10. Examples of random processes

- sinusoidal signals
- random telegraph signals
- signal plus noise
- ARMA time series

Sinusoidal signals

consider ^a signal of the form

 $X(t) = A \sin(\omega t + \phi)$

in each of following settings:

- $\bullet \;\omega$ (frequencey) is random
- \bullet A (amplitude) is random
- $\bullet \hspace{0.1cm} \phi \hspace{0.1cm}$ (phase shift) is random

questions involving this example

- find pdf
- find mean, variance, and correlation function

random frequency:

• sample functions are sinusoidal signals at different frequencies

random amplitude: $A \in \mathcal{U}[-1,1]$ while $\omega = \pi$ and $\phi = 0$

 $X(t) = A \sin(\pi t)$

(continuous-valued RP and sample function is periodic)

- $\bullet\,$ find pdf of $X(t)$
	- $-$ when t is integer, we see $X(t)=0$ for all A

$$
P(X(t) = 0) = 1, \quad P(X(t) = \text{other values}) = 0
$$

 $-$ when t is not integer, $X(t)$ is just a scaled uniform ${\sf RV}$

$$
X(t) \in \mathcal{U}[-\sin(\pi t), \sin(\pi t)]
$$

 $\bullet\,$ find mean of $X(t)$

$$
m(t) = \mathbf{E}[X(t)] = \mathbf{E}[A]\sin(\pi t)
$$

(could have zero mean if $sin(\pi t) = 0$)

• find correlation function

$$
R(t_1, t_2) = \mathbf{E}[A\sin(\pi t_1)A\sin(\pi t_2)]
$$

= $\mathbf{E}[A^2]\sin(\pi t_1)\sin(\pi t_2)$

• find covariance function

$$
C(t_1, t_2) = R(t_1, t_2) - m(t_1)m(t_2)
$$

= $\mathbf{E}[A^2] \sin(\pi t_1) \sin(\pi t_2) - (\mathbf{E}[A])^2 \sin(\pi t_1) \sin(\pi t_2)$
= $\mathbf{var}[A] \sin(\pi t_1) \sin(\pi t_2)$

• $X(t)$ is wide-sense cyclostationary, *i.e.*, $m(t) = m(t + T)$ and $C(t_1, t_2) = C(t_1 + T, t_2 + T)$ for some T

random phase shift: $A=1, \omega=1$ and $\phi \sim \mathcal{U}[-\pi, \pi]$

$$
X(t) = \sin(t + \phi)
$$

(continuous-valued RP)

 $\bullet\,$ find pdf of $X(t)$: view $x=\sin(t+\phi)$ as a transformation of ϕ

$$
x = \sin(t + \phi) \Leftrightarrow \phi_1 = \sin^{-1}(x) - t, \phi_2 = \pi - \sin^{-1}(x) - t
$$

the pdf of $X(t)$ can be found from the formula

$$
f_{X(t)}(x) = \sum_{k} f(\phi_k) \left| \frac{d\phi}{dx} \right|_{\phi = \phi_k}
$$

$$
= \frac{1}{\pi\sqrt{1 - x^2}}, \quad -1 \le x \le 1
$$

(pdf of $X(t)$ does not depend on $t;$ hence, $X(t)$ is strict-sense stationary)

• find the mean function

$$
\mathbf{E}[X(t)] = \mathbf{E}[\sin(t+\phi)] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \sin(t+\phi)d\phi = 0
$$

• find the covariance function

$$
C(t_1, t_2) = R(t_1, t_2) = \mathbf{E}[\sin(t_1 + \phi)\sin(t_2 + \phi)]
$$

= $\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1}{2} [\cos(t_1 - t_2) - \cos(t_1 + t_2 + 2\phi)] d\phi$
= $(1/2)\cos(t_1 - t_2)$

(depend only on $t_{1}-t_{2})$

 $\bullet\,\,X(t)$ is wide-sense stationary (also conclude from the fact that $X(t)$ is stationary)

Random Telegraph signal

a signal $X(t)$ takes values in $\{1, -1\}$ randomly in the following setting:

- $X(0) = 1$ or $X(0) =$ -1 with equal probability of $1/2$
- $\bullet\,\,X(t)$ changes the sign with each occurrence follows a Poisson process of rate α

questions involving this example:

- $\bullet\,$ obviously, $X(t)$ is a discrete-valued RP, so let's find its pmf
- find the covariance function
- examine its stationary property

pmf of random telegraph signals: based on the fact that

 $X(t)$ has the *same* sign as $X(0) \iff$ number of sign changes in $[0,t]$ is *even* $X(t)$ and $X(0)$ differ in sign \iff number of sign changes in $[0,t]$ is odd

$$
P(X(t) = 1) = P(X(t) = 1 | X(0) = 1) P(X(0) = 1)
$$

no. of sign change is even

$$
+ P(X(t) = 1 | X(0) = -1) P(X(0) = -1)
$$

no. of sign change is odd

let $N(t)$ be the number of sign changes in $[0, t]$ (which is Poisson)

$$
P(N(t)) = \text{ even integer}) = \sum_{k=0}^{\infty} \frac{(\alpha t)^{2k}}{(2k)!} e^{-\alpha t} = (1/2)(1 + e^{-2\alpha t})
$$

$$
P(N(t)) = \text{ odd integer}) = \sum_{k=0}^{\infty} \frac{(\alpha t)^{2k+1}}{(2k+1)!} e^{-\alpha t} = (1/2)(1 - e^{-2\alpha t})
$$

pmf of $X(t)$ is then obtained as

$$
P(X(t) = 1) = (1/2)(1 + e^{-2\alpha t})(1/2) + (1/2)(1 - e^{-2\alpha t})(1/2)
$$

$$
= 1/2
$$

$$
P(X(t) = -1) = 1 - P(X(t) = 1) = 1/2
$$

- $\bullet\,$ pmf of $X(t)$ does not depend on t
- $\bullet\; X(t)$ takes values in $\{-1,1\}$ with equal probabilities

if $X(0) = 1$ with probability $p \neq 1/2$ then how the pmf of $X(t)$ would change ?

mean and variance:

• mean function:

$$
\mathbf{E}[X(t)] = \sum_{k} x_k P(X(t) = x_k) = 1 \cdot (1/2) + (-1) \cdot (1/2) = 0
$$

• variance:

$$
\mathbf{var}[X(t)] = \mathbf{E}[X(t)^2] - (\mathbf{E}[X(t)])^2 = \sum_k x_k^2 P(X(t) = x_k)
$$

$$
= (1)^2 \cdot (1/2) + (-1)^2 \cdot (1/2) = 1
$$

both mean and variance functions do not depend on time

covariance function: since mean is zero and by definition

$$
C(t_1, t_2) = \mathbf{E}[X(t_1)X(t_2)]
$$

= (1)²P[X(t_1) = 1, X(t_2) = 1] + (-1)²P[X(t_1) = -1, X(t_2) = -1]
+ (1)(-1)P[X(t_1) = 1, X(t_2) = -1] + (-1)(1)P[X(t_1) = -1, X(t_2) = 1]

from above, we need to find joint pmf obtained via conditional pmf

$$
P(X(t_1) = x_1, X(t_2) = x_2) = P(X(t_2) = x_2 \mid X(t_1) = x_1) P(X(t_1) = x_1)
$$

depend on sign change
known

 $\bullet\; X(t_1)$ and $X(t_2)$ have the same sign

$$
P(X(t_2) = x_1 \mid X(t_1) = x_1) = P(N(t_2 - t_1) = \text{even}) = (1/2)(1 + e^{-2\alpha(t_2 - t_1)})
$$

•
$$
X(t_1)
$$
 and $X(t_2)$ have different signs

$$
P(X(t_2) = -x_1 \mid X(t_1) = x_1) = P(N(t_2 - t_1) = \text{odd}) = (1/2)(1 - e^{-2\alpha(t_2 - t_1)})
$$

the covariance is obtained by

$$
C(t_1, t_2) = P(X(t_1) = X(t_2)) + P(X(t_1) \neq X(t_2))
$$

= $2 \cdot (1/2)(1 + e^{-2\alpha(t_2 - t_1)})(1/2) - 2 \cdot (1/2)(1 - e^{-2\alpha(t_2 - t_1)}) \cdot (1/2)$
= $e^{-2\alpha|t_2 - t_1|}$

 $\bullet\,$ it depends only on the time gap t_2-t_1 , denoted as $\tau=t_2-t_1$

• we can rewrite
$$
C(\tau) = e^{-2\alpha|\tau|}
$$

- $\bullet\,$ as $\tau\to\infty$, values of $X(t)$ at different times are less correlated
- $\bullet\,\,X(t)$ (based on the given setting) is wide-sense stationary

covariance function of random telegraph signal: set $\alpha=0.5$

- left: $C(t_1, t_2) = e^{-2}$ $2\alpha|t_2$ $^{-t_1\vert}$ as a function of (t_1,t_2)
- right: $C(t_1,t_2)=C(\tau)$ as a function of τ only

revisit telegraph signal: when $X(0) = 1$ with probability $p \neq 1/2$

- how would pmf of $X(t)$ change ?
- examine stationary property under this setting

pmf of $X(t)$

$$
P(X(t) = 1) = (1/2)(1 + e^{-2\alpha t})(p) + (1/2)(1 - e^{-2\alpha t})(1 - p)
$$

= 1/2 + e^{-2\alpha t}(p - 1/2)

$$
P(X(t) = -1) = 1 - P(X(t) = 1)
$$

= 1/2 - e^{-2\alpha t}(p - 1/2)

- $\bullet\,$ when $p\neq 1/2$, pmf of $X(t)$ varies over time but pmf converges to uniform as $t \to \infty$, regardless of the value of p
- $\bullet\,$ if $p=1$ $\left(X(0)\right)$ is deterministic) then pmf still varies over time:

$$
P(X(t) = 1) = (1/2)(1 + e^{-2\alpha t}), \quad P(X(t) = -1) = (1/2)(1 - e^{-2\alpha t})
$$

stationary property: $X(t)$ is stationary if

$$
P(X(t_1) = x_1, ..., X(t_k) = x_k) = P(X(t_1 + \tau) = x_k, ..., X(t_k + \tau) = x_k)
$$

for any $t_1 < t_2 < \cdots < t_k$ and any τ

examine by characterizing pmf as product of conditional pmf's

$$
p(x_1,...,x_k) = p(x_k|x_{k-1},...,x_1)p(x_{k-1}|x_{k-2},...,x_1)\cdots p(x_2|x_1)p(x_1)
$$

which reduces to

$$
P(X(t_1) = x_1, ..., X(t_k) = x_k) =
$$

$$
P(X(t_k) = x_k | X(t_{k-1}) = x_{k-1}) ... P(X(t_2) = x_2 | X(t_1) = x_1) P(X(t_1) = x_1)
$$

using *independent increments property* of Poisson process

because

 $\bullet\,$ for example, if $X(t_k)$ don't change sign

$$
P(X(t_k) = x_k | X(t_{k-1}) = x_{k-1}) = P(N(t_k - t_{k-1}) = \text{even})
$$

if $X(t_{k-1})$ is given, values of $X(t_k)$ are determined solely by $N(t)$ in intervals $\left(t_{j}, t_{j-1}\right)$ which is independent of the previous intervals

 $\bullet\,$ only knowing x_{k-1} is enough to know conditional pmf:

$$
P(x_k|x_{k-1}, x_{k-2}, \dots, x_1) = P(x_k|x_{k-1})
$$

then, we can find each of the conditional pmf's

$$
P(X(t_k) = x_k | X(t_{k-1}) = x_{k-1}) = \begin{cases} (1/2)(1 + e^{-2\alpha(t_k - t_{k-1})}), \text{for } x_k = x_{k-1} \\ (1/2)(1 - e^{-2\alpha(t_k - t_{k-1})}), \text{for } x_k = -x_{k-1} \end{cases}
$$

with the same reasoning, we can write the joint pmf (with time shift) as

$$
P(X(t_1 + \tau) = x_1, ..., X(t_k + \tau) = x_k) =
$$

\n
$$
P(X(t_k + \tau) = x_k | X(t_{k-1} + \tau) = x_{k-1}) \cdots
$$

\n
$$
P(X(t_2 + \tau) = x_2 | X(t_1 + \tau) = x_1) P(X(t_1 + \tau) = x_1)
$$

where these are equal

$$
P(X(t_k) = x_k | X(t_{k-1}) = x_{k-1}) = P(X(t_k + \tau) = x_k | X(t_{k-1} + \tau) = x_{k-1})
$$

because it depends only on the time gap (from page 10-17)

as ^a result, to examine stationary property, we only need to compare

$$
P(X(t_1) = x_1)
$$
 VS $P(X(t_1 + \tau) = x_1)$

which only equal in $\sf{steady\text{-}state}$ sense (as t_1 $_1 \rightarrow \infty$) from page 10-15

Pulse amplitude modulation (PAM)

setting: to send a sequence of binary data, transmit 1 or -1 for T seconds

$$
X(t) = \sum_{n = -\infty}^{\infty} A_n p(t - nT)
$$

where A_k $_k$ is random amplitude (± 1) and $p(t)$ is a pulse of width T

•
$$
m(t) = 0
$$
 since $\mathbf{E}[A_n] = 0$

 $\bullet \ \ C(t_1,t_2)$ is given by

$$
C(t_1, t_2) = \begin{cases} \mathbf{E}[X(t_1)^2] = 1, & \text{if } n \le t_1, t_2 < (n+1)T \\ \mathbf{E}[X(t_1)] \mathbf{E}[X(t_2)] = 0, & \text{otherwise} \end{cases}
$$

 $\bullet~~X(t)$ is wide-sense cyclostationary but clearly sample function of $X(t)$ is not periodic

Signal with additive noise

most applications encounter ^a random process of the form

 $Y(t) = X(t) + W(t)$

- $\bullet\,\,X(t)$ is transmitted signal (could be deterministic or random) but unknown
- $\bullet\,\,Y(t)$ is the measurement (observable to users)
- $\bullet \,\, W(t)$ is noise that corrupts the transmitted signal

common questions regarding this model:

- $\bullet\,$ if only $Y(t)$ is measurable can we reconstruct/estimate what $X(t)$ is ?
- $\bullet\,$ if we can, what kind of statistical information about $W(t)$ do we need ?
- if $X(t)$ is deterministic, how much W affect to Y in terms of
fluctuation? fluctuation?

simple setting: let us make X and W independent

 ${\rm\bf cross\text{-}covariance:}$ let \tilde{X} and \tilde{W} be the mean removed versions

$$
C_{xy}(t_1, t_2) = \mathbf{E}[(X(t_1) - m_x(t_1))(Y(t_2) - m_y(t_2))]
$$

= $\mathbf{E}[(X(t_1) - m_x(t_1))((X(t_2) + W(t_2) - m_x(t_2) - m_w(t_2)))]$
= $\mathbf{E}[\tilde{X}(t_1)(\tilde{X}(t_2) + \tilde{W}(t_2))]$
= $C_x(t_1, t_2) + 0$

cross-covariance can never be zero as Y is a function of X

autocovariance:

$$
C_y(t_1, t_2) = \mathbf{E}[(Y(t_1) - m_y(t_1))(Y(t_2) - m_y(t_2))]
$$

= $\mathbf{E}[(\tilde{X}(t_1) + \tilde{W}(t_1))(\tilde{X}(t_2) + \tilde{W}(t_2))]$
= $C_x(t_1, t_2) + C_w(t_1, t_2) + 0$

the variance in Y is always higher than $X;$ the increase is from the noise