

### Random Variables and Applications

Jitkomut Songsiri

Department of Electrical Engineering Faculty of Engineering Chulalongkorn University

CUEE

November 11, 2024

### Outline

- Background and notations (not taught)
- 2 Random variables
- 3 Inequalities
- 4 Transform methods
- 5 Function of random variables
- 6 Random vectors
- 7 Simulation



### How to read this handout

- 1 readers are assumed to have a background on univariate random variables and statistics in undergrad level (sophomore year)
- 2 the note is used with lecture in EE501 (you cannot master this topic just by reading this note) class lectures include
  - graphical concepts, math derivation of details/steps in between
  - computer codes to illustrate examples
- 3 pay attention to the symbol ♥>; you should be able to prove such ♥> result
- 4 each chapter has a list of references; find more formal details/proofs from in-text citations
- s almost all results in this note can be Googled; readers are encouraged to 'stimulate neurons' in your brain by proving results without seeking help from the Internet first
- 6 typos and mistakes can be reported to jitkomut@gmail.com



Background and notations (not taught)

### **Outlines**

- random experiments
- the axioms of probability
- conditional probabilty
- independence of events
- sequential experiments

### Random experiments

an experiment in which the outcome varies in an unpredictable fashion when the experiment is repeated under the same conditions

#### examples:

- lacksquare select a ball from an urn containing balls numbered 1 to n
- toss a coin and note the outcome
- roll a dice and note the outcome
- measure the time between page requests in a Web server
- pick a number at random between 0 and 1

### Sample space

the set of all possible outcomes, denoted by  ${\cal S}$ 

- lacksquare obtained by listing all the elements, e.g.,  $S=\{H,T\}$ , or
- lacktriangle giving a property that specifies the elements, e.g.,  $S=\{x\mid 0\leq x\leq 3\}$  same experimental procedure may have different sample spaces



- experiment 1: pick two numbers at random between zero and one
- lacktriangle experiment 2: pick a number X at random between 0 and 1, then pick a number Y at random between 0 and X

8 / 172

### Examples of sample spaces

three possibilities for the number of outcomes in sample spaces

finite, countably infinite, uncountably infinite

#### examples:

$$\begin{split} S_1 &= \{1, 2, 3, \dots, 10\} \\ S_2 &= \{\mathsf{HH}, \mathsf{HT}, \mathsf{TT}, \mathsf{TH}\} \\ S_3 &= \{x \in \mathbb{Z} \mid 0 \leq x \leq 10\} \\ S_4 &= \{1, 2, 3, \dots\} \\ S_5 &= \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid 0 \leq y \leq x \leq 1\} \\ S_6 &= \mathsf{Set} \ \mathsf{of} \ \mathsf{functions} \ X(t) \ \mathsf{for} \ \mathsf{which} \ X(t) = 0 \ \mathsf{for} \ t \geq t_0 \end{split}$$

discrete sample space: if S is countable  $(S_1, S_2, S_3, S_4)$  continuous sample space: if S is not countable  $(S_5, S_6)$ 

#### **Events**

a subset of a sample space when the outcome satisfies certain conditions

**examples:**  $A_k$  denotes an event corresponding to the experiment  $E_k$ 

 $E_1$  : select a ball from an urn containing balls numbered 1 to 10

 $A_1$  : an even-numbered ball (from 1 to 10) is selected

$$S_1 = \{1, 2, 3, \dots, 10\}, \quad A_1 = \{2, 4, 6, 8, 10\}$$

 $E_2$ : toss a coin twice and note the sequence of heads and tails

 $A_2$ : the two tosses give the same outcome

$$S_2 = \{\mathsf{HH},\mathsf{HT},\mathsf{TT},\mathsf{TH}\}, \quad A_2 = \{\mathsf{HH},\mathsf{TT}\}$$



 $E_3$ : count # of voice packets containing only silence from 10 speakers  $A_3$ : no active packets are produced

$$S_3 = \{ x \in \mathbb{Z} \mid 0 \le x \le 10 \}, \quad A_3 = \{ 0 \}$$

two events of special interest:

- **certain event.** S, which consists of all outcomes and hence always occurs
- **impossible event** or **null event**,  $\emptyset$ , which contains no outcomes and never occurs

11 / 172

## Review of set theory

- lacksquare A=B if and only if  $A\subset B$  and  $B\subset A$
- $lacksquare A \cup B$  (union): set of outcomes that are in A or in B
- $lacksquare A \cap B$  (intersection): set of outcomes that are in A and in B
- A and B are disjoint or mutually exclusive if  $A \cap B = \emptyset$
- $\blacksquare$   $A^{c}$  (complement): set of all elements not in A
- $lacksquare A \cup B = B \cup A \text{ and } A \cap B = B \cap A$
- $A \cup (B \cup C) = (A \cup B) \cup C \text{ and } A \cap (B \cap C) = (A \cap B) \cap C$
- $\blacksquare \ A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \ \text{and} \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- DeMorgan's Rules

$$(A \cup B)^{\mathsf{c}} = A^{\mathsf{c}} \cap B^{\mathsf{c}}, \quad (A \cap B)^{\mathsf{c}} = A^{\mathsf{c}} \cup B^{\mathsf{c}}$$



### Axioms of Probability

probabilities are numbers assigned to events indicating how likely it is that the events will occur

a **probability law** is a rule that assigns a number P(A) to each event A

P(A) is called the *the probability of* A and satisfies the following axioms

axiom 1 
$$P(A) \ge 0$$

axiom 2 
$$P(S) = 1$$

axiom 3 If 
$$A \cap B = \emptyset$$
 then  $P(A \cup B) = P(A) + P(B)$ 

If  $A_1, A_2, \ldots$  is a sequence of events such that  $A_i \cap A_j = \emptyset$  for  $i \neq j$  then

$$P\left(\bigcup_{k=1}^{\infty} A_k\right) = \sum_{k=1}^{\infty} P(A_k)$$

# **Probability Facts**

- $P(A^{c}) = 1 P(A)$
- $P(A) \le 1$
- $P(\emptyset) = 0$
- If  $A_1, A_2, ..., A_n$  are pairwise mutually exclusive then

$$P\left(\bigcup_{k=1}^{n} A_k\right) = \sum_{k=1}^{n} P(A_k)$$

- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- If  $A \subset B$  then  $P(A) \leq P(B)$

# Conditional Probability

the probability of event A given that event B has occured

the conditional probability, P(A|B), is defined as

$$P(A|B) = \frac{P(A \cap B)}{P(B)}, \quad \text{for } P(B) > 0$$

if B is known to have occured, then A can occurs only if  $A \cap B$  occurs

simply renormalizes the probability of events that occur jointly with  ${\cal B}$ 

useful in finding probabilities in sequential experiments

### Example: Tree diagram of picking balls

selecting two balls at random without replacement





 $B_1, B_2$  are the events of getting a black ball in the first and second draw

$$P(B_2|B_1) = \frac{1}{4}, \quad P(W_2|B_1) = \frac{3}{4}, \quad P(B_2|W_1) = \frac{2}{4}, \quad P(W_2|W_1) = \frac{2}{4}$$

the probability of a path is the product of the probabilities in the transition

$$P(B_1 \cap B_2) = P(B_2|B_1)P(B_1) = \frac{1}{4}\frac{2}{5} = \frac{1}{10}$$

# Example: Tree diagram of Binary Communication



 $A_i$ : event the input was i,

$$B_i$$
: event the reciever was  $i$ 

$$P(A_0 \cap B_0) = (1-p)(1-\varepsilon)$$

$$P(A_0 \cap B_1) = (1-p)\varepsilon$$

$$P(A_1 \cap B_0) = p\varepsilon$$

$$P(A_1 \cap B_1) = p(1-\varepsilon)$$

17 / 172

### Theorem on Total Probability

let  $B_1, B_2, \ldots, B_n$  be mutually exclusive events such that

$$S = B_1 \cup B_2 \cup \cdots \cup B_n$$

(their union equals the sample space) event A can be partitioned as

$$A = A \cap S = (A \cap B_1) \cup (A \cap B_2) \cup \cdots \cup (A \cap B_n)$$

since  $A \cap B_k$  are disjoint, the probability of A is

$$P(A) = P(A \cap B_1) + P(A \cap B_2) + \dots + P(A \cap B_n)$$

or equivalently,

$$P(A) = P(A|B_1)P(B_1) + P(A|B_2)P(B_2) + \dots + P(A|B_n)P(B_n)$$

# Example: revisit the tree diagram of picking two balls





find the probability of the event that the second ball is white

$$P(W_2) = P(W_2|B_1)P(B_1) + P(W_2|W_1)P(W_1)$$
$$= \frac{3}{4} \cdot \frac{2}{5} + \frac{1}{2} \cdot \frac{3}{5} = \frac{3}{5}$$

## Bayes' Rule

the conditional probability of event A given B is related to the inverse conditional probability of event B given A by

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

- $lackbox{\bullet} P(A)$  is called a **priori** probability
- lacktriangleq P(A|B) is called a **posteriori** probability

let  $A_1, A_2, \ldots, A_n$  be a partition of S

$$P(A_i|B) = \frac{P(B|A_i)P(A_i)}{\sum_{k=1}^{n} P(B|A_k)P(A_k)}$$

### Example: Binary Channel



 $A_i$  event the input was i

 $B_i$  event the receiver output was i

input is equally likely to be 0 or 1

$$P(B_1) = P(B_1|A_0)P(A_0) + P(B_1|A_1)P(A_1) = \varepsilon(1/2) + (1-\varepsilon)(1/2) = 1/2$$

applying Bayes' rule, we obtain

$$P(A_0|B_1) = \frac{P(B_1|A_0)P(A_0)}{P(B_1)} = \frac{\varepsilon/2}{1/2} = \varepsilon$$

if  $\varepsilon < 1/2$ , input 1 is more likely than 0 when 1 is observed

21 / 172

### Independence of events

events A and B are independent if

$$P(A \cap B) = P(A)P(B)$$

- lacktriangle knowledge of event B does not alter the probability of event A
- this implies P(A|B) = P(A)



## Example: System reliability



A: event the controller is functioning,  $B_i$ : event unit i is functioning F: event two or more peripheral units are functioning

find the probability that the system is up

the event F can be partition as

$$F = (B_1 \cap B_2 \cap B_3^c) \cup (B_1 \cap B_2^c \cap B_3) \cup (B_1^c \cap B_2 \cap B_3) \cup (B_1 \cap B_2 \cap B_3)$$

$$P(F) = P(B_1)P(B_2)P(B_3^c) + P(B_1)P(B_2^c)P(B_3)$$

$$+ P(B_1^c)P(B_2)P(B_3) + P(B_1)P(B_2)P(B_3)$$

$$= 3(1-a)^2a + (1-a)^3$$

therefore,

$$P(\text{system is up}) = P(A \cap F) = P(A)P(F)$$
 
$$= (1-p)P(F) = (1-p)\{3(1-a)^2a + (1-a)^3\}$$

## Sequential independent experiments

- $\blacksquare$  consider a random experiment consisting of n independent experiments
- let  $A_1, A_2, \ldots, A_n$  be events of the experiments
- we can compute the probability of events of the sequential experiment

$$P(A_1 \cap A_2 \cap \cdots \cap A_n) = P(A_1)P(A_2)\dots P(A_n)$$

- example: Bernoulli trial
  - lacktriangle perform an experiment and note if the event A occurs
  - the outcome is "success" or "failure"
  - the probability of success is p and failure is 1-p

## Binomial probability

- $\blacksquare$  perform n Bernoulli trials and observe the number of successes
- $\blacksquare$  let X be the number of successes in n trials
- lacktriangle the probability of X is given by the **Binomial probability law**

$$P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$$

for k = 0, 1, ..., n

the binomial coefficient

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

is the number of ways of picking k out of n for the successes



## Example: Error Correction Coding



- transmit each bit three times
- decoder takes a majority vote of the received bits

compute the probability that the receiver makes an incorrect decision

- view each transmission as a Bernoulli trial
- let X be the number of wrong bits from the receiver

$$P(X \ge 2) = \begin{pmatrix} 3 \\ 2 \end{pmatrix} \varepsilon^2 (1 - \varepsilon) + \begin{pmatrix} 3 \\ 3 \end{pmatrix} \varepsilon^3$$

## Mutinomial probability

- generalize the binomial probability law to the occurrence of more than one event
- let  $B_1, B_2, \ldots, B_m$  be possible events with

$$P(B_k) = p_k$$
, and  $p_1 + p_2 + \dots + p_m = 1$ 

- lacksquare suppose n independent repetitions of the experiment are performed
- let  $X_j$  be the number of times each  $B_j$  occurs
- the probability of the vector  $(X_1, X_2, \dots, X_m)$  is given by

$$P(X_1 = k_1, X_2 = k_2, \dots, X_m = k_m) = \frac{n!}{k_1! k_2! \dots k_m!} p_1^{k_1} p_2^{k_2} \cdots p_m^{k_m}$$

where  $k_1 + k_2 + \cdots + k_m = n$ 



### Geometric probability

- repeat independent Bernoulli trials until the the first success occurs
- let X be the number of trials until the occurrence of the first success
- the probability of this event is called the geometric probability law

$$P(X = k) = (1 - p)^{k-1}p$$
, for  $k = 1, 2, ...$ 

■ the geometric probabilities sum to 1:

$$\sum_{k=1}^{\infty} P(X=k) = p \sum_{k=1}^{\infty} q^{k-1} = \frac{p}{1-q} = 1$$

where q = 1 - p

lacktriangle the probability that more than n trials are required before a success

$$P(X > n) = (1 - p)^n$$



### Example: Error control by retransmission

- lacksquare A sends a message to B over a radio link
- lacksquare B can detect if the messages have errors
- lacktriangle the probability of transmission error is q
- lacktriangle find the probability that a message needs to be transmitted more than two times each transmission is a Bernoulli trial with probability of success p=1-q

the probability that more than 2 transmissions are required is

$$P(X > 2) = q^2$$

### Sequential dependent experiments

sequence of subexperiments in which the outcome of a given subexperiment determine which subexperiment is performed next

example: select the urn for the first draw by flipping a fair coin



draw a ball, note the number on the ball and replace it back in its urn the urn used in the next experiment depends on # of the ball selected

### Trellis Diagram

#### Sequence of outcomes



### Probability of a sequence of outcomes



is the product of probabilities along the path

### Markov chains

let  $A_1, A_2, \ldots, A_n$  be a sequence of events from n sequential experiments

the probability of a sequence of events is given by

$$P(A_1 A_2 \cdots A_n) = P(A_n | A_1 A_2 \cdots A_{n-1}) P(A_1 A_2 \cdots A_{n-1})$$

if the outcome of  $A_{n-1}$  only determines the  $n^{\mathsf{th}}$  experiment and  $A_n$  then

$$P(A_n|A_1A_2\cdots A_{n-1}) = P(A_n|A_{n-1})$$

and the sequential experiments are called Markov Chains

thus,

$$P(A_1 A_2 \cdots A_n) = P(A_n | A_{n-1}) P(A_{n-1} | A_{n-2}) \cdots P(A_2 | A_1) P(A_1)$$

### Example: find P(0011) in the urn example

the probability of the sequence 0011 is given by

$$P(0011) = P(1|1)P(1|0)P(0|0)P(0)$$

where the transition probabilities are

$$P(1|1) = \frac{5}{6}, \quad P(1|0) = \frac{1}{3}, \quad P(0|0) = \frac{2}{3}$$

and the initial probability is given by

$$P(0) = \frac{1}{2}$$

hence,

$$P(0011) = \frac{5}{6} \cdot \frac{1}{3} \cdot \frac{2}{3} \cdot \frac{1}{2} = \frac{5}{54}$$

### Discrete-time Markov chain

a Markov chain is a random sequence that has n possible states:

$$x(t) \in \{1, 2, \dots, n\}$$

with the property that

**prob**(
$$x(t+1) = i \mid x(t) = j) = p_{ij}$$

where  $P = [p_{ij}] \in \mathbf{R}^{n \times n}$ 

- lacksquare  $p_{ij}$  is the **transition probability** from state j to state i
- P is called the **transition matrix** of the Markov chain
- the state x(t) still cannot be determined with *certainty*

### Example:

a customer may rent a car from any of three locations and return to any of the three locations

#### Rented from location

| 1   | <b>2</b> | 3   |   |
|-----|----------|-----|---|
| 0.8 | 0.3      | 0.2 | 1 |
| 0.1 | 0.2      | 0.6 | 2 |
| 0.1 | 0.5      | 0.2 | 3 |

Returned to location



## Properties of transition matrix

let P be the transition matrix of a Markov chain

- all entries of *P* are real *nonnegative* numbers
- the entries in any column are summed to 1 or  $\mathbf{1}^T P = \mathbf{1}^T$ :

$$p_{1j} + p_{2j} + \dots + p_{nj} = 1$$

(a property of a **stochastic matrix**)

- $\blacksquare$  1 is an eigenvalue of P
- lacksquare if q is an eigenvector of P corresponding to eigenvalue 1, then

$$P^k q = q$$
, for any  $k = 0, 1, 2, ...$ 



## Probability vector

we can represent probability distribution of x(t) as n-vector

$$p(t) = \begin{bmatrix} \mathbf{prob}(\ x(t) = 1\ ) \\ \vdots \\ \mathbf{prob}(\ x(t) = n\ ) \end{bmatrix}$$

- lacksquare p(t) is called a **state probability vector** at time t
- $\sum_{i=1}^{n} p_i(t) = 1 \text{ or } \mathbf{1}^T p(t) = 1$
- the state probability propagates like a linear system:

$$p(t+1) = Pp(t)$$

lacktriangle the state PMF at time t is obtained by multiplying the initial PMF by  $P^t$ 

$$p(t) = P^t p(0), \text{ for } t = 0, 1, \dots$$

## Example: Markov model for packet speech

- two states of packet speech: contain 'silent activity' or 'speech activity'
- the transition matrix is  $P = \begin{bmatrix} 0.8 & 0.4 \\ 0.2 & 0.6 \end{bmatrix}$
- lacktriangle the initial state probability is p(0)=(1,0)
- the packet in the first state is 'silent' with certainty



- $\blacksquare$  eigenvalues of P are 1 and 0.4
- lacktriangle calculate  $P^t$  by using 'diagonalization' or 'Cayley-Hamilton theorem'

$$P^{t} = \begin{bmatrix} (5/3)(0.4 + 0.2 \cdot 0.4^{t}) & (2/3)(1 - 0.4^{t}) \\ (1/3)(1 - 0.4^{t}) & (5/3)(0.2 + 0.4^{t+1}) \end{bmatrix}$$

p(t) does not depend on the *initial state probability* as  $t \to \infty$ 

what if 
$$P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 ?

we can see that

$$P^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad P^3 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \dots$$

 $\blacksquare$   $P^t$  does not converge but oscillates between two values

under what condition p(t) converges to a constant vector as  $t \to \infty$ ?

**definition:** a transition matrix is **regular** if some integer power of it has all *positive* entries

**Fact:** if P is regular and let w be any probability vector, then

$$\lim_{t \to \infty} P^t w = q$$

where q is a **fixed** probability vector, independent of t

## Steady state probabilities

we are interested in the steady state probability vector

$$q = \lim_{t \to \infty} p(t) \qquad \text{(if converges)}$$

lacktriangle the steady-state vector q of a regular transition matrix P satisfies

$$\lim_{t \to \infty} p(t+1) = P \lim_{t \to \infty} p(t) \qquad \Longrightarrow \qquad Pq = q$$

(in other words, q is an eigenvector of P corresponding to eigenvalue 1)

• if we start with p(0) = q then

$$p(t) = P^{t}p(0) = 1^{t}q = q$$
, for all t

q is also called the **stationary state PMF** of the Markov chain



42 / 172

# Example: weather model ('rainy' or 'sunny')

probabilities of weather conditions given the weather on the preceding day:

$$P = \begin{bmatrix} 0.4 & 0.2 \\ 0.6 & 0.8 \end{bmatrix}$$

(probability that it will rain tomorrow given today is sunny, is 0.2)

given today is sunny with probability  $\mathbf{1}$ , calculate the probability of a rainy day in long term

### References

Chapter 2 in A. Leon-Garcia, *Probability, Statistics, and Random Processes for Electrical Engineering*, 3rd edition, Pearson Prentice Hall, 2009

## Random variables

### Definition



a random variable X is a function mapping an outcome to a real number

- $\blacksquare$  the sample space, S, is the *domain* of the random variable
- lacksquare  $S_X$  is the range of the random variable

example: toss a coin three times and note the sequence of heads and tails

$$S = \{\mathsf{HHH}, \mathsf{HHT}, \mathsf{HTH}, \mathsf{THH}, \mathsf{HTT}, \mathsf{THT}, \mathsf{TTH}, \mathsf{TTT}\}$$

Let X be the number of heads in the three tosses

$$S_X = \{0, 1, 2, 3\}$$



## Types of Random Variables

Discrete RVs take values from a countable set

example: let X be the number of times a message needs to be transmitted until it arrives correctly

$$S_X = \{1, 2, 3, \ldots\}$$

Continuous RVs take an infinite number of possible values

example: let X be the time it takes before receiving the next phone calls

**Mixed RVs** have some part taking values over an interval like typical continuous variables, and part of it concentrated on particular values like discrete variables

## Probability measures

## **Cumulative distribution function (CDF)**

$$F(a) = P(X \le a)$$

Probability mass function (PMF) for discrete RVs

$$p(k) = P(X = k)$$

Probability density function (PDF) for continuous RVs

$$f(x) = \frac{dF(x)}{dx}$$

# Cumulative Distribution Function (CDF)

#### **Properties**

$$\begin{aligned} 0 &\leq F(a) \leq 1 \\ F(a) &\rightarrow 1, \quad \text{as } a \rightarrow \infty \\ F(a) &\rightarrow 0, \quad \text{as } a \rightarrow -\infty \end{aligned}$$



$$F(b) - F(a) = \int_{a}^{b} f(x)dx$$



$$F(a) = \sum p(k)$$

# Probability density function

## probability density function (PDF)

- $f(x) \ge 0$
- $P(a \le X \le b) = \int_a^b f(x) dx$
- $F(x) = \int_{-\infty}^{x} f(u)du$

## probability mass function (PMF)

- $p(k) \ge 0$  for all k

## Expected values

let g(X) be a function of random variable X

$$\mathbf{E}[g(X)] = \begin{cases} \sum\limits_{\substack{x \in S \\ \infty}} g(x)p(x) & X \text{ is discrete} \\ \int\limits_{-\infty}^{\infty} g(x)f(x)dx & X \text{ is continuous} \end{cases}$$

Mean

$$\mu = \mathbf{E}[X] = \begin{cases} \sum\limits_{x \in S} xp(x) & X \text{ is discrete} \\ \sum\limits_{\infty} xf(x)dx & X \text{ is continuous} \end{cases}$$

Variance

$$\sigma^2 = \mathbf{var}[X] = \mathbf{E}[(X - \mu)^2]$$

 $n^{\mathsf{th}}$  moment

 $\mathbf{E}[X^n]$ 

## Facts

Let 
$$Y = g(X) = aX + b$$
,  $a, b$  are constants

- $\bullet \mathbf{E}[Y] = a\mathbf{E}[X] + b$
- $\mathbf{var}[Y] = a^2 \mathbf{var}[X]$
- $\mathbf{var}[X] = \mathbf{E}[X^2] (\mathbf{E}[X])^2$

## Example of Random Variables

#### Discrete RVs

- Bernoulli
- Binomial
- Multinomial
- Geometric
- Negative binomial
- Poisson
- Uniform

#### Continuous RVs

- Uniform
- Exponential
- Gaussian (Normal)
- Gamma
- Beta
- Rayleigh
- Cauchy
- Laplacian

## Bernoulli random variables

let A be an event of interest

a Bernoulli random variable X is defined as

$$X = 1$$
 if  $A$  occurs and  $X = 0$  otherwise

it can also be given by the indicator function for A

$$X(\zeta) = \begin{cases} 0, & \text{if } \zeta \text{ not in } A \\ 1, & \text{if } \zeta \text{ in } A \end{cases}$$

**PMF:** 
$$p(1) = p$$
,  $p(0) = 1 - p$ ,  $0 \le p \le 1$ 

 $\mathbf{Mean:}\ \mathbf{E}[X]=p$ 

Variance: var[X] = p(1-p)

# Example

Bernoulli PMF: p = 1/3



## Binomial random variables

- lacksquare X is the number of successes in a sequence of n independent trials
- lacktriangle each experiment yields success with probability p
- when n = 1, X is a Bernoulli random variable
- $S_X = \{0, 1, 2, \dots, n\}$
- lacktriangle ex. Transmission errors in a binary channel: X is the number of errors in n independent transmissions

$$p(k) = P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad k = 0, 1, \dots, n$$

Mean

$$\mathbf{E}[X] = np$$

**Variance** 

$$\mathbf{var}[X] = np(1-p)$$



# Example of Binomial PMF

$$p = 1/3, n = 10$$





## Multinomial coefficient

suppose we partition a set of n objects into m subsets  $B_1, B_2, \ldots, B_m$ 



- $B_i$  is assigned  $k_i$  elements and  $k_1 + k_2 + \cdots + k_m = n$
- lacksquare denote  $N_i$  the number of possible assignments to the subset  $B_i$

$$N_1 = \binom{n}{k_1}, N_2 = \binom{n-k_1}{k_2}, \dots, N_{m-1} = \binom{n-k_1-k_2-\dots-k_{m-2}}{k_{m-1}}$$

■ the number of possible partitions is  $N_1N_2\cdots N_{m-1}=\frac{n!}{k_1!k_2!\cdots k_m!}$  and is called the multinomial coefficient

### Multinomial random variables

- a generalization of binomial random variables to consider a trial having more than two possible outcomes
- lacksquare in each trial, there are m possible events, denoted by  $B_1, B_2, \ldots, B_m$  with

$$P(B_k) = p_k$$
, and  $p_1 + p_2 + \dots + p_m = 1$ 

- suppose n independent repetitions of the experiment are performed
- lacksquare let  $X_j$  be the number of times each  $B_j$  occurs

$$P(X_1 = k_1, X_2 = k_2, \dots, X_m = k_m) = \frac{n!}{k_1! k_2! \dots k_m!} p_1^{k_1} p_2^{k_2} \cdots p_m^{k_m}$$

where 
$$k_1 + k_2 + \cdots + k_m = n$$

• the multinomial coefficient is the number of possible orderings that  $X_1 = k, \dots, X_m = k_m$ 



**PMF**: the joint probability of vector  $X=(X_1,X_2,\ldots,X_m)$   $P(X_1=k_1,X_2=k_2,\ldots,X_m=k_m)=\frac{n!}{k_1!k_2!\ldots k_m!}p_1^{k_1}p_2^{k_2}\cdots p_m^{k_m}$ 

where  $k_i \in \{0, 1, ..., n\}$  and  $k_1 + k_2 + \cdots + k_m = 1$ 

#### Mean

$$\mathbf{E}[X_i] = np_i$$

#### **Variance**

$$\mathbf{var}[X_i] = np_i(1 - p_i), \quad \mathbf{cov}(X_i, X_j) = -np_i p_j, \quad i \neq j$$

some applications:

- $\blacksquare$  the data of N samples can be categorized into K classes, e.g., N subjects with blood types of A, B, AB, and O
- multinomial logistic regression in *K*-class classification

### Geometric random variables

- lacktriangle repeat independent Bernoulli trials, each has probability of success p
- lacksquare X is the number of experiments required until the first success occurs
- $S_X = \{1, 2, 3, \ldots\}$
- $lue{}$  ex. Message transmissions: X is the number of times a message needs to be transmitted until it arrives correctly

#### **PMF**

$$p(k) = P(X = k) = (1 - p)^{k-1}p$$

Mean

$$\mathbf{E}[X] = \frac{1}{p}$$

**Variance** 

$$\mathbf{var}[X] = \frac{1-p}{p^2}$$

# Example of Geometric PMF

$$p = 1/4, 1/3, 1/2$$



parameters:

# Negative binomial (Pascal) random variables

- lacktriangleright repeat independent Bernoulli trials until observing the  $r^{ ext{th}}$  success
- lacksquare X is the number of trials required until the  $r^{\text{th}}$  success occurs
- lacksquare X can be viewed as the sum of r geometrically RVs
- $S_X = \{r, r+1, r+2, \ldots\}$

#### **PMF**

$$p(k) = P(X = k) = {k-1 \choose r-1} p^r (1-p)^{k-r}, \quad k = r, r+1, \dots$$

Mean

$$\mathbf{E}[X] = \frac{r}{p}$$

**Variance** 

$$\mathbf{var}[X] = \frac{r(1-p)}{p^2}$$

some text defines k as the number of failures until the rth succuess

$$P(X = k) = {k+r-1 \choose r-1} p^r (1-p)^k \quad k = 0, 1, 2 \dots$$

example of negative binomial PMF: r = 1, 5, 10 and p = 1/3



## Poisson random variables

- lacksquare X is a number of events occurring in a certain period of time
- events occur with a known average rate
- lacksquare the expected number of occurrences in the interval is  $\lambda$
- $S_X = \{0, 1, 2, \ldots\}$
- examples:
  - number of emissions of a radioactive mass during a time interval
  - number of queries arriving in t seconds at a call center
  - number of packet arrivals in t seconds at a multiplexer

#### **PMF**

$$p(k) = P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}, \quad k = 0, 1, 2, \dots$$

$$\mathbf{Mean} \quad \mathbf{E}[X] = \lambda$$

Variance 
$$var[X] = \lambda$$

# Example of Poisson PMF

$$\lambda = 1, 3, 9$$



## Derivation of Poisson distribution

- lacksquare approximate a binomial RV when n is large and p is small
- define  $\lambda = np$ , in 1898 Bortkiewicz showed that

$$p(k) = \binom{n}{k} p^k (1-p)^{n-k} \approx \frac{\lambda^k}{k!} e^{-\lambda}$$

Proof.

$$p(0) = (1 - p)^n = (1 - \lambda/n)^n \approx e^{-\lambda}, \quad n \to \infty$$
$$\frac{p(k+1)}{p(k)} = \frac{(n-k)p}{(k+1)(1-p)} = \frac{(1-k/n)\lambda}{(k+1)(1-\lambda/n)}$$

take the limit  $n \to \infty$ 

$$p(k+1) = \frac{\lambda}{k+1} p(k) = \left(\frac{\lambda}{k+1}\right) \left(\frac{\lambda}{k}\right) \cdots \left(\frac{\lambda}{1}\right) p(0) = \frac{\lambda^{k+1}}{(k+1)!} e^{-\lambda}$$

# Comparison of Poisson and Binomial PMFs



# Exponential random variables

- arise when describing the time between occurrence of events
- examples:
  - the time between customer demands for call connections
  - the time used for a bank teller to serve a customer
- lacksquare  $\lambda$  is the rate at which events occur
- a continuous counterpart of the geometric random variable

### **PDF**

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \ge 0\\ 0, & \text{if } x < 0 \end{cases}$$

Mean 
$$\mathbf{E}[X] = \frac{1}{\lambda}$$

**Variance** 
$$\mathbf{var}[X] = \frac{1}{\lambda^2}$$

# Example of Exponential PDF



# Memoryless property

the property states that

$$P(X > t + h|X > t) = P(X > h)$$

- P(X > t + h|X > t) is the probability of having to wait additionally at least h seconds given that one has already been waiting t seconds
- $lackbox{P}(X>h)$  is the probability of waiting at least h seconds when one first begins to wait
- lacktriangle thus, the probability of waiting at least an additional h seconds is the same regardless of how long one has already been waiting

# Proof of memoryless property

$$P(X > t + h|X > t) = \frac{P\{(X > t + h) \cap (X > t)\}}{P(X > t)}, \quad \text{for } h > 0$$
$$= \frac{P(X > t + h)}{P(X > t)} = \frac{e^{-\lambda(t+h)}}{e^{-\lambda t}} = e^{-\lambda h}$$

this is not the case for other non-negative continuous RVs

in fact, the conditional probability

$$P(X > t + h|X > t) = \frac{1 - P(X \le t + h)}{1 - P(X \le t)} = \frac{1 - F(t + h)}{1 - F(t)}$$

depends on t in general



## *m*-Erlang random variables



- lacktriangle the kth event occurs at time  $t_k$
- the times  $X_1, X_2, \dots, X_m$  between events are exponential RVs
- $lue{N}(t)$  denotes the number of events in t seconds, which is a Poisson RV
- $S_m = X_1 + X_2 + \cdots + X_m$  is the elapsed time until the mth occurs

we can show that  $S_m$  is an m-Erlang random variable

### Derivation of Erlang pdf

 $S_m \le t$  iff m or more events occur in t seconds

$$F(t) = P(S_m \le t) = P(N(t) \ge m) = 1 - \sum_{k=0}^{m-1} \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$

to get the density function of  $S_m$ , we take the derivative of F(t):

$$\begin{split} f(t) &= \frac{dF(t)}{dt} = \sum_{k=0}^{m-1} \frac{e^{-\lambda t}}{k!} \left( \lambda (\lambda t)^k - k \lambda (\lambda t)^{k-1} \right) \\ &= \frac{\lambda (\lambda t)^{m-1} e^{-\lambda t}}{(m-1)!} \quad \Rightarrow \quad \text{Erlang distribution with parameters } m, \lambda \end{split}$$

- lacktriangle the sum of m exponential RVs with rate  $\lambda$  is an m-Erlang RV
- lacktriangleright if m becomes large, the  $m ext{-Erlang RV}$  should approach the normal RV
- from the pdf, m-erlang is a special case of gamma variable with parameter  $\alpha = m$

4 / 172

### Uniform random variables

#### Discrete Uniform RVs

- X has n possible values,  $x_1, \ldots, x_n$  that are equally probable
- PMF

$$p(x) = \begin{cases} \frac{1}{n}, & \text{if } x \in \{x_1, \dots, x_n\} \\ 0, & \text{otherwise} \end{cases}$$

#### **Continuous Uniform RVs**

- lacksquare X takes any values on an interval [a,b] that are equally probable
- PDF

$$f(x) = \begin{cases} \frac{1}{(b-a)}, & \text{for } x \in [a, b] \\ 0, & \text{otherwise} \end{cases}$$

- Mean: E[X] = (a+b)/2
- Variance:  $var[X] = (b-a)^2/12$



### Example of discrete uniform PMF

$$X = 0, 1, 2, \dots, 10$$



### Example of Continuous Uniform PMF: $X \in [0, 2]$



# Gaussian (Normal) random variables

- arise as the outcome of the central limit theorem
- the sum of a *large* number of RVs is distributed approximately normally
- many results involving Gaussian RVs can be derived in analytical form
- lacksquare let X be a Gaussian RV with parameters mean  $\mu$  and variance  $\sigma^2$

**Notation** 

$$X \sim \mathcal{N}(\mu, \sigma^2)$$

**PDF** 

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < \infty$$

 $\mathbf{Mean} \quad \mathbf{E}[X] = \mu$ 

 $\mathbf{Variance} \quad \mathbf{var}[X] = \sigma^2$ 

### Standard Gaussian

let  $Z \sim \mathcal{N}(0,1)$  be the normalized Gaussian variable CDF of Z is

$$F_Z(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^z e^{-t^2/2} dt \triangleq \Phi(z)$$

then CDF of  $X \sim \mathcal{N}(\mu, \sigma^2)$  can be obtained by

$$F_X(x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$$

in MATLAB, the error function is defined as

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

hence,  $\Phi(z)$  can be computed via the erf command as

$$\Phi(z) = \frac{1}{2} \left[ 1 + \operatorname{erf}\left(\frac{z}{\sqrt{2}}\right) \right]$$

## Example of Gaussian PDF



• parameters:  $\mu = 0, \, \sigma^2 = 0.5, 1, 5$ 



79 / 172

#### Gamma random variables

- appears in many applications:
  - the time required to service customers in queuing system
  - the lifetime of devices in reliability studies
  - the defect clustering behavior in VLSI chips
- $\blacksquare$  let X be a Gamma variable with parameters  $\alpha, \lambda$

#### **PDF**

$$f(x) = \frac{\lambda(\lambda x)^{\alpha - 1} e^{-\lambda x}}{\Gamma(\alpha)}, \quad x \ge 0; \quad \alpha, \lambda > 0$$

where  $\Gamma(z)$  is the gamma function, defined by

$$\Gamma(z) = \int_0^\infty x^{z-1} e^{-x} dx, \quad z > 0$$

Mean 
$$\mathbf{E}[X] = \frac{\alpha}{\lambda}$$

**Variance** 
$$\mathbf{var}[X] = \frac{\alpha}{\lambda^2}$$

## Properties of the gamma function

$$\begin{array}{rcl} \Gamma(1/2) &=& \sqrt{\pi} \\ \Gamma(z+1) &=& z\Gamma(z) \quad \mbox{for } z>0 \\ \Gamma(m+1) &=& m!, \quad \mbox{for } m \mbox{ a nonnegative integer} \end{array}$$

the value of  $\Gamma(1/2)$  is obtaind by a change of variable  $u=\sqrt{x}$  to Gaussian

### Special cases

- a Gamma RV becomes
  - lacksquare exponential RV when lpha=1
  - lacktriangledown m-Erlang RV when lpha=m, a positive integer
  - chi-square RV with k DOF when  $\alpha=k/2, \lambda=1/2$



## Example of Gamma PDF



- **blue**:  $\alpha = 0.2, \lambda = 0.2$  (long tail)
- green:  $\alpha = 1, \lambda = 0.5$  (exponential)
- red:  $\alpha=3, \lambda=1/2$  (Chi square with 6 DOF)
- black:  $\alpha=5,20,50,100$  and  $\alpha/\lambda=10$  ( $\alpha$ -Erlang with mean 10)

### Beta random variables

- used to model the randomness of percentages, proportions or ratios
- lacktriangleright ranges of beta variables are in [0,1]
- let X be a beta variable with parameters  $\alpha, \beta > 0$

#### **PDF**

$$f(x) = \frac{x^{\alpha - 1}(1 - x)^{(\beta - 1)}}{B(\alpha, \beta)}, \quad 0 \le x \le 1, \quad B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)} \quad \text{(beta function)}$$

Mean: 
$$\mathbf{E}[X] = \frac{\alpha}{\alpha + \beta}$$
 Variance:  $\mathbf{var}[X] = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$ 

special case:  $\beta=1$  and  $\alpha={\bf Z}^+$ 

$$B(\alpha, \beta) = \frac{\Gamma(\alpha)}{\Gamma(\alpha + 1)} = \frac{1}{\alpha}, \quad f(x) = \alpha x^{\alpha - 1}, \quad 0 \le x \le 1$$

## Example of beta distributions



84 / 172

## Chi-squared random variables

- $\blacksquare$  arise as a sum of k i.i.d. Gaussian variables
- ex. sample variance of i.i.d. Gassian samples  $\{X_1,\ldots,X_N\}$  with variance  $\sigma^2$ ; it is well-known that  $(N-1)s^2/\sigma^2$  is  $\mathcal{X}_{N-1}^2$
- appear in asymptotic properties of estimators
- $X \sim \mathcal{X}_k^2$ : chi-square variable with degree of freedom k

#### **PDF**

$$f(x) = \frac{1}{2^{k/2}\Gamma(k/2)} x^{k/2-1} e^{-x/2}, \quad x \ge 0, \quad k \in \mathbf{Z}^+$$

Mean

$$\mathbf{E}[X] = k$$

**Variance** 

$$\mathbf{var}[X] = 2k$$

# Example of chi-squared PDF



86 / 172

## Rayleigh random variables

- arise when observing the magnitude of a vector
- ex. The absolute values of random complex numbers whose real and imaginary are i.i.d. Gaussian

#### **PDF**

$$f(x) = \frac{x}{\sigma^2} e^{-x^2/2\sigma^2}, \quad x \ge 0, \quad \alpha > 0$$

Mean

$$\mathbf{E}[X] = \sigma \sqrt{\pi/2}$$

**Variance** 

$$\mathbf{var}[X] = \frac{4 - \pi}{2} \sigma^2$$

if X is Rayleigh, then  $X^2$  is  $\mathcal{X}_2^2$ 



# Example of Rayleigh PDF



lacktriangle parameters:  $\sigma=1,2,3$ 



88 / 172

### Cauchy random variables

#### **PDF**

$$f(x) = \frac{\sigma}{\pi(x^2 + \sigma^2)}, \quad -\infty < x < \infty$$

- Cauchy distribution does not have any moments
- no mean, variance or higher moments defined
- ullet Z=X/Y is the standard Cauchy if X and Y are independent Gaussian



## Moments of Cauchy variables

if we try to compute  $\mathbf{E}[X]$ 

$$\mathbf{E}[X] = \int_{-\infty}^{\infty} \frac{x}{x^2 + 1} dx = \int_{-\infty}^{0} \frac{x}{x^2 + 1} dx + \int_{0}^{\infty} \frac{x}{x^2 + 1} dx$$

the two integrals are not canceled out because each is infinite

$$\int_0^\infty \frac{x}{x^2 + 1} dx = (1/2) \int_0^\infty \frac{1}{x^2 + 1} d(x^2 + 1) = (1/2) [\log(x^2 + 1)]_0^\infty = \infty$$

for the second moment

$$\mathbf{E}[X^2] = 2\int_0^\infty \frac{x^2}{x^2 + 1} dx = 2\int_0^\infty 1 - \frac{1}{x^2 + 1} dx = \infty$$

the higher moments also diverge because the lower moments do



### Laplacian random variables

PDF

$$f(x) = \frac{\alpha}{2}e^{-\alpha|x-\mu|}, \quad -\infty < x < \infty$$

Mean

$$\mathbf{E}[X] = \mu$$

**Variance** 

$$\mathbf{var}[X] = \frac{2}{\alpha^2}$$

- arise as the difference between two i.i.d exponential RVs
- unlike Gaussian, the Laplace density is expressed in terms of the absolute difference from the mean

## Example of Laplacian PDF



- $\blacksquare$  parameters:  $\mu = 0$ ,  $\alpha = 1, 2, 3, 4, 5$
- Laplacian pdf is more concentrated at the mean than pdf of Gaussian (with the same variance)

### Related MATLAB commands

- cdf returns the values of a specified cumulative distribution function
- pdf returns the values of a specified probability density function
- randn generates random numbers from the standard Gaussian distribution
- rand generates random numbers from the standard uniform distribution
- random generates random numbers drawn from a specified distribution
- histogram plots a histogram of data samples

#### References

Chapter 3,4 in A. Leon-Garcia, *Probability, Statistics, and Random Processes for Electrical Engineering*, 3rd edition, Pearson Prentice Hall, 2009

# Inequalities

## **Topics**

- Markov inequality
- Chebyshev inequality
- Chernoff bound
- Jensen inequality

# Markov inequality

let X be a *nonnegative* RV with mean  $\mathbf{E}[X]$ 

$$P(X \ge a) \le \frac{\mathbf{E}[X]}{a}, \quad a > 0$$

# Chebyshev inequality

let X be an RV with mean  $\mu$  and variance  $\sigma^2$ 

$$P(|X - \mu| \ge a) \le \frac{\sigma^2}{a^2}$$

## Example: Markov inequality

manufacturing of low grade resistors

- $\blacksquare$  assume the averge resistance is 100 ohms (measured by a statistical analysis)
- some of resistors have different values of resistance

if all resistors over 200 ohms will be discarded, what is the maximum fraction of resistors to meet such a criterion ?

using Markov inequality with  $\mu=100$  and a=200

$$P(X \ge 200) \le \frac{100}{200} = 0.5$$

the percentage of discarded resistors cannot exceed 50% of the total

### Example: Chebyshev inequality

if the variance of the resistance is known to equal 100, find the probability that the resistance values are between 50 and 150

$$P(50 \le X \le 150) = P(|X - 100| \le 50)$$
$$= 1 - P(|X - 100| \ge 50)$$

by Chebyshev inequality

$$P(|X - 100| \ge 50) \le \frac{\sigma^2}{(50)^2} = 1/25$$

hence,

$$P(50 \le X \le 150) \ge 1 - \frac{1}{25} = \frac{24}{25}$$

### Chernoff bound

the Chernoff bound is given by

$$P(X \ge a) \le \inf_{t \ge 0} \mathbf{E}[e^{t(X-a)}]$$

which can be expressed as

$$\log P(X \ge a) \le \inf_{t>0} \left\{ -ta + \log \mathbf{E} e^{tX} \right\}$$

- $lackbox{\bf E}[e^{tX}]$  is the moment generating function
- lacksquare  $\log \mathbf{E} e^{tX}$  is called the *cumulant generating function*
- lacktriangle Chernoff bound is useful when  $\mathbf{E}e^{tX}$  has an analytical expression

### Example: Chernoff bound of Gaussian

X is Gaussian with zero mean and unit variance

the cumulant generating function is

$$\log \mathbf{E}[e^{tX}] = t^2/2$$

hence,

$$\log P(X \ge a) \le \inf_{t>0} \{-ta + t^2/2\} = -a^2/2$$

and the Chernoff bound gives

$$P(X \ge a) \le e^{-a^2/2}$$

which is tighter than the Chebyshev inequality:

$$P(|X| \ge a) \le 1/a^2 \implies P(X \ge a) \le 1/2a^2$$

### Example: Chernoff bound



when a is small, Chebyshev bound is useless while the Chernoff bound is tighter

### Jensen inequality

the idea is related to the convexity of a function f

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y), \quad 0 \le \theta \le 1, \ \forall x, y \in \mathbf{dom} f$$

**Jensen's inequality:** let f be a convex function and X be an RV

$$f(\mathbf{E}[X]) \le \mathbf{E}[f(X)]$$

**finite form:** let f be convex and  $x_1, \ldots, x_n \in \operatorname{dom} f$  and  $a_1, \ldots, a_n > 0$ 

$$f\left(\frac{\sum_{i} a_{i} x_{i}}{\sum_{i} a_{i}}\right) \leq \frac{\sum_{i} a_{i} f(x_{i})}{\sum_{i} a_{i}}$$

#### References

Chapter 3,4 in A. Leon-Garcia, Probability, Statistics, and Random Processes for Electrical Engineering, 3rd edition, Pearson Prentice Hall, 2009

### Transform methods

## **Topics**

- moment generating function (MGF)
- characteristic function (CF)

# Moment generating functions

for a random variable X, the moment generating function (MGF) of X is

$$\Phi(t) = \mathbf{E}[e^{tX}]$$

#### **Continuous**

$$\Phi(t) = \int_{-\infty}^{\infty} e^{tx} f(x) dx$$

#### Discrete

$$\Phi(t) = \sum_{k} e^{tx_k} p(x_k)$$

- lacktriangle except for a sign change,  $\Phi(t)$  is the 2-sided Laplace transform of pdf
- lacksquare the set of t for which the integral is finite forms the domain of  $\Phi(t)$

### Moment theorem

computing any moments of X is easily obtained by

$$\mathbf{E}[X^n] = \left. \frac{d^n \Phi(t)}{dt^n} \right|_{t=0}$$

because

$$\mathbf{E}[e^{tX}] = \mathbf{E}\left[1 + tX + \frac{(tX)^2}{2!} + \dots + \frac{(tX)^n}{n!} + \dots\right]$$
$$= 1 + t\mathbf{E}[X] + \frac{t^2}{2!}\mathbf{E}[X^2] + \dots + \frac{t^n}{n!}\mathbf{E}[X^n] + \dots$$

note that  $\Phi(0) = 1$ 

**linear transformation:** if Y = aX + b , then

$$\Phi_y(t) = e^{tb}\Phi_x(at)$$

### MGF of Gaussian variables

the MGF of  $X \sim \mathcal{N}(0,1)$  is given by

$$\Phi(t) = e^{t^2}/2$$

it can be derived by completing square in the exponent:

$$\Phi(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-x^2/2} e^{tx} dx = e^{t^2/2} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-(x-t)^2/2} dx$$

the MGF of  $X \sim \mathcal{N}(\mu, \sigma^2)$  (affine transformation of  $\mathcal{N}(0, 1)$ ) is

$$\Phi(t) = e^{(\mu t + \sigma^2 t^2/2)}$$

from the moment theorem, we obtain

$$\Phi'(0) = \mu, \quad \Phi''(0) = \mu^2 + \sigma^2$$

### Characteristic functions

the characteristic function (CF) of a random variable X is defined by

#### **Continuous**

$$\Phi(\omega) = \mathbf{E}[e^{i\omega X}] = \int_{-\infty}^{\infty} f(x)e^{i\omega x}dx$$

#### **Discrete**

$$\Phi(\omega) = \mathbf{E}[e^{\mathrm{i}\omega X}] = \sum_{k} e^{\mathrm{i}\omega x_k} p(x_k)$$

- ullet  $\Phi(\omega)$  is simply the (inverse) Fourier transform of the PDF or PMF of X
- every pdf and its characteristic function form a unique Fourier pair:

$$\Phi(\omega) \iff f(x)$$

• it looks as if we can obtain  $\Phi(\omega)$  by substituting  $t=\mathrm{i}\omega$  from MGF to CF but the existence of two transformations could be different

## Properties of characteristic functions

CF always exists because of absolute convergence (not true for MGF)

$$|\Phi(\omega)| \le \int_{-\infty}^{\infty} |e^{i\omega x}||f(x)|dx = \int_{-\infty}^{\infty} f(x)dx = 1$$

■ CF is maximum at origin because  $f(x) \ge 0$ :

$$|\Phi(\omega)| \le \Phi(0) = 1$$

- CF is self-adjoint:  $\Phi(-\omega) = \Phi^*(\omega)$  (where \* is complex conjugate)
- CF is non-negative definite: for any real numbers  $w_1, w_2, \ldots, w_n$  and complex numbers  $z_1, z_2, \ldots, z_n$

$$\sum_{j=1}^{n} \sum_{k=1}^{n} \Phi(w_j - w_k) z_j z_k^* \ge 0$$

## Example: CF

**Linear transformation:** if Y = aX + b , then

$$\Phi_y(\omega) = e^{\mathrm{i}b\omega} \Phi_x(a\omega)$$

**Gaussian variables:** let  $X \sim \mathcal{N}(\mu, \sigma^2)$  the characteristic function of X is

$$\Phi(\omega) = e^{i\mu\omega} \cdot e^{-\sigma^2\omega^2/2}$$

(more details of applying CF to show the central limit theorem) **Binomial variables:** parameters are n, p and q = 1 - p

$$\Phi(\omega) = (pe^{i\omega} + q)^n$$

**Poisson variables:** with parameter  $\lambda$ 

$$\Phi(\omega) = e^{\lambda(e^{\mathrm{i}\omega} - 1)}$$



## Generating function

let X be a **nonnegative integer-valued** random variable

the generating function of X is defined as the z-transform of its PMF:

$$G(z) = \mathbf{E}[z^X] = \sum_{k=0}^{\infty} p(k)z^k$$

the characteristic function of X is given by  $\Phi(\omega) = G(e^{\mathrm{i}\omega})$ 

G(z) is called the generating function due to the fact that

$$p(k) = \left. \frac{1}{k!} \frac{d^k}{dz^k} G(z) \right|_{z=0}$$

by using a similar derivation to that used in the moment theorem



## Laplace Transform

let X be a *nonnegative continuous* random variable

the Laplace transform of the pdf of X is defined as

$$\mathcal{L}(s) = \mathbf{E}[e^{-sX}] = \int_0^\infty f(x)e^{-sx}dx$$

the moment theorem also holds for  $\mathcal{L}(s)$ :

$$\mathbf{E}[X^n] = (-1)^n \frac{d^n}{ds^n} \mathcal{L}(s) \Big|_{s=0}$$

### Benefits of the transform methods

- moments of RVs are obtained by differentiating the transform
- transform of convolution integral is simply the product of transforms i.e., the Laplace transform pair:

$$h(t) * u(t) \iff H(s)U(s)$$

 distribution of transformed variable can be derived through its characteristic function

## Function of random variables

## **Topics**

- linear and quadratic transformations
- general transformations

## Functions of random variables

let X be an RV and g(x) be a real-valued function defined on the real line

- lacksquare Y=g(X), Y is also an RV
- lacktriangle CDF of Y will depend on g(x) and CDF of X

**Example:** define g(x) as

$$g(x) = (x)^{+} = \begin{cases} x, & \text{if } x \ge 0 \\ 0, & \text{if } x < 0 \end{cases}$$

- lacktriangle an input voltage X passes thru a halfwave rectifier
- A/D converter: a uniform quantizer maps input to the closet point
- Y is # of active speakers in excess of M, i.e.,  $Y = (X M)^+$

CDF of 
$$Y = g(X)$$

probability of equivalent events:

$$P(Y \text{ in } C) = P(g(X) \text{ in } C) = P(X \text{ in } B)$$

where B is the equivalent event of values of X such tthat g(X) is in C

# Example: Voice Transmission System

- lacksquare X is # of active speakers in a group of N speakers
- let p be the probability that a speaker is active
- lacksquare a voice transmission system can transmit up to M signals at a time
- lacksquare let Y be the number of signal discarded, so  $Y=(X-M)^+$

Y take values from the set  $S_Y = \{0, 1, \dots, N-M\}$ 

we can compute PMF of Y as

$$P(Y = 0) = P(X \text{ in } \{0, 1, \dots, M\}) = \sum_{k=0}^{M} p_X(k)$$

$$P(Y = k) = P(X = M + k) = p_X(M + k), \quad 0 < k \le N - M,$$

### Affine functions

define  $Y=aX+b, \quad a>0.$  Find CDF and PDF of Y If a>0



$$P(Y \le y) = P(aX + b \le y)$$
$$= P(X \le (y - b)/a)$$

thus,

$$F_Y(y) = F_X\left(\frac{y-b}{a}\right)$$

pdf of Y is obtained by differentiating the CDF wrt. to y

$$f_Y(y) = \frac{1}{a} f_X\left(\frac{y-b}{a}\right)$$

122 / 172

## Affine function of a Gaussian

let  $X \sim \mathcal{N}(m, \sigma^2)$ :

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp -\frac{(x-m)^2}{2\sigma^2}$$

let Y = aX + b, with a > 0

from page 122,

$$f_Y(y) = \frac{1}{a} f_X\left(\frac{y-b}{a}\right) = \frac{1}{\sqrt{2\pi(a\sigma)^2}} \exp\left(-\frac{(y-b-am)^2}{2(a\sigma)^2}\right)$$

- Y has also a Gaussian distribution with mean b+am and variance  $(a\sigma)^2$
- thus, a linear function of a Gaussian is also a Gaussian



## Example: Quadratic functions

define  $Y = X^2$ . find CDF and PDF of Y

for a positive y, we have

$$\{Y \leq y\} \Longleftrightarrow \{-\sqrt{y} \leq X \leq \sqrt{y}\}$$

thus,

$$F_Y(y) = \begin{cases} 0, & y < 0 \\ F_X(\sqrt{y}) - F_X(-\sqrt{y}), & y > 0 \end{cases}$$



differentiating wrt. to y gives

$$f_Y(y) = \frac{f_X(\sqrt{y})}{2\sqrt{y}} + \frac{f_X(-\sqrt{y})}{2\sqrt{y}}$$

for  $X \sim \mathcal{N}(0,1)$ , Y is a chi-square random variable with one dof 0

### General functions of random variables

suppose Y=g(X) is a transformation (could be many-to-one)



suppose y = g(x) has n roots:

$$y = g(x_1) = g(x_2) = \dots = g(x_n)$$

two equivalent events:

$$\{y < Y < y + dy\} \Leftrightarrow \bigcup_{k=1}^{n} \{x_k < X < x_k + dx_k\}$$

the probabibilities of two equivalent events are approximately

$$f_Y(y)|dy| = f_X(x_1)|dx_1| + f_X(x_2)|dx_2| + \dots + f_X(x_n)|dx_n|$$
  
$$f_Y(y) = \frac{f_X(x_1)}{|g'(x_1)|} + \dots + \frac{f_X(x_n)}{|g'(x_n)|}$$

where g'(x) is the derivative (Jacobian) of g(x)



## Examples: affine and quadratic

affine: Y = aX + b, g'(x) = a

the equation y = ax + b has a single solution x = (y - b)/a for every y, so

$$f_Y(y) = \frac{1}{|a|} f_X\left(\frac{y-b}{a}\right)$$

quadratic:  $Y = aX^2$ , a > 0, g'(x) = 2ax

if  $y \le 0$ , then the equation  $y = ax^2$  has no real solutions, so  $f_Y(y) = 0$  if y > 0, then it has two solutions

$$x_1 = \sqrt{y/a}, \quad x_2 = -\sqrt{y/a}$$

and therefore

$$f_Y(y) = \frac{1}{2\sqrt{ay}} \left( f_X(\sqrt{y/a}) + f_X(-\sqrt{y/a}) \right)$$

# Log of uniform variables

verify that if X has a standard uniform distribution  $\mathcal{U}(0,1)$ , then

$$Y = -\log(X)/\lambda$$

has an exponential distribution with parameter  $\lambda$ 

for Y=y, we can solve  $X=x=e^{-\lambda y}\Rightarrow$  unique root

- the Jacobian is  $g'(x) = -\frac{1}{\lambda x} = -e^{\lambda y}/\lambda$
- when y < 0,  $x = e^{-\lambda y} \notin [0, 1]$ ; hence,  $f_Y(y) = 0$
- when  $y \ge 0$  (or  $e^{-\lambda y} \in [0,1]$ ), we will have

$$f_Y(y) = \frac{f_X(e^{-\lambda y})}{|-1/\lambda x|} = \lambda e^{-\lambda y}$$



# Amplitude samples of a sinusoidal waveform

let  $Y = \cos X$  where  $X \sim \mathcal{U}(0, 2\pi]$ , find the pdf of Y for |y| > 1 there is no solution of  $x \Rightarrow f_Y(y) = 0$  for |y| < 1 the equation  $y = \cos x$  has two solutions:

$$x_1 = \cos^{-1}(y), \quad x_2 = 2\pi - x_1$$

the Jacobians are

$$g'(x_1) = -\sin(x_1) = -\sin(\cos^{-1}(y)) = -\sqrt{1-y^2}, \quad g'(x_2) = \sqrt{1-y^2}$$

since  $f_X(x) = 1/2\pi$  in the interval  $(0, 2\pi]$ , so

$$f_Y(y) = \frac{1}{\pi \sqrt{1 - y^2}}, \quad \text{for } -1 < y < 1$$

note that although  $f_Y(\pm 1) = \infty$  the probability that  $y = \pm 1$  is 0

## Random vectors

### Random vectors

we denote X a random vector

 $\boldsymbol{X}$  is a function that maps each outcome  $\zeta$  to a vector of real numbers

an n-dimensional random variable has n components:

$$X = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix}$$

also called a *multivariate* or *multiple* random variable

## **Probabilities**

#### Joint CDF

$$F(X) \triangleq F_X(x_1, x_2, \dots, x_n) = P(X_1 \le x_1, X_2 \le x_2, \dots, X_n \le x_n)$$

#### Joint PMF

$$p(X) \triangleq p_X(x_1, x_2, \dots, x_n) = P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$$

#### Joint PDF

$$f(X) \triangleq f_X(x_1, x_2, \dots, x_n) = \frac{\partial^n}{\partial x_1 \dots \partial x_n} F(X)$$

131 / 172

### Marginal PMF

$$p_{X_j}(x_j) = P(X_j = x_j) = \sum_{x_1} \dots \sum_{x_{j-1}} \sum_{x_{j+1}} \dots \sum_{x_n} p_X(x_1, x_2, \dots, x_n)$$

#### **Marginal PDF**

$$f_{X_j}(x_j) = \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} f_X(x_1, x_2, \dots, x_n) \ dx_1 \dots dx_{j-1} dx_{j+1} \dots dx_n$$

**Conditional PDF:** the PDF of  $X_n$  given  $X_1, \ldots, X_{n-1}$  is

$$f(x_n|x_1,\ldots,x_{n-1}) = \frac{f_X(x_1,\ldots,x_n)}{f_{X_1,\ldots,X_{n-1}}(x_1,\ldots,x_{n-1})}$$

## Characteristic Function

the characteristic function of an n-dimensional RV is defined by

$$\Phi(\omega) = \Phi(\omega_1, \dots, \omega_n) = \mathbf{E}[e^{\mathrm{i}(\omega_1 X_1 + \dots + \omega_n X_n)}]$$
$$= \int_X e^{\mathrm{i}\omega^T X} f(X) dX$$

where

$$\omega = \begin{bmatrix} \omega_1 \\ \omega_2 \\ \vdots \\ \omega_n \end{bmatrix}, \quad X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

 $\Phi(\omega)$  is the n-dimensional Fourier transform of f(X)

## Independence

the random variables  $X_1, \ldots, X_n$  are **independent** if

the joint pdf (or pmf) is equal to the product of their marginal's

#### **Discrete**

$$p_X(x_1,\ldots,x_n)=p_{X_1}(x_1)\cdots p_{X_n}(x_n)$$

#### **Continuous**

$$f_X(x_1,\ldots,x_n)=f_{X_1}(x_1)\cdots f_{X_n}(x_n)$$

we can specify an RV by the characteristic function in place of the pdf,

 $X_1, \ldots, X_n$  are independent if

$$\Phi(\omega) = \Phi_1(\omega_1) \cdots \Phi_n(\omega_n)$$

## **Expected Values**

the expected value of a function

$$g(X) = g(X_1, \dots, X_n)$$

of a vector random variable X is defined by

$$\mathbf{E}[g(X)] = \int_x g(x)f(x)dx$$
 Continuous  $\mathbf{E}[g(X)] = \sum_x g(x)p(x)$  Discrete

Mean vector

$$\mu = \mathbf{E}[X] = \mathbf{E} \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix} \quad \triangleq \quad \begin{bmatrix} \mathbf{E}[X_1] \\ \mathbf{E}[X_2] \\ \vdots \\ \mathbf{E}[X_n] \end{bmatrix}$$

### Correlation and Covariance matrices

**Correlation matrix** has the second moments of X as its entries:

$$R \triangleq \mathbf{E}[XX^T] = \begin{bmatrix} \mathbf{E}[X_1X_1] & \mathbf{E}[X_1X_2] & \cdots & \mathbf{E}[X_1X_n] \\ \mathbf{E}[X_2X_1] & \mathbf{E}[X_2X_2] & \cdots & \mathbf{E}[X_2X_n] \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{E}[X_nX_1] & \mathbf{E}[X_nX_2] & \cdots & \mathbf{E}[X_nX_n] \end{bmatrix}$$

with

$$R_{ij} = \mathbf{E}[X_i X_j]$$

**Covariance matrix** has the second-order central moments as its entries:

$$C \triangleq \mathbf{E}[(X-\mu)(X-\mu)^T]$$

with

$$C_{ij} = \mathbf{cov}(X_i, X_j) = \mathbf{E}[(X_i - \mu_i)(X_j - \mu_j)]$$

# Properties of correlation and covariance matrices

let X be a (real) n-dimensional random vector with mean  $\mu$ 

#### Facts:

- lacksquare R and C are  $n \times n$  symmetric matrices
- lacksquare R and C are positive semidefinite
- If  $X_1, \ldots, X_n$  are independent, then C is diagonal
- lacksquare the diagonals of C are given by the variances of  $X_k$
- lacksquare if X has zero mean, then R=C
- $C = R \mu \mu^T$

## Cross Correlation and Cross Covariance

let X,Y be vector random variables with means  $\mu_X,\mu_Y$  respectively

#### **Cross Correlation**

$$\mathbf{cor}(X,Y) = \mathbf{E}[XY^T]$$

if cor(X, Y) = 0 then X and Y are said to be **orthogonal** 

#### **Cross Covariance**

$$\mathbf{cov}(X,Y) = \mathbf{E}[(X - \mu_X)(Y - \mu_Y)^T]$$
$$= \mathbf{cor}(X,Y) - \mu_X \mu_Y^T$$

if  $\mathbf{cov}(X,Y) = 0$  then X and Y are said to be **uncorrelated** 



## Affine transformation

let Y be an affine transformation of X:

$$Y = AX + b$$

where A and b are deterministic matrices

 $\mu_Y = A\mu_X + b$ 

$$\mu_Y = \mathbf{E}[AX + b] = A\mathbf{E}[X] + \mathbf{E}[b] = A\mu_X + b$$

 $\mathbf{C}_Y = AC_XA^T$ 

$$C_Y = \mathbf{E}[(Y - \mu_Y)(Y - \mu_Y)^T] = \mathbf{E}[(A(X - \mu_X))(A(X - \mu_X))^T]$$
  
=  $A\mathbf{E}[(X - \mu_X)(X - \mu_X)^T]A^T = AC_XA^T$ 

### Gaussian random vector

 $X_1, \ldots, X_n$  are said to be **jointly Gaussian** if their joint pdf is given by

$$f(X) \triangleq f_X(x_1, x_2, \dots, x_n) = \frac{1}{(2\pi)^{n/2} \det(\Sigma)^{1/2}} \exp -\frac{1}{2} (X - \mu)^T \Sigma^{-1} (X - \mu)$$

 $\mu$  is the mean  $(n \times 1)$  and  $\Sigma \succ 0$  is the covariance matrix  $(n \times n)$ :

$$\mu = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_n \end{bmatrix}, \quad \Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} & \cdots & \Sigma_{1n} \\ \Sigma_{21} & \Sigma_{22} & \cdots & \Sigma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \Sigma_{n1} & \Sigma_{n2} & \cdots & \Sigma_{nn} \end{bmatrix}$$

and

$$\mu_k = \mathbf{E}[X_k], \quad \Sigma_{ij} = \mathbf{E}[(X_i - \mu_i)(X_j - \mu_j)]$$

## Example

the joint density function of X (not normalized) is given by

$$f(x_1, x_2, x_3) = \exp -\frac{x_1^2 + 3x_2^2 + 2(x_3 - 1)^2 + 2x_1(x_3 - 1)}{2}$$

lacksquare f is an exponential of negative quadratic in x so X must be a Gaussian

$$f(x_1, x_2, x_3) = \exp \left[-\frac{1}{2} \begin{bmatrix} x_1 \\ x_2 \\ x_3 - 1 \end{bmatrix}^T \begin{bmatrix} 1 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 - 1 \end{bmatrix}\right]$$

 $\blacksquare$  the mean vector is (0,0,1) and the covariance matrix is

$$C = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 0 & 2 \end{bmatrix}^{-1} = \begin{bmatrix} 2 & 0 & -1 \\ 0 & 1/3 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

- the variance of  $x_1$  is highest while  $x_2$  is smallest
- $\blacksquare x_1$  and  $x_2$  are uncorrelated, so are  $x_2$  and  $x_3$



## Gaussian density contour

examples of Gaussian density contour (the exponent of exponential)

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{12} & \Sigma_{22} \end{bmatrix}^{-1} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 1$$



$$\Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$



$$\Sigma = \begin{bmatrix} 1/2 & 0 \\ 0 & 1 \end{bmatrix}$$



$$\Sigma = \begin{bmatrix} 1/2 & 0 \\ 0 & 1 \end{bmatrix} \qquad \Sigma = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}$$

## Properties of Gaussian variables

many results on Gaussian RVs can be obtained analytically:

- lacktriangle marginal's of X is also Gaussian
- lacksquare conditional pdf of  $X_k$  given the other variables is a Gaussian distribution
- uncorrelated Gaussian random variables are independent
- any affine transformation of a Gaussian is also a Gaussian

these are well-known facts

and more can be found in the areas of estimation, statistical learning, etc.

## Characteristic function of Gaussian

$$\Phi(\omega) = \Phi(\omega_1, \omega_2, \dots, \omega_n) = e^{i\mu^T \omega} e^{-\frac{\omega^T \Sigma \omega}{2}}$$

Proof. By definition and arranging the quadratic term in the power of exp

$$\begin{split} \Phi(\omega) &= \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \int_X e^{\mathrm{i} X^T \omega} \ e^{-\frac{(X-\mu)^T \Sigma^{-1} (X-\mu)}{2}} dx \\ &= \frac{e^{\mathrm{i} \mu^T \omega} \ e^{-\frac{\omega^T \Sigma \omega}{2}}}{(2\pi)^{n/2} |\Sigma|^{1/2}} \int_X e^{-\frac{(X-\mu-\mathrm{i} \Sigma \omega)^T \Sigma^{-1} (X-\mu-\mathrm{i} \Sigma \omega)}{2}} dx \\ &= \exp \ (\mathrm{i} \mu^T \omega) \exp \left(-\frac{1}{2} \omega^T \Sigma \omega\right) \end{split}$$

(the integral equals 1 since it is a form of Gaussian distribution) for one-dimensional Gaussian with zero mean and variance  $\Sigma = \sigma^2$ ,

$$\Phi(\omega) = e^{-\frac{\sigma^2 \omega^2}{2}}$$



#### Affine Transformation of a Gaussian is Gaussian

let X be an n-dimensional Gaussian,  $X \sim \mathcal{N}(\mu, \Sigma)$  and define

$$Y = AX + b$$

where A is  $m \times n$  and b is  $m \times 1$  (so Y is  $m \times 1$ )

$$\Phi_{Y}(\omega) = \mathbf{E}[e^{i\omega^{T}Y}] = \mathbf{E}[e^{i\omega^{T}(AX+b)}] 
= \mathbf{E}[e^{i\omega^{T}AX} \cdot e^{i\omega^{T}b}] = e^{i\omega^{T}b}\Phi_{X}(A^{T}\omega) 
= e^{i\omega^{T}b} \cdot e^{i\mu^{T}A^{T}\omega} \cdot e^{-\omega^{T}A\Sigma A^{T}\omega/2} 
= e^{i\omega^{T}(A\mu+b)} \cdot e^{-\omega^{T}A\Sigma A^{T}\omega/2}$$

we read off that Y is Gaussian with mean  $A\mu + b$  and covariance  $A\Sigma A^T$ 

## Marginal of Gaussian is Gaussian

the  $k^{\text{th}}$  component of X is obtained by

$$X_k = \begin{bmatrix} 0 & \cdots & 1 & 0 \end{bmatrix} X \triangleq \mathbf{e}_k^T X$$

( $\mathbf{e}_k$  is a standard unit column vector; all entries are zero except the  $k^{\mathsf{th}}$  position)

hence,  $X_k$  is simply a linear transformation (in fact, a projection) of X

 $X_k$  is then a Gaussian with mean

$$\mathbf{e}_k^T \mu = \mu_k$$

and covariance

$$\mathbf{e}_k^T \; \Sigma \; \mathbf{e}_k = \Sigma_{kk}$$



#### Uncorrelated Gaussians are independent

suppose (X,Y) is a jointly Gaussian vector with

mean 
$$\mu = \begin{bmatrix} \mu_x \\ \mu_y \end{bmatrix}$$
 and covariance  $\begin{bmatrix} C_X & 0 \\ 0 & C_Y \end{bmatrix}$ 

in otherwords, X and Y are uncorrelated Gaussians:

$$\mathbf{cov}(X,Y) = \mathbf{E}[XY^T] - \mathbf{E}[X]\mathbf{E}[Y]^T = 0$$

the joint density can be written as

$$f_{XY}(x,y) = \frac{1}{(2\pi)^n |C_X|^{1/2} |C_Y|^{1/2}} \exp -\frac{1}{2} \begin{bmatrix} x - \mu_x \\ y - \mu_y \end{bmatrix}^T \begin{bmatrix} C_X^{-1} & 0 \\ 0 & C_Y^{-1} \end{bmatrix} \begin{bmatrix} x - \mu_x \\ y - \mu_y \end{bmatrix}$$

$$= \frac{1}{(2\pi)^{n/2} |C_X|^{1/2}} e^{-\frac{1}{2}(x - \mu_x)^T C_X^{-1}(x - \mu_x)} \cdot \frac{1}{(2\pi)^{n/2} |C_Y|^{1/2}} e^{-\frac{1}{2}(y - \mu_y)^T C_Y^{-1}(y - \mu_y)}$$

proving the independence



#### Conditional of Gaussian is Gaussian

let Z be an n-dimensional Gaussian which can be decomposed as

$$Z = \begin{bmatrix} X \\ Y \end{bmatrix} \sim \mathcal{N} \left( \begin{bmatrix} \mu_x \\ \mu_y \end{bmatrix}, \begin{bmatrix} \Sigma_{xx} & \Sigma_{xy} \\ \Sigma_{xy}^T & \Sigma_{yy} \end{bmatrix} \right)$$

the conditional pdf of X given Y is also Gaussian with conditional mean

$$\mu_{X|Y} = \mu_x + \Sigma_{xy} \Sigma_{yy}^{-1} (Y - \mu_y)$$

and conditional covariance

$$\Sigma_{X|Y} = \Sigma_x - \Sigma_{xy} \Sigma_{yy}^{-1} \Sigma_{xy}^T$$

#### Proof:

from the **matrix inversion lemma**,  $\Sigma^{-1}$  can be written as

$$\Sigma^{-1} = \begin{bmatrix} S^{-1} & -S^{-1} \Sigma_{xy} \Sigma_{yy}^{-1} \\ -\Sigma_{yy}^{-1} \Sigma_{xy}^T S^{-1} & \Sigma_{yy}^{-1} + \Sigma_{yy}^{-1} \Sigma_{xy}^T S^{-1} \Sigma_{xy} \Sigma_{yy}^{-1} \end{bmatrix}$$

where S is called the **Schur complement of**  $\Sigma_{xx}$  **in**  $\Sigma$  and

$$S = \Sigma_{xx} - \Sigma_{xy} \Sigma_{yy}^{-1} \Sigma_{xy}^{T}$$
$$\det \Sigma = \det S \cdot \det \Sigma_{yy}$$

we can show that  $\Sigma \succ 0$  if any only if  $S \succ 0$  and  $\Sigma_{uu} \succ 0$ 



from  $f_{X|Y}(x|y) = f_X(x,y)/f_Y(y)$ , we calculate the exponent terms

$$\begin{bmatrix} x - \mu_x \\ y - \mu_y \end{bmatrix}^T \Sigma^{-1} \begin{bmatrix} x - \mu_x \\ y - \mu_y \end{bmatrix} - (y - \mu_y)^T \Sigma_{yy}^{-1} (y - \mu_y)$$

$$= (x - \mu_x)^T S^{-1} (x - \mu_x) - (x - \mu_x)^T S^{-1} \Sigma_{xy} \Sigma_{yy}^{-1} (y - \mu_y)$$

$$- (y - \mu_y)^T \Sigma_{yy}^{-1} \Sigma_{xy}^T S^{-1} (x - \mu_x)$$

$$+ (y - \mu_y)^T (\Sigma_{yy}^{-1} \Sigma_{xy}^T S^{-1} \Sigma_{xy} \Sigma_{yy}^{-1}) (y - \mu_y)$$

$$= [x - \mu_x - \Sigma_{xy} \Sigma_{yy}^{-1} (y - \mu_y)]^T S^{-1} [x - \mu_x - \Sigma_{xy} \Sigma_{yy}^{-1} (y - \mu_y)]$$

$$\triangleq (x - \mu_{X|Y})^T \Sigma_{X|Y}^{-1} (x - \mu_{X|Y})$$

 $f_{X|Y}(x|y)$  is an exponential of quadratic function in x

so it has a form of Gaussian

#### Standard Gaussian vectors

for an n-dimensional Gaussian vector  $X \sim \mathcal{N}(\mu, C)$  with  $C \succ 0$ 

let A be an  $n \times n$  invertible matrix such that

$$AA^T = C$$

(A is called a **factor** of C)

then the random vector

$$Z = A^{-1}(X - \mu)$$

is a standard Gaussian vector, i.e.,

$$Z \sim \mathcal{N}(0, I)$$

(obtain A via eigenvalue decomposition or Cholesky factorization)



#### Quadratic Form Theorems

let  $X = (X_1, \dots, X_n)$  be a standard n-dimensional Gaussian vector:

$$X \sim \mathcal{N}(0, I)$$

then the following results hold

- $X^TX \sim \chi^2(n)$
- lacksquare let A be a symmetric and idempotent matrix and  $m=\mathbf{tr}(A)$  then

$$X^T A X \sim \chi^2(m)$$

#### Proof

an eigenvalue decomposition of A:  $A = UDU^T$  where

$$\lambda(A) = 0, 1 \quad U^T U = U U^T = I$$

it follows that

$$X^{T}AX = X^{T}UDU^{T}X = Y^{T}DY = \sum_{i=1}^{n} d_{ii}Y_{i}^{2}$$

- $lue{}$  since U is orthogonal, Y is also a standard Gaussian vector
- since A is idempotent,  $d_{ii}$  is either 0 or 1 and  $\mathbf{tr}(D) = m$

therefore  $X^TAX$  is the m-sum of standard normal RVs

### Simulation

#### **Outlines**

- statistic, sampling distribution
- why is simulation useful?
  - proof of concept
  - when analysis is difficult to obtain
- pseudo-random number generation

#### Statistic

**definition:** suppose  $X_1, X_2, \dots, X_N$  are the observed random variables, then the random variable

$$T = g(X_1, X_2, \dots, X_N)$$

is called a statistic

#### examples:

- sample mean, sample median, sample mode, sample variance
- 2 sample moments: kurtosis, skewness
- 3 order statistic: sample maximum and minimum
- 4 test statistic: t-statistic, chi-squared statistic, F statistic
- 5 sample quantiles

a statistic can provide an inference for the random variables  $X_k$ 's



### Sampling distribution

setting: suppose  $X_1, X_2, \dots, X_N$  are random samples from a distribution involving a parameter  $\theta$ 

**definition:** let T be a function of  $X_1, X_2, \ldots, X_N$  and possibly  $\theta$ 

$$T = g(X_1, X_2, \dots, X_N, \theta)$$
 (a statistic)

the distribution of T (given  $\theta$ ) is called the sampling distribution of T

typically, a sampling distribution depends on

- lacktriangle original distribution of  $X_k$ 's
- $\blacksquare$  the number of observations N
- type of statistic (here, function g)



## Example: Sampling distribution of order statistic

 $X_k$ 's are independent uniform on  $[0,\theta]$ ,  $\theta=3$ 

$$T = \max(X_1, X_2, \dots, X_N)$$
 (T can provide as an estimate of  $\theta$ )



- lacktriangle use N=10 and simulate 1000 realizations of T
- the sampling distribution is NOT the same as  $X_k$ 's (which is uniform)

check point  $\odot$ :  $f_T$  depends on i) max function ii) N and iii) distribution of  $X_k$ 's

# Example: Sampling distribution of sample mean and variance

 $X_1,\dots,X_N$  are normal with mean  $\mu=3$  and  $\sigma^2=2$  and N=10



• 
$$T = \bar{X}_N = \frac{1}{N} \sum_{i=1}^{N} X_i \sim \mathcal{N}(\mu, \sigma^2/N)$$

$$\blacksquare \ T=s^2=\frac{1}{N-1}\sum_{i=1}^N(X_i-\bar{X}_N)^2$$
 and  $\frac{(N-1)s^2}{\sigma^2}\sim \mathcal{X}^2(N-1)$ 

### Why is simulation useful?

- proof of concept
- when analysis becomes too difficult
- when T is a statistic of samples  $X_1, \ldots, X_N$  and we need to discuss about statistical properties of T (mean,median,variance, etc)
  - 1 samples  $X_1, \ldots, X_N$  are generated and compute T
  - 2 repeat step 1 B times, we have  $T^{(1)}, T^{(2)}, \ldots, T^{(B)}$
  - 3 calculate a summary statistic Z of  $T^{(1)}, T^{(2)}, \ldots, T^{(B)}$

the distribution of Z will be called **simulation distribution** or **Monte Carlo distribution** 

example: on page 159, we used B=2000, simulation mean of  $\bar{X}_N$  is 2.9968 and simulation variance of  $\bar{X}_N$  is 0.2042

## Sampling distribution of quantile

let  $X_1, \ldots, X_N$  be gamma variables with  $\alpha = 3$  and  $\beta = 5$ 

- lacksquare Y is the sample au-quantile with au=0.95 based on N samples  $X_k$ 's
- the exact au-quantile is  $q_{ au} = F_X^{-1}( au) = 1.2592$
- lacksquare repeat and generate B=5000 replications of  $Y^{(1)},\ldots,Y^{(B)}$
- lacktriangleright plot the sampling distribution of Y and compute statistic such as the simulation variance
- lacktriangledown fact: the sample au-quantile from N samples has asymptotic distribution

$$\sqrt{N}(Y - q_{\tau}) \stackrel{d}{\to} \mathcal{N}\left(0, \frac{\tau(1 - \tau)}{[f_X(q_{\tau})]^2}\right)$$

lacktriangle simulation variance of Y should decrease as N is large

#### Simulation: sample quantile



- $\blacksquare$  simulation variances of Y are 0.1091 (N=10) and 0.0027 (N=500)
- $\blacksquare$  when N is large, the sampling distribution of Y is close to normal

## Median of a complicated distribution

let  $X|\lambda$  be an exponential with parameter  $\lambda$  but  $\lambda$  itself is random with pdf  $f_\lambda$ 

what if we want to find the median of X ?  $\implies$  maybe we should derive  $f_X(x)$  first ?

example:  $f_{\lambda}(\lambda) = 3\lambda^2$  for  $0 \le \lambda \le 1$ 

$$f_X(x) = \int_0^1 f_{X\lambda}(x,\lambda) d\lambda = \int_0^1 f_{X|\lambda}(x|\lambda) f_{\lambda}(\lambda) d\lambda = \int_0^1 \lambda e^{-\lambda x} 3\lambda^2 d\lambda$$
$$= \int_0^1 3\lambda^3 e^{-\lambda x} d\lambda = -\frac{e^{-\lambda x}}{x^4} [6 + 6\lambda x + 3\lambda^2 x^2 + \lambda^3 x^3]_0^1$$
$$= \frac{3}{x^4} [6 - e^{-x} (6 + 6x + 3x^2 + x^3)]$$

it is complicated to integrate  $f_X$  (and then calculate  $F_X^{-1}(1/2)$ )

## Simulation: Median of complicated distribution

alternative to finding analytical expression of the marginal  $f_X$ , we can

- **1** generate B samples of  $\lambda$   $\lambda^{(1)}, \ldots, \lambda^{(B)}$  according to  $f_{\lambda}$
- **2** simulate  $X^{(i)}$  having exponential distribution with parameter  $\lambda^{(i)}$ , for  $i=1,2,\ldots,B$
- $X^{(1)}, \dots, X^{(B)}$  would be a random sample of  $f_X$
- 4 the median of samples  $X^{(1)},\dots,X^{(B)}$  should be close to the median of distribution  $f_X$



### Mean of |X - Y|

#### setting:

- lacksquare servers A and B serve customers with the same rate of  $\lambda$  customers per minute
- lacktriangle when each one finish serving m customers, they take a break and agree to meet
- they would finish the tasks at different time, so one has to wait for another
- question: on average, how long will one of the servers have to wait for the other?

#### modeling:

- lacksquare service times of both servers are independent exponential RVs with parameter  $\lambda$
- lacktriangle let X and Y be the times that server A and B takes to finish serving m customers
- lacksquare X and Y are m-Erlang RV with rate  $\lambda$  (special case of Gamma distribution)
- lacktriangle the time one server has to wait for the other is |X-Y|
- lacksquare we want to find  $\mathbf{E}[|X-Y|]$

analysis I: define Z = |X - Y|, derive pdf of Z, and find the integral



$$\begin{split} F_Z(z) &= P(|X-Y| \le z) = P(-z \le X - Y \le z) \\ &= \int \int f_{XY}(x,y) dy dx \text{ (over shaded region)} \\ &= \int_0^z \int_0^{x+z} f_{XY}(x,y) dy dx + \int_z^\infty \int_{x-z}^{x+z} f_{XY}(x,y) dy dx \end{split}$$

even  $f_{XY}(x,y)$  can be simplified to product of two Erlang pdfs, we still have to

- lacktriangle derive pdf of Z (taking derivative of  $F_Z(z)$ )
- derive  $\mathbf{E}[Z] = \int z f_Z(z) dz$

analysis II: derive MGF of |X - Y|

$$\Phi(t) = \mathbf{E}[e^{t|X-Y|}] = \int_0^\infty \int_0^\infty e^{t|x-y|} f_X(x) f_Y(y) dy dx$$

### Simulation: mean of |X - Y|

- lacksquare generate 10,000 samples of X and Y as independent 10-Erlang with  $\lambda=0.3$
- lacksquare compute Z = |X Y|
- lacksquare plot the histogram of Z and sample mean of Z
- lacktriangle this is called 1 replication; repeat for 3 replications to see how the approximate of f E[Z] could vary



#### Generate samples from distribution

there are many algorithms

- inverse transformation method
- acceptance-rejection method

in this handout, we generate samples distributed from a given analytical expression of pdf/cdf of continuous RVs

- there are other efficient methods for particular distributions
- also other methods for generate samples from pmf of discrete RVs

### Inverse of the probability integral transform

**Theorem:** for a continuous RV X with cdf  $F_X$ , the transformed variable  $U=F_X(X)$  is uniform on [0,1]

 $\mathbb{Z}_{0}$  also, if U is a uniform [0,1] the transformed variable  $F^{-1}(U)$  has distribution function F

**proof:** let  $U \sim \mathcal{U}[0,1]$  if we can find a strictly monotone transformation

$$T:[0,1]\to \mathbf{R}$$
 such that  $T(U)=X$ 

we will have the following

- $F_X(x) = P(X \le x) = P(T(U) \le x) = P(U \le T^{-1}(x)) = T^{-1}(x)$  (the last step uses the fact that U is uniform)
- we have  $F_X(X) = T^{-1}(X) = U$

this result is used to generate RV with distribution F provided that  $F^{-1}$  is known

## Inverse transform sampling

setting: generate X with cdf  $F_X(x)$  (that is continuous and  $F_X^{-1}(x)$  is known)

#### inversion method:

- $\blacksquare$  generate U, a uniform variable in [0,1]



# Examples of $F_X^{-1}$ formula

list of distributions where the inverse cdf can be provided explicitly

| name       | range           | $f_X(x)$                                       | $F_X(x)$                                          | $X = F_X^{-1}(U)$             | simplified                  |
|------------|-----------------|------------------------------------------------|---------------------------------------------------|-------------------------------|-----------------------------|
| expo       | $x \ge 0$       | $\lambda e^{-\lambda x}$                       | $1 - e^{-\lambda x}$                              | $-\frac{1}{\lambda}\log(1-U)$ | $-\frac{1}{\lambda}\log(U)$ |
| Rayleigh   | $x \ge 0$       | $\frac{x}{\sigma^2}e^{-\frac{x^2}{2\sigma^2}}$ | $1 - e^{-\frac{x^2}{2\sigma^2}}$                  | $\sigma\sqrt{-\log(1-U)}$     | $\sigma\sqrt{-\log(U)}$     |
| triangular | $0 \le x \le a$ | $\frac{2}{a}\left(1-\frac{x}{a}\right)$        | $\frac{2}{a}\left(x-\frac{x^2}{2a}\right)$        | $a(1-\sqrt{1-U})$             | $a(1-\sqrt{U})$             |
| beta       | $0 \le x \le 1$ | $\alpha x^{\alpha-1}$                          | $x^{\alpha}$                                      | $U^{1/lpha}$                  |                             |
| Cauchy     | R               | $\frac{\sigma}{\pi(x^2+\sigma^2)}$             | $\frac{1}{2} + \frac{1}{\pi} \tan^{-1}(x/\sigma)$ | $\sigma\tan(\pi(U-1/2))$      | $\sigma \tan(\pi U)$        |
|            |                 | , , ,                                          |                                                   |                               |                             |

the simplified version is obtained by noting that 1-U is distributed as U

when  $F_X^{-1}$  is not available analytically, numerical solution to  $F_X(X) = U$  is applied

#### References

- Luc Devroye, Non-uniform random variate generation, Springer, 1986
- 2 Chapter 12 in D. Schervish, *Probability and Statistics*, fourth edition, Pearson, 2012