=y(t—-T)

(time shift in the input causes the same time shift in the output)

response of linear time-invariant system: denote h the impulse response

25 h(r)a(t —T)dr continous-time

y(t) = h(t) x x(t) = {: S h(t—k)x(k) discrete-time

stable: poles of H are in stability region (LHP or inside unit circle)

causal system: response of y at ¢ depends only on past values of x
impulse response h(t) =0, fort <0
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Properties of output from LTI system

let Y = HX where H is linear time-invariant system and stable

if X(t) is wide-sense stationary then
m my(t) = H(0)mx(t)
m Y(t) is also wide-sense stationary
(in steady-state sense if X (t) is applied when t > 0)

m correlations and spectra are given by

time-domain frequency-domain
Ryx(7) = h(7) * Rx(7) Syx(w) = H(W) x(w)
Rxy(r) = Rx(7) * h*(-7) Sxy (W) = Sx (w)H"(w)
Ry () = Ryx(7) * h*(—7) Sy (w) = Syx (w)H*(w)
Ry(r) = h(7) * Rx (1) x h*(=7) Sy(w) = H(w)S

x (W) H*(w)

using F(f(t) x g(t)) = F(w)G(w) and F(f*(=1)) = F*(w)
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Proof: mean of output

show: my (t) = H(0)mx (t)

/Ooh X(t—s)ds
o= e

o
E

D“

X(t—s)]ds

2 8

= / h(s)ds - m, (since X (t) is WSS)

= H(0)m

mean of Y is transformed by the DC gain of the system
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Proof: WSS of Y

Ry(t+7,t) = E[Y({t+1)Y ()]

(/_Z h(o)X (t+ 7 — o)ds) </_Z h(s)X (t — s)ds) T]

_ / T OB+ 7 — o)X (¢ — 5)T)h(s) dods

—00 J —O0

= E

_ / ” / T (@) Ro(r + 5 — 0)h(s)Tdods (X is WSS)

we see that R, (t + 7,t) does not depend on ¢t anymore but only on 7

m we have shown that Y'(¢) has a constant mean and the autocorrelation function
depends only on the time gap 7

m hence, Y (¢) is also a wide-sense stationary process
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Proof: Cross-correlation of input and output

using Y (t) = [*_h(a)X(t — a)do
| Ryx(T) = h(T) * RX(T)

Ryx(r) =E[Y)X*(t—71)] = /_OO h(@)E[X (t — ) X*(t — 7)]do
= /oo hMa)Rx (T — a)da

B Ry (1) = Ryx(7)« H*(—7)
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Power spectrum of output process

the relation Sy (w) = H(w)Sx (w)H*(w) reduces to
Sy (w) = [H(w)]*Sx (w)

for scalar processes X (t) and Y (¢)

m average power of the output depends on the input power at that frequency
multiplied by power gain at the same frequency

m we call |H(w)|? the power spectral density (PSD) transfer function

this relation gives a procedure to estimate H (w) when signals X (t) and Y (¢) can be
observed
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Example: random telegraph signal

a random telegraph signal with transition rate « is passed thru an RC filter with

H(s) = 3—7i:7-’ 7=1/RC

question: find psd and autocorrelation of the output

%"

random telegraph signal has the spectrum: S,(f) = m
o+ 4w

from S, (f) = [H(f)|*Sa(f) and Ry(t) = F~[Sy(f)]

S, (f) = 72 4o - 4ot 1 1
YV T2 4 4An2f2 ) da + 42 f2 12 —4a? | 4a? +4n2f2 72 4 4n2f2

_ 1 2 —2alt| —|t|
Ry(t) = il (7‘ e 2are )
(we have used Fle~ ] = 2a/(a? + w?)) and w = 27 f
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Example: PSD of AR process

first-order AR process
Y(n)=aY(n—1)+ X(n)

X (n) is i.i.d white noise with variance of o2

| H(Z) = ﬁ or H(eiw) = ].—ale_i“’
m spectral density is obtained by
o2

Sy(w) = [H(w)[* S, (w) =

o2

1+ a? — 2acos(w)

(1 —ae=w)(1 — ae™)
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Example: PSD of AR

spectral density of AR process: a = 0.7 and 02 = 2

(dB/Hz)

(dB/Hz)
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estimate
analytical
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Input and output spectra

in conclusion, when input is white noise, the spectrum is flat

Lulz)- 6560 Ryfe):| (k5 o Rule)
R MG Za d’” ad” et
L —— I]I =l
_“5 [
- tz) w v
T ! swe] T s
S Sy ) s
o T)e A Cnn) <) J: tea (eaz! \
) th):(tAL , 9 vl wmlcavma) /| N )
~T T 2 - - W T T Moving Avege a1 T
Slr o node | St - T160% )
(l-eh ,&aco'hw)) ”v =0 ([t carcnw

when white noise is passed through a filter, the output spectrum is no longer flat
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Response to linear system: state-space models

consider a discrete-time linear system via a state-space model
X(k+1)=AX(k)+ BU(k), Y(k)=HX(k)

where X e R")Y ¢ RP,U € R™
known results:
m two forms of solutions of state and output variables are
t—1
X(t)=A'X(0)+> A'BU{t—-1-7), Y(t)=HX(t)

7=0
t—1

= A" X (s +ZAt I=sBU(r), Y(t)=HX(t)

m the autonomous system (when U = 0) is stable if [A\(4)| < 1
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State-space models: autocovariance function

Theorem: let U be a i.i.d white noise sequence with covariance ¥, and if i) A is
stable and ii) X (0) is uncorrelated with U(k) for all k& > 0 then

m lim, o E[X(n)] =0
m C(n,n) — ¥ as n — oo where

» = AxAT + BY, BT

(X is a unique solution to the )

m X (t) is wide-sense stationary in steady-state sense, i.e.,

_ ARy E>0
A C(n+k,n) = C(k) = {E(AT)Ikl, k<0
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Proof: mean of state

the mean of X (¢) converges to zero

let m(n) = E[X(n)] and it's easy to see
m(n) = E[X(n)] = AE[X(n — 1)] + BE[U(n — 1)] = Am(n — 1)
hence, m(n) propagates like a linear system:
m(n) = A"m(0)

and goes to zero as n — oo since A is stable

zero-mean system: X (n) = X (n) —m(n)
X(n) = AX(n—1)+ BU(n—1)
mean-removed process also follow the same state-space equation
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Proof: covariance function of state

show: lim, o C(n,n) = % and satisfies the Lyapunov equation
= X(n) is uncorrelated with U (k) for all k > n
t—1
X(t)=A'X(0)+> ATBU(t—1-7)

=0
because X (0) is uncorrelated with U (t) for all ¢ and X (t) is only a function of
Uit-1),0@-2),...,U(0)
m since X (n — 1) is uncorrelated with U(n — 1), we obtain
C(n,n) = AC(n —1,n—1)A" + B2, B"
from the state equation: X (n) = AX(n — 1) 4+ BU(n — 1)

m then we can write C'(n,n) recursively

n—1
C(n,n) = A"C(0,0)(A")" + > A*B%,B" (A")"*
D Y —

go to zero k=0

converges

and observe its asymptotic behaviour when n — oo
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Proof: covariance function of state
Theorem: let A € R™™" with spectral radius p(A). We have p(A) < 1 if and only if
limy,_o0 A*¥ = 0 (proved by Jordan canonical form of A)
m if A is stable, the spectral radius of A is less than one, hence A™ — 0 as n — o0
mlet ¥ =572 A*BY, BT(AT)*, we can check that

5 = AYA" 4+ BY, BT
m X is unique, otherwise, by contradiction
v =A% AT + By, BT, = AY,AT + BY, BT
we can subtract one from another and see that
Y1 — Yy = A(X) — Ep)AT = A%(Z] - 29)(AT)? = ... = A™(Z) — 5y) (AT
this goes to zero since A is stable (|| A*| — 0)
|51 - Safl = A7 (S1 - So)(AT)"] < [ AP|E1 — | - 0

this completes the proof [ |
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Proof: WSS in steady-state
show that X (n) is wide-sense stationary in steady-state
m X (k) is uncorrelated with {U(k),U(k +1),...,U(n — 1)}
= from the solution of X (n)
_ ~ n—1
X(n)=A"""X(k)+ > A"'TBU(r), k<n
7=k
the two terms on RHS are uncorrelated
m the autocovariance function is obtained by (for n > k)
C(n, k) = E[X(n)X (k)"]
n—1
= A" FE[X (k)X (k)T] + Z AT BEU (1) X (k)T
=k
= A"FC(k, k) +0

which converges to A" %% as n,k — oo if A is stable
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State-space models: autocovariance of output

output equation: . .
Y(n)=HX(n), Y(n)=HX(n)

when X (n) is wide-sense stationary (in steady-state) then
when n, k — 0o, we have
Cy(n, k) = HCy(n,k)H' = HA"*C,(k,k)H", n >k

and
lim Cy(n,n) = lim HCy(n,n)H" = HZH"

n—o0 n—oo

where ¥ is the solution to the Lyapunov equation: ¥ = AX AT + BY,, BT
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Example: AR process

AR process with a = 0.7 and U is i.i.d. white noise with 02 = 2
Y(n)=a¥Y(n—1)+U(n—1)
1st-order AR process is already in state-space equation
® in steady-state, the covariance function at lag 0 converges to o where
2
a:aa2+02 — azgi
1—a?

(we have solved the Lyapunov equation)

m in steady-state, the covariance function is given by

o2al7l

= ——
1—a?
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Example: Covariance function of AR

vary a = 0.3,0.7,0.99

Analytical covariance

-10 8 6 -4 2

2 4 6 8 10

0
Lag

m C(7) decays with rate a

. Sample covariance function
—5a=03
—oa=0.7
08 - a=0.99
w 06 —
Q
<<
e
Q 04
©
£
2oz
0 1 T \ ‘
02 . .
0 1 2 3 4 5 6 7 3 9 10

m normalized ACF plots C(7)/C(0) (maximum peak is always unit)
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Common causes of non-stationarity

m time-varying mean: processes with a static trend, drift
m time-depending covariance: C(t1,t2) is not a function of |ta — ¢1]
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Which

process seems to be non-stationary?
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Y1, Y2, ys are clearly not non-stationary because they have static trends; their sample ACFs seem to decay slowly

y4 fluctuates around a constant and its sample ACF decays to zero (as if y4 was generated from a stable system)

in fact, checking stationarity cannot merely be done just by looking at time series
further reading: several stationary tests are available, e.g., Augmented Dickey—Fuller test
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Cumulative sum of WSS process
as an illustrative example, suppose y(t) is WSS (e.g., stationary ARMA process)

Zy 0)+y(1) 4+ +y(t)

question: is s(t) WSS 7 & sketch the mean and autocorrelation

WMM ] m row 1: y(t), row 2:
LR B R S I = s s B | s(t) (as 1st cum sum),
‘ or row 3: cum sum of

s(t)
‘ m how do the profile of
S me T time series and ACF
suggest stationarity of
cum sum process ?

15t Cumulative sum
g 5
15t Cumulative sum

2nd-Cumulative sum

Time Time
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Common forms of non-stationary signals

m y(t) = s(t) + u(t), s(t) is deterministic, and u(t) is WSS
m y(t) is intregrated process of some WSS process, e.g., ARIMA process
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