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How to read this handout

readers are assumed to have a background on univariate random variables and
statistics in undergrad level (sophomore year)

the note is used with lecture in EE501 (you cannot master this topic just by
reading this note) — class lectures include

m graphical concepts, math derivation of details/steps in between
m computer codes to illustrate examples

pay attention to the symbol &; you should be able to prove such & result

each chapter has a list of references; find more formal details/proofs from in-text
citations

almost all results in this note can be Googled; readers are encouraged to

‘stimulate neurons’ in your brain by proving results without seeking help from the
Internet first

[@ typos and mistakes can be reported to jitkomut@gmail.com
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Outlines

random experiments

the axioms of probability

conditional probabilty

independence of events

sequential experiments
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Random experiments

an experiment in which the outcome varies in an unpredictable fashion when the
experiment is repeated under the same conditions

examples:
m select a ball from an urn containing balls numbered 1 to n
m toss a coin and note the outcome
m roll a dice and note the outcome
m measure the time between page requests in a Web server
m pick a number at random between 0 and 1
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Sample space
the set of all possible outcomes, denoted by S
m obtained by listing all the elements, e.g., S ={H, T}, or
m giving a property that specifies the elements, e.g., S ={z | 0 <z < 3}

same experimental procedure may have different sample spaces

y

S1

0l 1

m experiment 1: pick two numbers at random between zero and one

m experiment 2: pick a number X at random between 0 and 1, then pick a number
Y at random between 0 and X
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Examples of sample spaces

three possibilities for the number of outcomes in sample spaces

finite, countably infinite, uncountably infinite

examples:

S1=1{1,2,3,...,10}

Sy = {HH,HT,TT,TH}

S3={reZ|0<x<10}

Se=1{1,2,3,...}
Ss={(z,y) e RxR|0<y <z <1}

S = Set of functions X (¢) for which X (t) =0 for t > tg

discrete sample space: if S is countable (57, 53, S3,S4)
continuous sample space: if S is not countable (S5, Sg)
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Events

a subset of a sample space when the outcome satisfies certain conditions

examples: A; denotes an event corresponding to the experiment Ej,

FE : select a ball from an urn containing balls numbered 1 to 10

Aj : an even-numbered ball (from 1 to 10) is selected

Sy =1{1,2,3,...,10}, A; ={2,4,6,8,10}

E» : toss a coin twice and note the sequence of heads and tails

Ay : the two tosses give the same outcome

Sy = {HHHT,TT,TH}, A4y = {HHTT}

Random Variables and Applications Jitkomut Songsiri 10 / 172



E3 : count # of voice packets containing only silence from 10 speakers

As : no active packets are produced

83:{$€Z|0§:E§10}, A3:{0}

two events of special interest:
m certain event, S, which consists of all outcomes and hence always occurs

m impossible event or null event, (), which contains no outcomes and never occurs
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Review of set theory

A=Bifandonlyif ACBand BC A

AU B (union): set of outcomes that are in A orin B

AN B (intersection): set of outcomes that are in A and in B

A and B are disjoint or mutually exclusive if AN B = ()

A€ (complement): set of all elements not in A

AUB=BUAand ANB=BNA

AU(BUC)=(AUB)UC and AN(BNC)=(AnB)NC
AUu(BNC)=(AUB)N(AUC)and AN(BUC)=(ANB)U(ANCQC)
DeMorgan’s Rules

(AUB)*=A“NB°, (ANB)*=A“UB"
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Axioms of Probability

probabilities are numbers assigned to events indicating how likely it is that the events
will occur

a probability law is a rule that assigns a number P(A) to each event A

P(A) is called the the probability of A and satisfies the following axioms
axiom 1 P(A) >0
axiom 2 P(S) =1
axiom 3 If AN B =0 then P(AUB) = P(A) + P(B)

If A1, Ag,. .. is a sequence of events such that A; N A; = ) for i # j then

(00) S
k=1 k=1

Random Variables and Applications Jitkomut Songsiri 13 /172



Probability Facts

m P(A°)=1- P(4)

P(A)<1

P®) =0

m If Ay, Ao, ..., A, are pairwise mutually exclusive then

P <U Ak> = ZP(Ak)
k=1 k=1

P(AuB)=P(A)+ P(B)—- P(ANB)
If A C B then P(A) < P(B)

Random Variables and Applications Jitkomut Songsiri 14 / 172



Conditional Probability

the probability of event A given that event B has occured

the conditional probability, P(A|B), is defined as

P(ANB)

P(AIB) = =55

, for P(B) >0

if B is known to have occured, then A can occurs only if AN B occurs
simply renormalizes the probability of events that occur jointly with B

useful in finding probabilities in sequential experiments
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Example: Tree diagram of picking balls

selecting two balls at random without replacement

Outcome of first draw Q

O

W3 Outcome of second draw Q Q

By, By are the events of getting a black ball in the first and second draw

1 3 2 2
P(B2!Bl)21, P(Wz\Bl):Zy P(B2!W1):1, P(W2!W1):Z

the probability of a path is the product of the probabilities in the transition

12 1
P(B1 N By) = P(By|B1)P(B;) = iE = mn
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Example: Tree diagram of Binary Communication

(1-p(1-¢) (A-pe pe p(l—e¢)
A;: event the input was 1%, B;: event the reciever was ¢
P(AoNBy) = (1-p)(1-e¢)
P(AoﬂBl) = (1*;0)8
P(Al N Bo) = pe
P(AlﬂBl) = p(l—E)
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Theorem on Total Probability

let By, Bo, ..., B, be mutually exclusive events such that
S=BiUByU---UB,

(their union equals the sample space)
event A can be partitioned as

A=ANS=(ANB)U(ANBy)U---U(ANBy,)
since AN By, are disjoint, the probability of A is

P(A)=P(ANB;)+P(ANDBy)+---+ P(ANB,)
or equivalently,

P(A) = P(A|B1)P(B1) + P(A|B2)P(Bs) + - - - + P(A|By,)P(By)
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Example: revisit the tree diagram of picking two balls

Outcome of first draw Q

O

W5 Outcome of second draw O O

find the probability of the event that the second ball is white

P(Wy) = P(Ws|B1)P(By) + P(Wy|W1)P(W7)
3 2 1 3

32 13 3
45 2 5 5
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Bayes' Rule

the conditional probablity of event A given B is related to the inverse conditional
probability of event B given A by
P(B|A)P(A)
P(AIB) = ———F——~
(41B) P(B)

m P(A) is called a priori probability
m P(A|B) is called a posteriori probability

let A1, Ao, ..., A, be a partition of S

_ P(BJA)P(A)
P(4|B) = S, P(B|Ay)P(Ag)
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Example: Binary Channel

Output
0ea 1—¢ e 0

A; event the input was ¢
B, event the receiver output was i

1 input is equally likely to be 0 or 1

P(By) = P(B1|Ag)P(Ao) + P(B1]A1)P(A1) = e(1/2) + (1 —¢)(1/2) = 1/2
applying Bayes' rule, we obtain

P(B1]Ag)P(Ao) _ /2 _

P(Ao|B1) = P(BY) =12 ¢

if e < 1/2, input 1 is more likely than 0 when 1 is observed
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Independence of events

events A and B are independent if

P(AN B) = P(A)P(B)

m knowledge of event B does not alter the probability of event A
m this implies P(A|B) = P(A)
Y

)
1

A

x C
0 1

Aand B are independent
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Example: System reliability

m system is 'up’ if the controller and at least
two units are functioning

T m controller fails with probability p
m peripheral unit fails with probability a
~— Controller m all components fail independently

A: event the controller is functioning,  B;: event unit ¢ is functioning
F': event two or more peripheral units are functioning

find the probability that the system is up

Random Variables and Applications Jitkomut Songsiri 23 /172



the event F' can be partition as

(BlﬂBgﬂBg,)U(BlﬂBZﬂBg) (BCQBQHBy))U(BlﬁBQﬂBg)
P(F):P(Bl) (B2)P(Bs) + P(B1)P(B3)P(Bs)
+ P(B)P(B2)P(Bs) + P(B1)P(B2)P(Bs)
=3(1-a)’a+(1-a)?

therefore,

P(system is up) = P(ANF) = P(A)P(F)
=(1-p)P(F) =1 -p){3(1 -a)f’a+(1-a)’}
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Sequential independent experiments

consider a random experiment consisting of n independent experiments

let A1, Ao, ..., A, be events of the experiments

m we can compute the probability of events of the sequential experiment
P(AlﬂAgﬂ"'ﬂAn) :P(Al)P(AQ)P(An)

example: Bernoulli trial

m perform an experiment and note if the event A occurs
m the outcome is “success” or “failure”
m the probability of success is p and failure is 1 — p
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Binomial probability

perform n Bernoulli trials and observe the number of successes

m let X be the number of successes in n trials
the probability of X is given by the Binomial probability law

Pex=n= (1} )sa-pt

fork=0,1,...,n

the binomial coefficient

(+)

is the number of ways of picking k out of n for the successes
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Example: Error Correction Coding

Output
v Y O

0 e 1—¢

m transmit each bit three times
m decoder takes a majority vote of the received bits

compute the probability that the receiver makes an incorrect decision
m view each transmission as a Bernoulli trial
m let X be the number of wrong bits from the receiver

ez ()i (3)2
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Mutinomial probability

generalize the binomial probability law to the occurrence of more than one event

let By, Bo,..., B, be possible events with

P(Bg)=pk, and pi+pr+--+pn=1

suppose n independent repetitions of the experiment are performed

let X; be the number of times each B; occurs
the probability of the vector (X7, Xo,...,X,,) is given by

_ n! k1, ko km
T k! P1 P2 Pm

P(X1 =k, Xo=ka, ..., X;n =kn)

where k1 + ko + - -+ Kk =n
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Geometric probability

repeat independent Bernoulli trials until the the first success occurs
let X be the number of trials until the occurrence of the first success
the probability of this event is called the geometric probability law

P(X =k)= (1—p)k*1p, fork=1,2,...
the geometric probabilities sum to 1:
P(X = k) = k=1 _ P
> P )=p> 4q =1
k=1 k=1

where q=1—p
the probability that more than n trials are required before a success

P(X >n)=(1-p)"
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Example: Error control by retransmission

A sends a message to B over a radio link
B can detect if the messages have errors

|
|
m the probability of transmission error is ¢
|

find the probability that a message needs to be transmitted more than two times

each transmission is a Bernoulli trial with probability of success p =1 —g¢q

the probability that more than 2 transmissions are required is

P(X >2)=¢*

Random Variables and Applications Jitkomut Songsiri 30 /172



Sequential dependent experiments

sequence of subexperiments in which the outcome of a given subexperiment determine

which subexperiment is performed next

example: select the urn for the first draw by flipping a fair coin

draw a ball, note the number on the ball and replace it back in its urn

the urn used in the next experiment depends on # of the ball selected

Random Variables and Applications Jitkomut Songsiri
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Trellis Diagram
Sequence of outcomes

Probability of a sequence of outcomes

@ 23 2B N
172 1/3 1/3
1/6 1/6
12 @ 5/6 fl\ 5/6 )
N N
is the product of probabilities along the path
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Markov chains
let Ay, Ao, ..., A, be a sequence of events from n sequential experiments

the probability of a sequence of events is given by

P(A1Ay---A,) = P(Ap|A1Ag - A1) P(A1Ag -+ - Ap1)

if the outcome of A,,_; only determines the nt" experiment and A,, then
P(Ap|A1Ag - Apq) = P(Ap]An—1)

and the sequential experiments are called Markov Chains

thus,

P(A1As -+ Ay) = P(An|An_1)P(Ap_1|An_s) - - - P(As] A1) P(A;)
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Example: find P(0011) in the urn example

the probability of the sequence 0011 is given by

P(0011) = P(1]1)P(1]0)P(0[0)P(0)

where the transition probabilities are

Pa =2, PO =3, PO0) =

and the initial probability is given by
hence,

Random Variables and Applications Jitkomut Songsiri 34 /172



Discrete-time Markov chain

a Markov chain is a random sequence that has n possible states:
z(t) € {1,2,...,n}
with the property that
prob(z(t+1) =1 | z(t)=j)=py;

where P = [p;;] € R™*"
m p;; is the transition probability from state j to state ¢
m P is called the transition matrix of the Markov chain

m the state x(t) still cannot be determined with certainty
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Example:

a customer may rent a car from any of three locations and return to any of the three
locations

Rented from location

1 2 3|

08 03 021
01 02 0.6 |2
01 05 023

Returned to location

@ 0.6 0.2
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Properties of transition matrix

let P be the transition matrix of a Markov chain
m all entries of P are real nonnegative numbers

m the entries in any column are summed to 1 or 17 P = 17"
p1j+p2i+ -+ pnj =1

(a property of a stochastic matrix)

1 is an eigenvalue of P

if ¢ is an eigenvector of P corresponding to eigenvalue 1, then

Pkg =g, forany k=0,1,2,...
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Probability vector
we can represent probability distribution of x(t) as n-vector

prob(z(t)=1)

p(t) = ;
prob( z(t) =n)

m p(t) is called a state probability vector at time ¢
m Y pi(t)=1or1Tp(t) =1
m the state probability propagates like a linear system:

p(t+1) = Pp(t)
m the state PMF at time ¢ is obtained by multiplying the initial PMF by P!
p(t) = P'p(0), fort=0,1,...

Random Variables and Applications Jitkomut Songsiri 38 /172



Example:Markov model for packet speech

m the transition matrix is P = [

0.8 04
0.2 0.6
m the initial state probability is p(0) = (1,0)

m two states of packet speech: contain 'silent activity' or 'speech activity’
m the packet in the first state is 'silent’ with certainty

0.8

0.2

Prd

2
Random Variables and Applications
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eigenvalues of P are 1 and 0.4
calculate P! by using 'diagonalization’ or 'Cayley-Hamilton theorem’

P (5/3)(0.440.2-0.4Y)  (2/3)(1 —0.4)
N [ (1/3)(1 — 0.4%) (5/3)(0.2 + 0.44+1)
. [2/3 2/3
Pr= [1/3 1/3
2/3 2/3] [ p1(0) }_ [2/3}

1/3 1/3] [1—-p1(0)]  |1/3

] as t — 0o (all columns are the same in limit!)

limy oo p(1) = [
p(t) does not depend on the initial state probability as t — oo
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0 1
i = ?
what if P [1 O] /
m we can see that

1 0 01
2 3
P -_— {. 1] ) P -_— {1 O] RG]

m P! does not converge but oscillates between two values

under what condition p(t) converges to a constant vector as t — oo ?

definition: a transition matrix is regular if some integer power of it has all positive
entries

Fact: if P is regular and let w be any probability vector, then
lim Plw = q
t—o0

where ¢ is a fixed probability vector, independent of ¢
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Steady state probabilities

we are interested in the steady state probability vector

q= tlggop(t) (if converges)

m the steady-state vector ¢ of a regular transition matrix P satisfies
lim p(t +1) = P lim p(t) = Pg=q
t—o0 t—o0

(in other words, ¢ is an eigenvector of P corresponding to eigenvalue 1)

m if we start with p(0) = ¢ then
p(t) = P'p(0) =1'qg =¢q, forallt
q is also called the stationary state PMF of the Markov chain
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Example: weather model ('rainy’ or 'sunny')

probabilities of weather conditions given the weather on the preceding day:

04 0.2
P= [0.6 0.8}

(probability that it will rain tomorrow given today is sunny, is 0.2)

given today is sunny with probability 1, calculate the probability of a rainy day in long
term
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Random variables
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Definition

Q./ ;

a random variable X is a function mapping an outcome to a real number
m the sample space, 5, is the domain of the random variable
m Sy is the range of the random variable

example: toss a coin three times and note the sequence of heads and tails

S ={HHH,HHT HTH, THHHTT, THT, TTH,TTT}
Let X be the number of heads in the three tosses
Sx = {0, 1,2,3}
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Types of Random Variables

Discrete RVs take values from a countable set

example: let X be the number of times a message needs to be transmitted until it
arrives correctly

Sy ={1,2,3,...}

Continuous RVs take an infinite number of possible values
example: let X be the time it takes before receiving the next phone calls

Mixed RVs have some part taking values over an interval like typical continuous
variables, and part of it concentrated on particular values like discrete variables
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Probability measures

Cumulative distribution function (CDF)
F(a)=P(X <a)

Probability mass function (PMF) for discrete RVs

Probability density function (PDF) for continuous RVs

_ dF(x)
 dx

f(x)
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Cumulative Distribution Function (CDF)

Properties
0<F(a)<1
F(a) > 1, asa— o0
F(a) -0, asa— —o0
08l 1 08
osf 1 06
04t 1 04
02t 1 02
So = 0 5 bm So = 0 5
PO~ Fa) = [ f(w)is Fla) = 3" p(k)

k<a
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Probability density function

probability density function (PDF)
= f(z) >0
s Pla< X <b)=["f(x)dz

m F(z) :7}6 f(u)du

probability mass function (PMF)
m p(k) >0 for all k

= > p(k)=1
kesS
Random Variables and Applications Jitkomut Songsiri
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Expected values
let g(X) be a function of random variable X

> g(z)p(x) X is discrete
zeS

Blg(x)] = { % o
| g(x)f(z)dz X is continuous
Mean
> xp(x) X is discrete
p=EX] =&
f xf(x)dxr X is continuous
Variance
o2 = var[X] = E[(X — M)2]
nt" moment

E[X"]
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Facts

Let Y =g(X) =aX +0b, a,b are constants
E[Y]=a [ ] +0b
m var[Y]| = ar|[X|
m var[X] = [ ?] - (E[X])?
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Example of Random Variables

Discrete RVs Continuous RVs
m Bernoulli m Uniform
m Binomial m Exponential
m Multinomial m Gaussian (Normal)
m Geometric m Gamma
m Negative binomial m Beta
m Poisson m Rayleigh
m Uniform m Cauchy
m Laplacian
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Bernoulli random variables

let A be an event of interest
a Bernoulli random variable X is defined as
X =1if Aoccurs and X =0 otherwise

it can also be given by the indicator function for A

0, if{notin A
X(O_{L if Cin A

PMF: p(1)=p, p(0)=1-p, 0<p<1
Mean: E[X]| =p
Variance: var[X] = p(1 — p)
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Example

Bernoulli PMF: p =1/3

0.3 1
0.25 ? 08
° )
0.2 Q
—~ 06
8 &
- 0.15 ~—~
& M 04
0.1
0.05 T 02
0‘P ? ) 0
0 5 10 0 5 10
xr a
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Binomial random variables

X is the number of successes in a sequence of n independent trials

each experiment yields success with probability p

when n =1, X is a Bernoulli random variable

Sx =40,1,2,...,n}

ex. Transmission errors in a binary channel: X is the number of errors in n
independent transmissions

PME =P =k = () ) -p k=0
Mean

EX]|=np
Variance
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Example of Binomial PMF

p=1/3,n=10
0.35 1
03
0.8
0.25 ?
()
02 06
“— w
0.15 04
0.1
0.2
0.05 T
ot ? o006 0
0 2 4 6 8 10 0 2 4 6 8 10
X X
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Multinomial coefficient
suppose we partition a set of n objects into m subsets By, Bs, ..., By

m B; is assigned k; elements and k1 + ko + -+ kpy =n
m denote N; the number of possible assignments to the subset B;

n n — ki n—ki—ky—--—kp_o
Ny = Ny = Ny =
1 <k1>7 2 < k?2 >7 ) 1 < k?m_l )

m the number of possible partitions is NyNo -+ N,,_1 = W'k' and is called the

multinomial coefficient
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Multinomial random variables

m a generalization of binomial random variables to consider a trial having more than
two possible outcomes
m in each trial, there are m possible events, denoted by B1, Bs, ..., B, with

P(By) =pir, and pi4+pr+---+pn=1

m suppose n independent repetitions of the experiment are performed
m let X; be the number of times each B, occurs
K

|
n: k1 k
|p11p22 “Pm
!

P(Xl:klaX2:k27-'-aXm:km):m

where k1 + ko + -+ kpn=n
m the multinomial coefficient is the number of possible orderings that

X1 =k, ...,Xm = km
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PMF: the joint probability of vector X = (X1, Xo,..., X'm)
_ _ _ _ n ki, ko . km
P(Xy =k, Xo =ko, ..., Xop = km) = TSI I
where k; € {0,1,...,n}and k1 +ka+ -+ kp =1

Mean
E[X;] = np;

Variance
var[X;] = np;(1 — p;), cov(X;, X;) = —npipj, 1 #J

some applications:

m the data of IV samples can be categorized into K classes, e.g., N subjects with
blood types of A, B, AB, and O
m multinomial logistic regression in K-class classification
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Geometric random variables

m repeat independent Bernoulli trials, each has probability of success p
m X is the number of experiments required until the first success occurs
m Sy =4{1,2,3,...}
m ex. Message transmissions: X is the number of times a message needs to be
transmitted until it arrives correctly
PMF
plk) =P(X =k)=(1-p)*'p
Mean .
E[X] = -
p
Variance )
var[X]| = 2p
p
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Example of Geometric PMF

p=1/4,1/3,1/2

B parameters:
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Negative binomial (Pascal) random variables

m repeat independent Bernoulli trials until observing the " success
m X is the number of trials required until the rt" success occurs

m X can be viewed as the sum of r geometrically RVs
mSy={rr+1,r+2,...}

PMF
k—1
])(IIC):_P()(:]C):(T]-)pT(]_—p)kr7 k=rr+1,...
Mean ,
E[X] = -
b
Variance .
var[X] = r{ ;p)
D
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some text defines k& as the number of failures until the rth succuess

P(X = k) = ( kjle >pr(1—p)k k=0,1,2...

example of negative binomial PMF: »r =1,5,10 and p =1/3
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Poisson random variables

m X is a number of events occurring in a certain period of time
m events occur with a known average rate

m the expected number of occurrences in the interval is A

Sx =40,1,2,...}

examples:

m number of emissions of a radioactive mass during a time interval
m number of queries arriving in t seconds at a call center
m number of packet arrivals in ¢ seconds at a multiplexer

PMF .
A -2

plk) = P(X =) = Zre ™,

k=0,1,2,...
Mean E[X]|=)\
Variance var[X] =\
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Example of Poisson PMF

A=1,3,9

0.4

0.35

0.3 r

0.25

p(x)

0.15

0.1

0.05

Random Variables and Applications

—o A =1
—o A=3
—oA=9
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Derivation of Poisson distribution

m approximate a binomial RV when n is large and p is small
m define A = np, in 1898 Bortkiewicz showed that

DL

sy = (o )=t gge
Proof.
pO)=1-p"=01-A/n)"~e?, n—oo

pk+1)  (n—FKkp (1—-Ek/n)A

p(k) (k+D(A-p)  (k+DI-A/n)

take the limit n — oo

pk+1) = kj\_lp(k) = <l<:j\—1> (2) (/1\) p(0) = (k)\]j:i)!e_)\
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Comparison of Poisson and Binomial PMFs

p=1/2,n=10 p=1/10,n = 100
oas

ooe |-

Ll

F(z)

|
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Exponential random variables

arise when describing the time between occurrence of events
examples:

m the time between customer demands for call connections
m the time used for a bank teller to serve a customer

m ) is the rate at which events occur

m a continuous counterpart of the geometric random variable

PDF
Ae ™ if x>0
€Tr) =
/(@) {O, if £ <0

Mean E[X]|=

>l

1

Variance var[X] = y;
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Example of Exponential PDF

f(@)
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Memoryless property

the property states that

P(X >t+h|X >t)=P(X > h)

m P(X >+ h|X >t) is the probability of having to wait additionally at least h
seconds given that one has already been waiting t seconds

m P(X > h) is the probability of waiting at least h seconds when one first begins to
wait

m thus, the probability of waiting at least an additional & seconds is the same
regardless of how long one has already been waiting
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Proof of memoryless property

P{X >t+h)N(X>1t)}

P(X >t+h|X>t)= PX 1) , forh>0
P(X >t+h) e AtHh Y
P(X >t) e

this is not the case for other non-negative continuous RVs

in fact, the conditional probability

1-P(X<t+h) 1-F(t+h)

P(X>t+hlX >t)= 1-P(X<t)  1-F(@)

depends on t in general
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m-~Erlang random variables

X X Xm X1
< <> <>
— — ®
0 tl t2 o tm,1 tm t tm+1
m the kth event occurs at time ¢,
m the times X1, X5, ..., X,, between events are exponential RVs

m N(t) denotes the number of events in t seconds, which is a Poisson RV
m S, =X1+Xo+ -+ X,, is the elapsed time until the mth occurs

we can show that .S, is an m-Erlang random variable
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Derivation of Erlang pdf

S, < t iff m or more events occur in ¢ seconds

= (A
F(t) = P(Sn < t) = P(N(t) > m) =1 3 ¢ k') Y
k=0 ’

to get the density function of S,,,, we take the derivative of F(¢):

_ _ E_ E—1
o o= = - ()\()\t) kAL )
k=0
MO m—1_—\t
(A1) ¢ = Erlang distribution with parameters m, A
(m —1)!

m the sum of m exponential RVs with rate A is an m-Erlang RV
m if m becomes large, the m-Erlang RV should approach the normal RV
m from the pdf, m-erlang is a special case of gamma variable with parameter o = m
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Uniform random variables

Discrete Uniform RVs

m X has n possible values, x1,...,x, that are equally probable

= PMF
1 .
| sy
pla) = {m TrELE )
0, otherwise

Continuous Uniform RVs

m X takes any values on an interval [a, b] that are equally probable

= PDF
1
fa) = {(b—a)’ for x € [a, b]

0, otherwise

m Mean: E[X] = (a+b)/2
m Variance: var[X] = (b —a)?/12
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Example of discrete uniform PMF
X=0,12,...,10

0.1 1
0.08 08
008 .06
=004 T, 04
0.02 02
0 5 10 0 5 1
T T

1 1
4 08
— = 06
2o 8
= Ry 04
0 02
0.
0 05 _1 15 2 0 05 1 15 2
T T
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Gaussian (Normal) random variables

arise as the outcome of the central limit theorem
the sum of a large number of RVs is distributed approximately normally

many results involving Gaussian RVs can be derived in analytical form
2

let X be a Gaussian RV with parameters mean p and variance o
Notation X ~ N (p,0?)

PDF ( 2
_ 1 T — W
f(ﬁ) - \/W exp 20_2 )

Mean E[X]|=yu

Variance var[X|=o0
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Standard Gaussian
let Z ~ N(0,1) be the normalized Gaussian variable

CDF of Z is ) ;
Fz(z) = m/ e Pdr £ a(z)

then CDF of X ~ A(i1,0?) can be obtained by

Fy(z) = ® <x_“)

g

in MATLAB, the error function is defined as

2 x
erf(z) = ﬁ/o e dt

hence, ®(z) can be computed via the erf command as

B(z) = % [1 +erf (\%)]
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Example of Gaussian PDF

06 - .
—?=05 —02=05
09
—o’=1 —0’=1
05 - 2 _
o= 08 o>=5
07
04
06
— N
) 8
Sooat o5t
Sy 5.4
04 |
0.2
03
02 |
01 -
01 h
0 . , 0 . . . .
8 6 4 2 0 2 4 6 8 8 6 4 2 0 2 4 6
x X

m parameters: =0, 02 =0.5,1,5
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Gamma random variables

m appears in many applications:

m the time required to service customers in queuing system
m the lifetime of devices in reliability studies
m the defect clustering behavior in VLSI chips

m let X be a Gamma variable with parameters o, A

PDF
)\()\x)a—le—)\ac

fla) = M

x>0, a,A>0

where I'(z) is the gamma function, defined by
I'(z) :/ " e dx, 2> 0
0

Mean E[X]= % Variance var[X] = {3
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Properties of the gamma function

[(1/2) = 7
I'(z4+1) = 2I(z) forz>0
I'(m+1) = m!, for m a nonnegative integer

the value of T'(1/2) is obtaind by a change of variable u = \/x to Gaussian
Special cases

a Gamma RV becomes
m exponential RV when a =1
m m-Erlang RV when a = m, a positive integer
m chi-square RV with £ DOF when oo = k/2, A =1/2
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Example of Gamma PDF

blue: @ = 0.2, A = 0.2 (long tail)

m green: o = 1, A = 0.5 (exponential)
red: a =3, A\ = 1/2 (Chi square with
6 DOF)

m black: a = 5,20,50,100 and
a/X\ =10 (a-Erlang with mean 10)

o
3
|

Random Variables and Applications Jitkomut Songsiri 82 /172



Beta random variables

m used to model the randomness of percentages, proportions or ratios

m ranges of beta variables are in [0, 1]
m let X be a beta variable with parameters o, 5 > 0

PDF
z* (1 — ) L(a)I'(B)
x) = , 0<z<1, B(a,B)=———= (beta function
0= ""5@p) @0 =Ta+p) )
Mean: E[X] = ;%5 Variance: var[X] = Wlf);{—fv%m

special case: S =1and a = Z™"

_ F(Oé) _ 1 _ a—1
B(a,ﬁ)—m—a, flz)=az", 0<z<1
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Example of beta distributions

12 1
—a=02,b=0.5 09t
10 —a=4,b=1
08 -
——a=1,b=3
—a=2,b=2 07 L
8 —a=2,b=5
06
— —
3 6 ~— 05
Sy €3
04
sl
03
0.2
A
0.1
0 ———— 0
0 02 0.4 06 08 1 0 02 0.4 06 0.8
x x
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Chi-squared random variables

m arise as a sum of k i.i.d. Gaussian variables

m ex. sample variance of i.i.d. Gassian samples {X71,..., X} with variance ¢?; it is
well-known that (N — 1)s%/0? is X%,

m appear in asymptotic properties of estimators

m X ~ X2 chi-square variable with degree of freedom k

PDF )
_ k/2—1 —z/2 +
f(z) 7%/2“]{/2)3: e , >0, kel
Mean
E[X]|=k
Variance
var[X| = 2k
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Example of chi-squared PDF

1.2 1
—k=1
k=2 0.9
1 —
k= 0.8
u—
—k=6 07
08 E—9
06
— —
Boos ! B
~ Ry
04 —k=
0.4 - —k =
03 k=
0.2 k=
02 | ’ —k =
0.1 —k=9
0 0 . . . .
0 5 10 15 20 0 5 10 15 20
x x
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Rayleigh random variables

m arise when observing the magnitude of a vector

m ex. The absolute values of random complex numbers whose real and imaginary
are i.i.d. Gaussian

PDF
f(x) = Ze 2 2>0, a>0
ag
Mean
E[X]=o0y/7/2
Variance
var[X]| = A ; U

if X is Rayleigh, then X? is X2
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Example of Rayleigh PDF

07 1
—0o=1 0o
06 —0c =2 ’
c=3 0.8
05 07
0.4 06
— —
S 8
~ ~— 05
=03 R
0.4
03
0.2 o=
0.2 —_— =2
0.1 oc=3
0.1
0 0
0 2 4 6 8 10 0 2 4 6 8 10
x x

m parameters: 0 =1,2,3
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Cauchy random variables
PDF

m Cauchy distribution does not have any moments
® no mean, variance or higher moments defined
m Z = X/Y is the standard Cauchy if X and Y are independent Gaussian
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Moments of Cauchy variables

if we try to compute E[X]

o0 0 o)
o= [ e [ e [T
oo T2 41 o B2+ 1 0 r2+1

the two integrals are not canceled out because each is infinite

/ooo e =(1/2) /Ooo x21+ [ + 1) = (1/2)[log(2* + 1)]§7 = o0

for the second moment

[e’¢) 1,2 [e’¢) 1
E[XQ]:2/ dezz/ 1 ———dz =0
0 X +1 0 x+1

the higher moments also diverge because the lower moments do

Random Variables and Applications Jitkomut Songsiri 90 / 172



Laplacian random variables

PDF o
fx) = 56“”"‘_“', —00 < T < 00
Mean
E[X]=pu
Variance 5
var[X| = 2

m arise as the difference between two i.i.d exponential RVs

m unlike Gaussian, the Laplace density is expressed in terms of the absolute
difference from the mean
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Example of Laplacian PDF

Gaussian and Laplacian having variance of 1

——Gaussian
— Laplacian

m parameters: u =0, a=1,2,3,4,5

m Laplacian pdf is more concentrated at the mean than pdf of Gaussian (with the
same variance)
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Related MATLAB commands

m cdf returns the values of a specified cumulative distribution function

m pdf returns the values of a specified probability density function

m randn generates random numbers from the standard Gaussian distribution
m rand generates random numbers from the standard uniform distribution

m random generates random numbers drawn from a specified distribution

m histogram plots a histogram of data samples
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Inequalities
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Topics

m Markov inequality

Chebyshev inequality
Chernoff bound

Jensen inequality
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Markov inequality

let X be a nonnegative RV with mean E[X]

E[X
P(X >a) < H, a>0
a
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Chebyshev inequality

let X be an RV with mean y and variance o2

o2

PIX—plza)< S
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Example: Markov inequality

manufacturing of low grade resistors
m assume the averge resistance is 100 ohms (measured by a statistical analysis)
m some of resistors have different values of resistance

if all resistors over 200 ohms will be discarded, what is the maximum fraction of
resistors to meet such a criterion ?
using Markov inequality with @ = 100 and a = 200

100

— = 0.5
200

P(X >200) <

the percentage of discarded resistors cannot exceed 50% of the total

Random Variables and Applications Jitkomut Songsiri 99 / 172



Example: Chebyshev inequality

if the variance of the resistance is known to equal 100, find the probability that the
resistance values are between 50 and 150

P(50 < X < 150) = P(|X — 100| < 50)
=1— P(]X - 100| > 50)

by Chebyshev inequality

2

o
P(|X —100| > 50) < = 1/25

( 250) < o5 = 1/

hence, ) 04
< < >] - — = —

P50 < X <150) > 1 95 = 25
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Chernoff bound

the Chernoff bound is given by

P(X >a) < inf E[¢/X-9)]

t>0
which can be expressed as

logP(X >a) < %gg {~ta + log Ee!*}

m E[e!X] is the moment generating function
m log Ee!X is called the cumulant generating function

m Chernoff bound is useful when Ee!X has an analytical expression
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Example: Chernoff bound of Gaussian
X is Gaussian with zero mean and unit variance

the cumulant generating function is
log E[e™*] = t?/2

hence,
logP(X >a) < %I>l£ {~ta+t*/2} = —a?/2

and the Chernoff bound gives
P(X>a)< e’/
which is tighter than the Chebyshev inequality:

P(|X|>a)<1/a® = P(X >a)<1/2d?
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Example: Chernoff bound

2 ' ; ‘
] ——P(X>=a)
1.8 \ - - - Chernoff bound
Y - - Chebyshev bound
1.6 : ]
A
1.4

when a is small, Chebyshev bound is useless while the Chernoff bound is tighter
Random Variables and Applications
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Jensen inequality

the idea is related to the convexity of a function f

flOx+ (1 —=0)y) <0f(z)+(1-0)f(y), 0<0<1, Vo,y€cdomf

Jensen’s inequality: let f be a convex function and X be an RV

F(ELX]) < E[f(X)]

finite form: let f be convex and z1,...,x, € dom f and a1,...,a, >0

() Rl
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Transform methods

Random Variables and Applications Jitkomut Songsiri Transform methods 106 / 172



Topics

m moment generating function (MGF)

m characteristic function (CF)
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Moment generating functions
for a random variable X, the moment generating function (MGF) of X is
d(t) = E[e!™]
Continuous -
O(t) —/ e f(x)dx

Discrete

O(t) = e p(ay)
k

m except for a sign change, ®(t) is the 2-sided Laplace transform of pdf
m the set of ¢ for which the integral is finite forms the domain of ®(t)
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Moment theorem

computing any moments of X is easily obtained by

mn
"o
because
tX)? tx)"
E[eX]=E Lpox o B 9 +]
2! n!
t2 "
:1+tE[X]+§E[X2]+---+EE[X"]+-~-

note that ®(0) =1
linear transformation: if Y = aX + b, then

D, (t) = e ®,(at)
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MGF of Gaussian variables
the MGF of X ~ AN(0,1) is given by

B(t) = el /2

it can be derived by completing square in the exponent:

1 o 1 o
(t) = \/%/ e " ety = 6t2/2\/ﬂ/ e~ @=*/2y

the MGF of X ~ N (u,0?) (affine transformation of A'(0,1)) is
D(t) = elut+a?t?/2)
from the moment theorem, we obtain
®'(0)=p, 9"(0)=p*+ o>
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Characteristic functions

the characteristic function (CF) of a random variable X is defined by
Continuous ~
d(w) = E[e“X] = / f(z)e“dz

Discrete

O(w) = E[e“Y] = ) e“rp(ay)
k

m O(w) is simply the (inverse) Fourier transform of the PDF or PMF of X
m every pdf and its characteristic function form a unique Fourier pair:

(W) < f(z)

m it looks as if we can obtain ®(w) by substituting ¢ = iw from MGF to CF but the
existence of two transformations could be different
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Properties of characteristic functions

m CF always exists because of absolute convergence (not true for MGF)

o o0
p@l< [l f@lde = [ fajde =1
m CF is maximum at origin because f(z) > 0:
|[@(w)| < @(0) =1
m CF is self-adjoint: ®(—w) = ®*(w) (where x is complex conjugate)

m CF is non-negative definite: for any real numbers w1, wo, ..., w, and complex
numbers 21,29, ..., 2,
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Example: CF

Linear transformation: if Y = aX + b, then
D, (w) = ™, (aw)

Gaussian variables: let X ~ A (u,0?)
the characteristic function of X is

D(w) = el . g7 W/

(more details of applying CF to show the central limit theorem)
Binomial variables: parameters are n,pand ¢g=1—1p

B(w) = (pe + )"
Poisson variables: with parameter A
@(w) — eA(ei“fl)
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Generating function

let X be a nonnegative integer-valued random variable

the generating function of X is defined as the z-transform of its PMF:
G(z) =E[*] = p(k)2*
k=0

the characteristic function of X is given by ®(w) = G(el¥)
G(z) is called the generating function due to the fact that

1 dF
p(k) = EQG(Z)

2=0

by using a similar derivation to that used in the moment theorem
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Laplace Transform

let X be a nonnegative continuous random variable

the Laplace transform of the pdf of X is defined as

L(s) = E[e*¥] = /000 f(x)e **dx

the moment theorem also holds for L£(s):

BIX") = (~1)" - £(s)

s=0
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Benefits of the transform methods

m moments of RVs are obtained by differentiating the transform

m transform of convolution integral is simply the product of transforms

i.e., the Laplace transform pair:
h(t) * u(t) <= H(s)U(s)

m distribution of transformed variable can be derived through its characteristic
function
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Function of random variables
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Topics

m linear and quadratic transformations

m general transformations
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Functions of random variables

let X be an RV and g(x) be a real-valued function defined on the real line
m Y =g(X), Yisalso an RV
m CDF of Y will depend on g(z) and CDF of X

Example: define g(x) as

)T ifx>0
9(@) = (@) {0, if 2 < 0

m an input voltage X passes thru a halfwave rectifier
m A/D converter: a uniform quantizer maps input to the closet point
m Y is # of active speakers in excess of M, ie., Y = (X — M)*
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CDF of Y = ¢(X)

probability of equivalent events:
P(YinC)=P(g(X)inC)=P(X in B)

where B is the equivalent event of values of X sucht that g(X) is in C

Random Variables and Applications Jitkomut Songsiri 120 / 172



Example: Voice Transmission System

m X is # of active speakers in a group of IV speakers
m let p be the probability that a speaker is active
m a voice transmission system can transmit up to M signals at a time
m let Y be the number of signal discarded, so Y = (X — M)™*
Y take values from the set Sy ={0,1,...,N — M}

we can compute PMF of Y as
P(Y =0)=P(Xin{0,1,...,M}) => px(k)
PY=k)=P(X=M+k)=px(M+k), 0<k<N-M,
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Affine functions

define Y =aX +0b, a > 0. Find CDF and PDF of YV
Ifa>0

Y

pdf of Y is obtained by differentiating the CDF wrt. to y

Fr(y) = fx(y b)
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Affine function of a Gaussian

let X ~ N(m,o?):

1 (x —m)?
fX(x) - \/W exp 202
let Y =aX + b, with a >0
from page 122,
1 y—0b\ 1 (y —b—am)?
friy) = fx ( - > = T °F 2(a0)?

m Y has also a Gaussian distribution with mean b + am and variance (ac)?

m thus, a linear function of a Gaussian is also a Gaussian
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Example: Quadratic functions
define Y = X2. find CDF and PDF of Y/

for a positive gy, we have

Y<yb={-vy< X<y}

thus,

F()_{o, y <0
YT B () - Fx (=), 9> 0

differentiating wrt. to y gives

o) = f);i;/;) N fxé—f;/l?)

for X ~N(0,1), Y is a chi-square random variable with one dof
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General functions of random variables

suppose Y = g(X) is a transformation (could be many-to-one)

{9<0< a9y & <Xy ubacriidi]
v fxy< x<xeang)

sedy /\ suppose y = g(x) has n roots:

y=g(z1)=g(z2) = = g(zn)

two equivalent events:

{ly<Y <y+dy} & Up_{zr < X < ap +doy}

K ke PRI
the probabibilities of two equivalent events are approximately

fyW)ldy| = fx(x1)|dr1] + fx (z2)|daa| + - + fx(zn)|dzy]

Frly) = fx(z1) I fx(zn)

|9/ (21)] |9 ()]

where ¢(x) is the derivative (Jacobian) of g(z)
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Examples: affine and quadratic
affine: Y =aX +b, ¢'(z) =a

the equation y = ax + b has a single solution x = (y — b)/a for every y, so

fry) = ||fx( ”)

quadratic: Y = aX?, a >0, ¢'(z) = 2ax
if y <0, then the equation 3 = ax? has no real solutions, so fy(y) =0

if y > 0, then it has two solutions

ZM7 Zo = — y/a

and therefore )

) = 5 (I (ol + fx (V)
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Log of uniform variables
verify that if X has a standard uniform distribution 2/(0, 1), then
Y = —log(X)/A
has an exponential distribution with parameter A
for Y =y, we can solve X =z = e~ = unique root
m the Jacobian is ¢'(z) = — & = —e/A

m when y <0, x = e~ ¢ [0,1]; hence, fy(y) =0
m when y > 0 (or e=* € [0,1]), we will have

Cfx(e) L
fy(y) = m =XV
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Amplitude samples of a sinusoidal waveform
let Y = cos X where X ~ U(0, 2], find the pdf of Y’

for |y| > 1 there is no solution of x = fy(y) =0
for |y| < 1 the equation y = cos z has two solutions:
= cos_l(y), To = 2T — 11

the Jacobians are

g'(z1) = —sin(z1) = —sin(cos ' (y)) = =1 =42, ¢(x2) =
since fx(x) = 1/27 in the interval (0, 27], so

1
fry) = —, for —1<y<1

/1 —y?
note that although fy (1) = co the probability that y = £1is 0
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Random vectors
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Random vectors

we denote X a random vector
X is a function that maps each outcome ( to a vector of real numbers

an n-dimensional random variable has n components:
Xq
Xo
X =
Xn

also called a multivariate or multiple random variable
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Probabilities

Joint CDF

F(X) & Fx(21,22,...,7,) = P(X1 <21, X2 < 29,..., X, < )

Joint PMF

p(X) £ px (21,29, ..., 2n) = P(X1 =21, X0 = 29,..., X;y = Tp,)

Joint PDF

f(X) é fX(Z'l,.’L'Q,...,J)n) = WF(X)
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Marginal PMF

px;(z;) = Z Do prfﬂhm,m, n)

Tj—1Tj+1
Marginal PDF

fXj(wj) = / / fx(wl,l'g,...,xn) dwl...dxj_ldxj+1...dxn

Conditional PDF: the PDF of X, given X1,...,X,,_1 is

fx(z1,. ., 2n)
le, X — 1(%1,...,1'”_1)

flzplz, .y xpn_1) =
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Characteristic Function

the characteristic function of an n-dimensional RV is defined by

O(w) =P(wr,...,wp) = E[ei(w1X1+~--+wan)]
= / eleXf(X)dX
X
where
w1 T
w2 To
w=1|.], X=
W, Tn

®(w) is the n-dimensional Fourier transform of f(X)
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Independence

the random variables X1,..., X,, are independent if

the joint pdf (or pmf) is equal to the product of their marginal’s

Discrete
px (21, .. 2n) = px, (21) -+ - Px,, (Tn)

Continuous

fx(zr,..mn) = fxy(21) - fx, (20)
we can specify an RV by the characteristic function in place of the pdf,
X1,..., X, are independent if

B(w) = By (wr) - By (wn)
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Expected Values
the expected value of a function

g(X) = g(le---aXn)

of a vector random variable X is defined by

Ejg(X)] = /g(:c)f(:z:)dac Continuous
E[g(X)] = g(z)p(x) Discrete
Mean vector
X1 E[X]
XZ A E[XQ]
p=E[X]=E 2 |
X, B[X,]
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Correlation and Covariance matrices

Correlation matrix has the second moments of X as its entries:

EX.X1] E[Xi1Xs] - E[X1X]
X . E[X2X1] E[XoXs] - E[X2Xn]
R & E[XX7] = : : o
E[X,X;] E[X,Xs] - E[X,X,)]
with
Rij = E[X; X;]

Covariance matrix has the second-order central moments as its entries:

C 2 E[(X - u)(X —p)]

with
Cij = cov(X;, Xj) = E[(X; — pi) (X — py)]
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Properties of correlation and covariance matrices

let X be a (real) n-dimensional random vector with mean

Facts:
m R and C are n X n symmetric matrices
m R and C are positive semidefinite
m If X1,..., X, are independent, then C is diagonal
m the diagonals of C are given by the variances of X},
m if X has zero mean, then R =C

C=R—pup"
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Cross Correlation and Cross Covariance

let X,Y be vector random variables with means px, 1y respectively

Cross Correlation

cor(X,Y) =E[XYT]
if cor(X,Y) =0 then X and Y are said to be orthogonal
Cross Covariance
cov(X,Y) = E[(X —px)(Y — py)"]
= cor(X,Y) — pxpy
if cov(X,Y) =0 then X and Y are said to be uncorrelated
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Affine transformation

let Y be an affine transformation of X:
Y =AX +b

where A and b are deterministic matrices

muy =Apx +b
iy = E[AX + 5 = AB[X] + E[b] = Apx +b
m Cy = ACx AT

Cy =E[(Y — puy)(Y — py)"] = B[(A(X — px))(AX = px))"]
= AB[(X — px)(X — px)"]AT = ACx AT
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Gaussian random vector
X1,..., X, are said to be jointly Gaussian if their joint pdf is given by

1
2m) 2 det(z)1/2 &

f(X) & fx(r,22,. .. 2,) = p —%(X—M)TZ”(X—M)

 is the mean (n x 1) and ¥ > 0 is the covariance matrix (n X n):

T Y Yz oo Xip

2 Yor Moo - Yop
p=1.1, X=1| . S :

Hn Yn1 Y2 0 Xnn

and

e = E[Xy], i = BI(XG — pa) (X5 — 1))
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Example
the joint density function of X (not normalized) is given by
x% + 3%% + 2(%3 — 1)2 + 2$1($3 — 1)
2

f($1,$2,$3) = exp —

m f is an exponential of negative quadratic in x so X must be a Gaussian
T

T 1 0 1 T1
1
f(x1,22,23) =exp — 5 T2 03 0 T
r3—1 1 0 2| |[z3—1

m the mean vector is (0,0, 1) and the covariance matrix is
1

1 0 1] 2 0 -1
C=10 3 0 =10 1/3 0
1 0 2 -1 0 1

m the variance of x; is highest while x5 is smallest
m 1 and zo are uncorrelated, so are x9 and x3
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Gaussian density contour
examples of Gaussian density contour (the exponent of exponential)

[m]T [211 212] - [331} _
9 Y12 Yo T2

G

I I

01 -1 2
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Properties of Gaussian variables

many results on Gaussian RVs can be obtained analytically:

m marginal's of X is also Gaussian
m conditional pdf of X} given the other variables is a Gaussian distribution
m uncorrelated Gaussian random variables are independent

m any affine transformation of a Gaussian is also a Gaussian

these are well-known facts

and more can be found in the areas of estimation, statistical learning, etc.
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Characteristic function of Gaussian

wlsw

(I)(w) = q)<w17w2, . 7wn) — eiﬂTW e~

Proof. By definition and arranging the quadratic term in the power of exp

_ 1 iXTy —X=wTs Xy
(I)(w) = (271')"/2|21/2/X6 e 2 dx

. wTEw

elltTw e 2 / _(X—,ufiEw)TE_l(XfufiZw)d

= — é 2 €T
2m)n2|B|2 Jx

1
=exp (ipfw) exp (—inZw)

(the integral equals 1 since it is a form of Gaussian distribution)

for one-dimensional Gaussian with zero mean and variance ¥ = o2,
O(w)=e 2
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Affine Transformation of a Gaussian is Gaussian

let X be an n-dimensional Gaussian, X ~ N (u,X) and define

Y=AX+5b

where Aism xn and bism x 1 (soY ism x 1)

<I>y(w) =

E[einY] _ E[ein(AX—i—b)]
E[einAX . einb] _ einb(I)X(ATw)

iwld | ipTATw | —wTADATw/2

(& e

6in(A,u+b) . 6—wTAEATw/2

we read off that Y is Gaussian with mean Ay + b and covariance AX AT
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Marginal of Gaussian is Gaussian

the k™ component of X is obtained by
Xp=[0 -+ 1 0]X 2 efX
(ex is a standard unit column vector; all entries are zero except the k" position)

hence, X}, is simply a linear transformation (in fact, a projection) of X

X}, is then a Gaussian with mean
T
e = Mk

and covariance
e;‘g b e = Zkk
146 / 172
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Uncorrelated Gaussians are independent
suppose (X,Y) is a jointly Gaussian vector with

| M : Cx 0
mean #_[,uy] and covariance [O Cy:|

in otherwords, X and Y are uncorrelated Gaussians:
cov(X,Y) =E[XYT] - EX]E[Y]T =0

the joint density can be written as

T _
1 1 x—,ux] [C'Xl 0 ] [x—,um]
5 - € - = _
Fxev(e:9) = Gaien ey &P 2 L/ s I el
= 1 —3(e—pa)TCX (2—pa) v — 2 y—ny)TCy (y—p1y)

(27r)n/2|CX|1/2€ (Qﬁ)n/z‘cﬂl/ze

proving the independence
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Conditional of Gaussian is Gaussian
let Z be an n-dimensional Gaussian which can be decomposed as
X 7 by by
(AR =)
[Y] Fy Efy Sy
the conditional pdf of X given Y is also Gaussian with conditional mean

Mx|y = Mz + Exyzy_yl (Y - .Uy)
and conditional covariance

Sxiy = S — Zay Sy, 5L,
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Proof:

from the matrix inversion lemma, X! can be written as

S —5718, 5,
—1yv7T ¢-1 -1 —1y7T ¢-1 -1
_Eyy Ewys Z:yy + 2yy EwyS z:ﬂcyzyy

»t=

where S is called the Schur complement of X, in X and

S = Ser— SaySyy, Th,

det¥ = detS-detXy,

we can show that ¥ >~ 0 if any only if § >~ 0 and ¥, > 0
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from fxv(zly) = fx(x,y)/fy(y), we calculate the exponent terms

T
T — g —1 |T — Mg T
by E
[y B ,Uy] [y _ NJ (v — 1) Sy (Y — h1y)
= (z— ,U«lf)Tsil(x — ) — (T — :U*x)T‘Silzwa;yl (y — 1y)
—(y— 1) Ty 0,9 (@ — i)
(Y — )T (Zyy Tay ST Ty )y — y)
= [z—pa— Eﬂcyzyy (y — Hy)]TS [z — po — Zwa;; (y — 1y)]

£ ($—NX\Y) X\y( —MX|Y)

fx|v(|y) is an exponential of quadratic function in z

so it has a form of Gaussian
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Standard Gaussian vectors

for an n-dimensional Gaussian vector X ~ N (u, C) with C = 0

let A be an n X n invertible matrix such that
AAT =C
(A is called a factor of )

then the random vector
Z=A"X - p)

is a standard Gaussian vector, i.e.,

Z ~N(0,1)

(obtain A via eigenvalue decomposition or Cholesky factorization)
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Quadratic Form Theorems

let X = (Xy,...,X,) be a standard n-dimensional Gaussian vector:
X ~N(0,1)

then the following results hold
B XTX ~ x%(n)

m let A be a symmetric and idempotent matrix and m = tr(A) then

XTAX ~ x%(m)
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Proof

an eigenvalue decomposition of A: A = UDU” where

MA)=0,1 Ulu=vUuT =1

it follows that .
XTAX = X"UDUTX =Y'DY =) duY7

=1

m since U is orthogonal, Y is also a standard Gaussian vector
m since A is idempotent, d;; is either 0 or 1 and tr(D) =m
therefore X7 AX is the m-sum of standard normal RVs
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Simulation
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Outlines

m statistic, sampling distribution
m why is simulation useful?

m proof of concept
m when analysis is difficult to obtain

m pseudo-random number generation
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Statistic

definition: suppose X1, Xo,..., Xy are the observed random variables, then the
random variable

T:g(Xl,XQ,...,XN)

is called a statistic

examples:
sample mean, sample median, sample mode, sample variance
sample moments: kurtosis, skewness
order statistic: sample maximum and minimum
test statistic: t-statistic, chi-squared statistic, F' statistic
sample quantiles

a statistic can provide an inference for the random variables X}.'s
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Sampling distribution
setting: suppose X1, Xo,..., Xy are random samples from a distribution involving a
parameter 6
definition: let T" be a function of X1, X5,..., X and possibly 6
T =g(X1,Xo,...,XnN,0) (a statistic)
the distribution of T (given 0) is called the sampling distribution of T

typically, a sampling distribution depends on
m original distribution of X}'s
m the number of observations N

m type of statistic (here, function g)
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Example: Sampling distribution of order statistic

X}'s are independent uniform on [0,6], 6 =3

T = max(Xy, Xo,...,Xn) (T can provide as an estimate of 6)

Sampling distribution of 7'

[ |Histogram of T’
3 |—pdf of T

m fr(t) = Ngjvvfl for0<t<4g 2 pls verify

m use N = 10 and simulate 1000 realizations of T'

m the sampling distribution is NOT the same as X}'s
(which is uniform)

0 05 1 15 2 25 3

check point & fr depends on i) max function ii) N and iii) distribution of X}'s
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Example: Sampling distribution of sample mean and variance
X1,..., XN are normal with mean

=3and 02 =2and N =10
Sampling distribution of Xy
-H‘istograr‘n : : ‘ ‘
——pdf of Xy ~ N (u,0°/N)
[l—~r

08

_1)g?
Sampling distribution of w 021)5

T T
[ Histogram
N —1)s’
— pdf of % ~ XN - 1]

T= %Xy ' o (N1 “
nT=Xy=+3", Xi ~N(u,0%/N)
nl =s2= ﬁ

N T \2 N—1)s?
SN (X — Xn)? and 0
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Why is simulation useful?

m proof of concept

m when analysis becomes too difficult
m when T is a statistic of samples X1,..., Xn and we need to discuss about
statistical properties of T’ (mean,median,variance, etc)

samples X1,..., Xy are generated and compute T'
repeat step 1 B times, we have 7MW, 73 T7(B)
calculate a summary statistic Z of 7)), 72 T(B)

the distribution of Z will be called simulation distribution or Monte Carlo
distribution

example: on page 159, we used B = 2000, simulation mean of X is 2.9968 and
simulation variance of Xy is 0.2042

Random Variables and Applications Jitkomut Songsiri 160 / 172



Sampling distribution of quantile

let X1,..., XN be gamma variables with « =3 and 5 =5
m Y is the sample T-quantile with 7 = 0.95 based on N samples X}'s
m the exact T-quantile is ¢, = Fy' (1) = 1.2592
m repeat and generate B = 5000 replications of Y1), ... Y'(B)

m plot the sampling distribution of Y and compute statistic such as the simulation
variance

fact: the sample 7-quantile from N samples has asymptotic distribution

IR a3 (0 )

m simulation variance of Y should decrease as N is large
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Simulation: sample quantile

Histogram of X with N = 10

Count

05

T

1

Histogram of X with N = 500

300
250
w0
3
150
(&)

100

15 05 1 15 2 25

Y

Histogram of sample quantiles based on N = 10
a0

Histogram of sample quantiles based on N = 500

400

m simulation variances of Y are 0.1091 (N = 10) and 0.0027 (N = 500)

m when N is large, the sampling distribution of Y is close to normal -
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Median of a complicated distribution
let X|\ be an exponential with parameter A but X itself is random with pdf fy
what if we want to find the median of X ? © maybe we should derive fx(z) first ?
example: fA(\) =3 2 for 0 <A <1

1 1 1
fx@) = [ @i = [ fonennma = [ e

-z
6 4+ 6z + 32222 + \323]}

1 (&
= / BN MAN = ——
0 X

3
= F[G — e (6 + 6z + 322 + 23)]

it is complicated to integrate fx (and then calculate Fi;'(1/2))
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Simulation: Median of complicated distribution
alternative to finding analytical expression of the marginal fx, we can

generate B samples of A AV, ... A(B) according to f
simulate X® having exponential distribution with parameter )\(i), for

i=1,2,...,B
XM X®B) would be a random sample of fx
the median of samples XM XB) should be close to the median of
distribution fx
. (N =322 ,, Sample median = 0.95578
Median is 0.94313 ~ b
09 — fx(z) * 1 "
08 —Fx(z) ) 05
. Z.. z
05 b ‘wﬁoa
§ \ . .
0.1 0 0
0 0.2 0.4 06 08 1 0 5 10 15 20
00 5 10 15 A x
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Mean of | X — Y|

setting:
m servers A and B serve customers with the same rate of A\ customers per minute

m when each one finish serving m customers, they take a break and agree to meet

they would finish the tasks at different time, so one has to wait for another

m question: on average, how long will one of the servers have to wait for the other?
modeling;:

m service times of both servers are independent exponential RVs with parameter A

m let X and Y be the times that server A and B takes to finish serving m customers

m X and Y are m-Erlang RV with rate A (special case of Gamma distribution)

m the time one server has to wait for the other is | X — Y|

m we want to find E[|X — Y]
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analysis |: define Z = | X — Y|, derive pdf of Z, and find the integral

' R =PIX YIS = P2 XY <)
z @fs = //ny(g;, y)dydx (over shaded region)
Lz z z prx+z oo rrtz
- - / / Ixy (z,y)dydz + / / Ixvy (z,y)dyds
0 0 z r—z

even fxy(z,y) can be simplified to product of two Erlang pdfs, we still have to
m derive pdf of Z (taking derivative of Fz(z))
m derive E[Z] = [ z2fz(z)dz

analysis Il: derive MGF of | X — Y|

o(t) = E[e'¥ V) = /0°° /oOo 'Y fx (@) fy (y)dyda
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Simulation: mean of | X — Y|

m generate 10,000 samples of X and Y as independent 10-Erlang with A = 0.3
m compute Z = | X — Y|
m plot the histogram of Z and sample mean of Z

m this is called 1 replication; repeat for 3 replications to see how the approximate of
E[Z] could vary

Replication 1: mean = 11.7666 Replication 2: mean = 11.6938 Replication 3: mean = 11.6189
00 600 600
600 500 500
00
400 400
= 400 P -
c c c
> 3 300 3 300
o o o
O 300 o (_)
200 200
200
) } ”hmmm )
o 0 0
o 10 2 30 0 50 %0 o 10 2 % 4 s e 70 o 10 20 30 0 60
(X —Y]| X —Y]| X —Y]|
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Generate samples from distribution

there are many algorithms
m inverse transformation method

m acceptance-rejection method

in this handout, we generate samples distributed from a given analytical expression of
pdf/cdf of continuous RVs

m there are other efficient methods for particular distributions

m also other methods for generate samples from pmf of discrete RVs
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Inverse of the probability integral transform

Theorem: for a continuous RV X with cdf Fx, the transformed variable U = Fx(X)
is uniform on [0, 1]

# also, if U is a uniform [0, 1] the transformed variable F~!(U) has distribution
function F

proof: let U ~ U[0, 1] if we can find a strictly monotone transformation
T:00,1] - R suchthat T(U)=X
we will have the following

mFx(r) =P(X<2)=PTWU)<2)=PU<T Yz))= T z)
(the last step uses the fact that U is uniform)
m we have Fx(X)=T"YX)=U
this result is used to generate RV with distribution F' provided that F~! is known
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Inverse transform sampling

setting: generate X with cdf Fx(z) (that is continuous and Fi*(x) is known)

inversion method:
generate U, a uniform variable in [0, 1]
return X = Fy.'(U)

fx(@)=1-2z/2 Fx(z) =z —2°/4 F i u)=2(1-vV1I—u) Histogram of X = Fy'(U)
1 1 2 12
08 08 !
15
06 06 =
E = =
=.. & o L
05
0.2 02
0 0 0
0 05 1 15 2 0 05 1 15 2 0 02 04 06 08 1
x x u x

Random Variables and Applications Jitkomut Songsiri 170 / 172



Examples of F)El formula

list of distributions where the inverse cdf can be provided explicitly

name range fx (@) Fx(x) X =F;'(U) simplified
expo x>0 e~ A2 1—e @ —1log(1—U) — 1 log(U)
Rayleigh x>0 [%2672%2 1- 6722722 oy/—log(1—U) o/—log(U)
triangular 0 <z <a 2(1-2) 2 (x— %) a(l—+v1-0) a(l —+/U)
beta 0<z<1l oazo ! % Ut/e
Cauchy R ] 14+ Ltan~!(z/0) otan(r(U —1/2)) otan(aU)

the simplified version is obtained by noting that 1 — U is distributed as U

when F)}l is not available analytically, numerical solution to Fx(X) = U is applied
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