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3. Functions of random variables

• linear and quadratic transformations

• general transformations

• characteristic function

• Markov and Chebyshev inequalities

• Chernoff bound
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Functions of random variables

let X be an RV and g(x) be a real-valued function defined on the real line

• Y = g(X), Y is also an RV

• CDF of Y will depend on g(x) and CDF of X

Example: define g(x) as

g(x) = (x)+ =

{

x, if x ≥ 0

0, if x < 0

• an input voltage X passes thru a halfwave rectifier

• A/D converter: a uniform quantizer maps input to the closet point

• Y is # of active speakers in excess of M , i.e., Y = (X −M)+
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CDF of Y = g(X)

probability of equivalent events:

P (Y in C) = P (g(X) in C) = P (X in B)

where B is the equivalent event of values of X sucht that g(X) is in C
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Example: Voice Transmission System

• X is # of active speakers in a group of N speakers

• let p be the probability that a speaker is active

• a voice transmission system can transmit up to M signals at a time

• let Y be the number of signal discarded, so Y = (X −M)+

Y take values from the set SY = {0, 1, . . . , N −M}

we can compute PMF of Y as

P (Y = 0) = P (X in {0, 1, . . . ,M}) =
M
∑

k=0

pX(k)

P (Y = k) = P (X = M + k) = pX(M + k), 0 < k ≤ N −M,
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Affine functions

define Y = aX + b, a > 0. Find CDF and PDF of Y

If a > 0

y

x

{Y ≤ y}

{X ≤ y−b
a }

y−b
a

Y
=
aX

+
b

P (Y ≤ y) = P (aX + b ≤ y)

= P (X ≤ (y − b)/a)

thus,

FY (y) = FX

(

y − b

a

)

PDF of Y is obtained by differentiating the CDF wrt. to y

fY (y) =
1

a
fX

(

y − b

a

)

Functions of random variables 3-5



Example: Affine function of a Gaussian

let X ∼ N (m,σ2) :

fX(x) =
1√
2πσ2

exp − (x−m)2

2σ2

let Y = aX + b, with a > 0

from page 3-5,

fY (y) =
1

a
fX

(

y − b

a

)

=
1

√

2π(aσ)2
exp − (y − b− am)2

2(aσ)2

• Y has also a Gaussian distribution with mean b+am and variance (aσ)2

• thus, a linear function of a Gaussian is also a Gaussian
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Example: Quadratic functions

define Y = X2. find CDF and PDF of Y

for a positive y, we have

{Y ≤ y} ⇐⇒ {−√
y ≤ X ≤ √

y}

thus,

FY (y) =

{

0, y < 0

FX(
√
y)− FX(−√

y), y > 0
−√

y
√
y

{Y ≤ y}

Y = X2

differentiating wrt. to y gives

fY (y) =
fX(

√
y)

2
√
y

+
fX(−√

y)

2
√
y

for X ∼ N (0, 1), Y is a Chi-square random variable with one DOF
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General functions of random variables

suppose Y = g(X) is a transformation (could be many-to-one)

suppose y = g(x) has n roots:

y = g(x1) = g(x2) = · · · = g(xn)

two equivalent events: {y < Y < y+ dy} ⇐⇒ ⋃n
k=1{xk < X < xk + dxk}

the probabibilities of two equivalent events are approximately

fY (y)|dy| = fX(x1)|dx1|+ fX(x2)|dx2|+ · · ·+ fX(xn)|dxn|

fY (y) =
fX(x1)

|g′(x1)|
+ · · ·+ fX(xn)

|g′(xn)|

where g′(x) is the derivative (Jacobian) of g(x)
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Affine transformation: Y = aX + b, g′(x) = a

the equation y = ax+ b has a single solution x = (y − b)/a for every y, so

fY (y) =
1

|a|fX
(

y − b

a

)

Quadratic transformation: Y = aX2, a > 0, g′(x) = 2ax

if y ≤ 0, then the equation y = ax2 has no real solutions, so fY (y) = 0

if y > 0, then it has two solutions

x1 =
√

y/a, x2 = −
√

y/a

and therefore

fY (y) =
1

2
√
ay

(

fX(
√

y/a) + fX(−
√

y/a)
)
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Log of uniform variables

verify that if X has a standard uniform distribution U(0, 1), then

Y = − log(X)/λ

has an exponential distribution with parameter λ

for Y = y, we can solve X = x = e−λy ⇒ unique root

• the Jacobian is g′(x) = − 1
λx = −eλy/λ

• when y < 0, x = e−λy /∈ [0, 1]; hence, fY (y) = 0

• when y ≥ 0 (or e−λy ∈ [0, 1]), we will have

fY (y) =
fX(e−λy)

| − 1/λx| = λe−λy
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Amplitude samples of a sinusoidal waveform

let Y = cosX where X ∼ U(0, 2π], find the pdf of Y

for |y| > 1 there is no solution of x ⇒ fY (y) = 0

for |y| < 1 the equation y = cosx has two solutions:

x1 = cos−1(y), x2 = 2π − x1

the Jacobians are

g′(x1) = − sin(x1) = − sin(cos−1(y)) = −
√

1− y2, g′(x2) =
√

1− y2

since fX(x) = 1/2π in the interval (0, 2π], so

fY (y) =
1

π
√

1− y2
, for − 1 < y < 1

note that although fY (±1) = ∞ the probability that y = ±1 is 0
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Transform Methods

• moment generating function

• characteristic function
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Moment generating functions

for a random variable X , the moment generating function (MGF) of X is

Φ(t) = E[etX]

Continuous

Φ(t) =

∫ ∞

−∞

etxf(x)dx

Discrete

Φ(t) =
∑

k

etxkp(xk)

• except for a sign change, Φ(t) is the 2-sided Laplace transform of pdf

• the set of t for which the integral is finite forms the domain of Φ(t)
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Moment theorem

computing any moments of X is easily obtained by

E[Xn] =
dnΦ(t)

dtn

∣

∣

∣

∣

t=0

because

E[etX] = E

[

1 + tX +
(tX)2

2!
+ · · ·+ (tX)n

n!
+ · · ·

]

= 1 + tE[X ] +
t2

2!
E[X2] + · · ·+ tn

n!
E[Xn] + · · ·

note that Φ(0) = 1

linear transformation: if Y = aX + b , then

Φy(t) = etbΦx(at)
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MGF of Gaussian variables

the MGF of X ∼ N (0, 1) is given by

Φ(t) = et
2
/2

it can be derived by completing square in the exponent:

Φ(t) =
1√
2π

∫ ∞

−∞

e−x2/2etxdx = et
2/2 1√

2π

∫ ∞

−∞

e−(x−t)2/2dx

the MGF of X ∼ N (µ, σ2) (affine transformation of N (0, 1)) is

Φ(t) = e(µt+σ2t2/2)

from the moment theorem, we obtain

Φ′(0) = µ, Φ′′(0) = µ2 + σ2
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Characteristic functions

the characteristic function (CF) of a random variable X is defined by

Continuous

Φ(ω) = E[eiωX] =

∫ ∞

−∞

f(x)eiωxdx

Discrete

Φ(ω) = E[eiωX] =
∑

k

eiωxkp(xk)

• Φ(ω) is simply the (inverse) Fourier transform of the PDF or PMF of X

• every pdf and its characteristic function form a unique Fourier pair:

Φ(ω) ⇐⇒ f(x)

• it looks as if we can obtain Φ(ω) by substituting t = iω from MGF to
CF but the existence of two transformations could be different
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Properties of characteristic functions

• CF always exists because of absolute convergence (not true for MGF)

|Φ(ω)| ≤
∫ ∞

−∞

|eiωx||f(x)|dx
∫ ∞

−∞

f(x)dx = 1

• CF is maximum at origin because f(x) ≥ 0:

|Φ(ω)| ≤ Φ(0) = 1

• CF is self-adjoint: Φ(−ω) = Φ∗(ω) (where ∗ is complex conjugate)

• CF is non-negative definite: for any real numbers w1, w2, . . . , wn and
complex numbers z1, z2, . . . , zn

n
∑

j=1

n
∑

k=1

Φ(wj − wk)zjz
∗
k ≥ 0
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Linear transformation: if Y = aX + b , then

Φy(ω) = eibωΦx(aω)

Gaussian variables: let X ∼ N (µ, σ2)

the characteristic function of X is

Φ(ω) = eiµω · e−σ2ω2/2

(more details of applying CF to show the central limit theorem)

Binomial variables: parameters are n, p and q = 1− p

Φ(ω) = (peiω + q)n

Poisson variables: with parameter λ

Φ(ω) = eλ(e
iω−1)
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Markov and Chebyshev Inequalities

Markov inequality

let X be a nonnegative RV with mean E[X ]

P (X ≥ a) ≤ E[X ]

a
, a > 0

Chebyshev inequality

let X be an RV with mean µ and variance σ2

P (|X − µ| ≥ a) ≤ σ2

a2
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example: manufacturing of low grade resistors

• assume the averge resistance is 100 ohms (measured by a statistical
analysis)

• some of resistors have different values of resistance

if all resistors over 200 ohms will be discarded, what is the maximum
fraction of resistors to meet such a criterion ?

using Markov inequality with µ = 100 and a = 200

P (X ≥ 200) ≤ 100

200
= 0.5

the percentage of discarded resistors cannot exceed 50% of the total
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if the variance of the resistance is known to equal 100, find the probability
that the resistance values are between 50 and 150

P (50 ≤ X ≤ 150) = P (|X − 100| ≤ 50)

= 1− P (|X − 100| ≥ 50)

by Chebyshev inequality

P (|X − 100| ≥ 50) ≤ σ2

(50)2
= 1/25

hence,

P (50 ≤ X ≤ 150) ≥ 1− 1

25
=

24

25
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Chernoff bound

the Chernoff bound is given by

P (X ≥ a) ≤ inf
t≥0

E[et(X−a)]

which can be expressed as

logP (X ≥ a) ≤ inf
t≥0

{−ta+ logEetX}

• E[etX] is the moment generating function

• logEetX is called the cumulant generating function

• Chernoff bound is useful when EetX has an analytical expression
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Example: X is Gaussian with zero mean and unit variance

the cumulant generating function is

logE[etX] = t2/2

hence,
logP (X ≥ a) ≤ inf

t≥0
{−ta+ t2/2} = −a2/2

and the Chernoff bound gives

P (X ≥ a) ≤ e−a2/2

which is tighter than the Chebyshev inequality:

P (|X | ≥ a) ≤ 1/a2 =⇒ P (X ≥ a) ≤ 1/2a2
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Chernoff bound

Chebyshev bound
P
(X

≥
a
)

P (X ≥ a)

a

when a is small, Chebyshev bound is useless while the Chernoff bound is
tighter
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