EE401 Random Processes for EE Jitkomut Songsiri

3. Functions of random variables

e linear and quadratic transformations
e general transformations
e characteristic function

e Markov and Chebyshev inequalities

e Chernoff bound
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Functions of random variables

let X be an RV and g(z) be a real-valued function defined on the real line

e Y =¢g(X), Y isalsoan RV
e CDF of Y will depend on g(z) and CDF of X

Example: define g(x) as

ISRV 2 if x>0
9(z) = () {o, if 2 <0

e an input voltage X passes thru a halfwave rectifier

e A/D converter: a uniform quantizer maps input to the closet point

o Y is # of active speakers in excess of M, i.e., Y = (X — M)™T
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CDF of Y = ¢g(X)

probability of equivalent events:
P(YinC)=P(g(X)inC)=P(X in B)

where B is the equivalent event of values of X sucht that g(X) is in C
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Example: Voice Transmission System

e X is # of active speakers in a group of N speakers
e let p be the probability that a speaker is active
e a voice transmission system can transmit up to M signals at a time

e let Y be the number of signal discarded, so Y = (X — M)*

Y take values from the set Sy = {0,1,...,N — M}

we can compute PMF of Y as
P(Y=0)=P(Xin{0,1,....M}) =) px(k)

PY =k =P(X=M+k)=px(M~+k), 0<k<N—M,
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define Y = aX + b,

Affine functions

a > 0. Find CDF and PDF of Y

If a >0
Ly A\
R
{7 PY <y)=PaX +b<vy)
P(X < (y—>b)/a)
{X <%
: X thus
y—b
{Y <y} Fy(y) = Fx (y ; b)

PDF of Y is obtained by differentiating the CDF wrt. to y
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Example: Affine function of a Gaussian

let X ~ N(m,o?) :

let Y =aX + b, with a > 0

from page 3-5,

— b 1 (y — b — am)?
= exp —
2 - 2(ao)?

fy(y) = —fX(

(ao)
e Y has also a Gaussian distribution with mean b+ am and variance (ac)?

e thus, a linear function of a Gaussian is also a Gaussian
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Example: Quadratic functions

define Y = X2. find CDF and PDF of Y

for a positive y, we have

Y <y} = 1-vy< X<V}

07 y<0

Fx(J) — Fx(—vg), y>0 VY VY

Fy(y) = {

differentiating wrt. to y gives

 fx(WV) o fx (=)
fy(y) = N + NG

for X ~ N(0,1), Y is a Chi-square random variable with one DOF
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General functions of random variables

suppose Y = g(X) is a transformation (could be many-to-one)

{9¢< 91dYY & < Xl ulrcan il
U f &< x<xyeai)

+d
O suppose y = g(x) has n roots:

y=g(x1) =g(r2) = = g(an)

X, Kd 5 Kty Ks kg iok<s
two equivalent events: {y <Y <y+dy} <= U,_{zr < X < zf + day}

the probabibilities of two equivalent events are approximately

frWldyl = fx(z)ldei] + fx(w2)|dwa| + - + fx(2n)|den]

Fy(y) = fx(x1) R Sx(xn)

9/ (21)] 9 ()]

where ¢'(x) is the derivative (Jacobian) of g(x)
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Affine transformation: Y =aX + 0, ¢'(z) = a

the equation y = ax + b has a single solution x = (y — b)/a for every y, so

fr(y) = ﬂfx( b)

Quadratic transformation: Y = aX? a > 0, ¢'(z) = 2ax
if y < 0, then the equation y = az? has no real solutions, so fy(y) =0

if y > 0, then it has two solutions

— Ve, 5= —/la

and therefore

fy(y) = L (fX(\/%) + fX(—\/%))

Functions of random variables 3-9



Log of uniform variables

verify that if X has a standard uniform distribution 2/(0, 1), then
Y = —log(X)/A

has an exponential distribution with parameter A

for Y =y, we can solve X =z = e N = unique root

e the Jacobian is ¢'(z) = —x= = —e*V/\

e wheny <0, x =e " ¢ [0,1]; hence, fy(y) =0

e when y >0 (or e € [0,1]), we will have

fx(e™Y)

— — e M
B

fy(y)
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Amplitude samples of a sinusoidal waveform

let Y = cos X where X ~ U(0,27], find the pdf of Y
for |y| > 1 there is no solution of x = fy(y) =0

for |y| < 1 the equation y = cosx has two solutions:
r1 =cos H(y), xp =21 —
the Jacobians are
g'(z1) = —sin(z1) = —sin(cos ' (y)) = =1 -9, ¢'(z2) = V1 —y?
since fx(x) = 1/2m in the interval (0, 27|, so

1
fy(y) = for —1<y<1

/1 — 42

note that although fy (4+1) = oo the probability that y = 4+1 is 0
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Transform Methods

e moment generating function

e characteristic function
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Moment generating functions

for a random variable X, the moment generating function (MGF) of X is

B(t) = E[etX]

Continuous

Discrete

e except for a sign change, ®(t) is the 2-sided Laplace transform of pdf

e the set of ¢ for which the integral is finite forms the domain of ®(¢)
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Moment theorem

computing any moments of X is easily obtained by

4D (t)

BXT = =

t=0

because

tX)? tX)m
E[e'*] =E 1—|—tX-|-(2') _|_..._|_(n') _|_]

2

t tn
= 1+tE[X]+—E[X2]+-~+EE[X”]+-~

2!
note that ®(0) =1

linear transformation: if Y = aX + b, then

®,(t) = @, (at)
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MGF of Gaussian variables
the MGF of X ~ N(0, 1) is given by
O(t) = et /2

it can be derived by completing square in the exponent:

1 > 2 2 1 >° 2
d(t) = — e 2t dy = et /2—/ e~ @720
(t) \/ 2T /_Oo V2T J o
the MGF of X ~ AN (u,c?) (affine transformation of AV/(0,1)) is

B(t) = el o™/

from the moment theorem, we obtain

'(0) = p, @"(0)=p*+o0°
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Characteristic functions

the characteristic function (CF) of a random variable X is defined by

Continuous N,
d(w) = E[e“¥] = / f(z)e“"dx
Discrete

CID(w) _ E[ein] _ Zeikap(xk)
k

e ®(w) is simply the (inverse) Fourier transform of the PDF or PMF of X

e every pdf and its characteristic function form a unique Fourier pair:

O(w) = f(z)

e it looks as if we can obtain ®(w) by substituting t = iw from MGF to
CF but the existence of two transformations could be different
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Properties of characteristic functions

e CF always exists because of absolute convergence (not true for MGF)

s < [ e / " f(@)de =

e CF is maximum at origin because f(x) > 0:

@(w)] < @(0) =1

e CF is self-adjoint: ®(—w) = ®*(w) (where *x is complex conjugate)

e CF is non-negative definite: for any real numbers wq, wo, ..., w, and
complex numbers 21, 29, ..., 2z,
n
g S(w; —wg)ziz >0
1=1 k=1
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Linear transformation: if Y =aX + b, then
®,(w) = P, (aw)

Gaussian variables: let X ~ A (i, 0?)

the characteristic function of X is
D(w) = e . =7

(more details of applying CF to show the central limit theorem)

Binomial variables: parameters are n,pand g=1—p
B(w) = (pe“ +q)"
Poisson variables: with parameter A

d(w) = e 1)
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Markov and Chebyshev Inequalities

Markov inequality

let X be a nonnegative RV with mean E[X]

E[X
P(X >a) < H, a> 0
a

Chebyshev inequality

let X be an RV with mean u and variance o2

0.2

P(X —pl2a) < —
a

Functions of random variables

3-19



example: manufacturing of low grade resistors

e assume the averge resistance is 100 ohms (measured by a statistical
analysis)

e some of resistors have different values of resistance

if all resistors over 200 ohms will be discarded, what is the maximum
fraction of resistors to meet such a criterion ?

using Markov inequality with = 100 and a = 200

100

P(X >200) < —
(X = )_200

= 0.9

the percentage of discarded resistors cannot exceed 50% of the total
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if the variance of the resistance is known to equal 100, find the probability

that the resistance values are between 50 and 150

P(50 < X < 150) = P(|X — 100| < 50)
=1— P(|X — 100| > 50)

by Chebyshev inequality

2

o
P(|X —100] > 50) < = 1/25
(X 1002 50) < g = 1/

hence, . o
P < X <1 > ] —— = —
(50 < X < 150) = 25 25
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Chernoff bound

the Chernoff bound is given by

P(X >a) < inf E[e/X9)]
t>0

which can be expressed as

logP(X >a) < gg {—ta + log Ee'*}

o E[c!*] is the moment generating function
o log Ee'* is called the cumulant generating function

e Chernoff bound is useful when Ee!* has an analytical expression
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Example: X is Gaussian with zero mean and unit variance

the cumulant generating function is
logE[e!] = t?/2

hence,

logP(X >a) < %r>1g {—ta+1*/2} = —a®/2

and the Chernoff bound gives

P(X >a) <e @/

which is tighter than the Chebyshev inequality:

P(|X|>a)<1/a* = P(X >a)<1/2a"

Functions of random variables

3-23



2 ‘ . .

. — P(X > a)
1.8F \ - = = Chernoff bound A
P R Chebyshev bound
1.67 : |
‘,
1.4} \ ]

when a is small, Chebyshev bound is useless while the Chernoff bound is
tighter
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