Jitkomut Songsiri

5. Random Vectors

- probabilities
- characteristic function
- cross correlation, cross covariance
- Gaussian random vectors
- functions of random vectors

Random vectors

we denote $\mathbf X$ a random vector

 $\mathbf X$ is a function that maps each outcome ζ to a vector of real numbers

an n -dimensional random variable has n components:

$$
\mathbf{X} = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix}
$$

also called a *multivariate* or *multiple* random variable

Probabilities

Joint CDF

$$
F(\mathbf{x}) \triangleq F_{\mathbf{X}}(x_1, x_2, \dots, x_n) = P(X_1 \le x_1, X_2 \le x_2, \dots, X_n \le x_n)
$$

Joint PMF

$$
p(\mathbf{x}) \triangleq p_{\mathbf{X}}(x_1, x_2, \dots, x_n) = P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)
$$

Joint PDF

$$
f(\mathbf{x}) \triangleq f_{\mathbf{X}}(x_1, x_2, \dots, x_n) = \frac{\partial^n}{\partial x_1 \dots \partial x_n} F(\mathbf{x})
$$

Marginal PMF

$$
p_{X_j}(x_j) = P(X_j = x_j) = \sum_{x_1} \dots \sum_{x_{j-1}} \sum_{x_{j+1}} \dots \sum_{x_n} p_{\mathbf{X}}(x_1, x_2, \dots, x_n)
$$

Marginal PDF

$$
f_{X_j}(x_j) = \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} f_{\mathbf{X}}(x_1, x_2, \dots, x_n) dx_1 \dots dx_{j-1} dx_{j+1} \dots dx_n
$$

Conditional PDF: the PDF of X_n given X_1, \ldots, X_{n-1} is

$$
f(x_n|x_1,\ldots,x_{n-1}) = \frac{f_{\mathbf{X}}(x_1,\ldots,x_n)}{f_{X_1,\ldots,X_{n-1}}(x_1,\ldots,x_{n-1})}
$$

Characteristic Function

the characteristic function of an $n\text{-dimensional RV}$ is defined by

$$
\Phi(\omega) = \Phi(\omega_1, ..., \omega_n) = \mathbf{E}[e^{i(\omega_1 X_1 + ... + \omega_n X_n)}]
$$

$$
= \int_{\mathbf{x}} e^{i\omega^T \mathbf{x}} f(\mathbf{x}) d\mathbf{x}
$$

where

$$
\omega = \begin{bmatrix} \omega_1 \\ \omega_2 \\ \vdots \\ \omega_n \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}
$$

 $\Phi(\omega)$ is the n -dimensional Fourier transform of $f(\mathbf{x})$

Independence

the random variables X_1, \ldots, X_n are **independent** if

the joint pdf (or pmf) is equal to the product of their marginal's

Discrete

$$
p_{\mathbf{X}}(x_1,\ldots,x_n)=p_{X_1}(x_1)\cdots p_{X_n}(x_n)
$$

Continuous

$$
f_{\mathbf{X}}(x_1,\ldots,x_n)=f_{X_1}(x_1)\cdots f_{X_n}(x_n)
$$

we can specify an RV by the characteristic function in place of the pdf,

 X_1, \ldots, X_n are *independent* if

$$
\Phi(\omega) = \Phi_1(\omega_1) \cdots \Phi_n(\omega_n)
$$

Example: White noise signal in communication

the n samples $X_1, \ldots X_n$ ϵ_n of a noise signal have the joint pdf:

$$
f_{\mathbf{X}}(x_1,\ldots,x_n) = \frac{e^{-(x_1^2 + \cdots + x_n^2)/2}}{(2\pi)^{n/2}} \quad \text{for all } x_1,\ldots,x_n
$$

the joint pdf is the $n\hbox{-product}$ of one-dimensional Gaussian pdf's

thus, X_1, \ldots, X_n \overline{n} are independent Gaussian random variables

Expected Values

the expected value of ^a function

$$
g(\mathbf{X}) = g(X_1, \dots, X_n)
$$

of a vector random variable ${\bf X}$ is defined by

$$
\mathbf{E}[g(\mathbf{X})] = \int_{\mathbf{x}} g(\mathbf{x}) f(\mathbf{x}) d\mathbf{x}
$$
 Continuous

$$
\mathbf{E}[g(\mathbf{X})] = \sum_{\mathbf{x}} g(\mathbf{x}) p(\mathbf{x})
$$
Discrete

Mean vector

$$
\mu = \mathbf{E}[\mathbf{X}] = \mathbf{E} \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix} \quad \triangleq \quad \begin{bmatrix} \mathbf{E}[X_1] \\ \mathbf{E}[X_2] \\ \vdots \\ \mathbf{E}[X_n] \end{bmatrix}
$$

Correlation and Covariance matrices

Correlation matrix has the second moments of X as its entries:

$$
\mathbf{R} \triangleq \mathbf{E}[\mathbf{X}\mathbf{X}^T] = \begin{bmatrix} \mathbf{E}[X_1X_1] & \mathbf{E}[X_1X_2] & \cdots & \mathbf{E}[X_1X_n] \\ \mathbf{E}[X_2X_1] & \mathbf{E}[X_2X_2] & \cdots & \mathbf{E}[X_2X_n] \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{E}[X_nX_1] & \mathbf{E}[X_nX_2] & \cdots & \mathbf{E}[X_nX_n] \end{bmatrix}
$$

with

$$
\mathbf{R}_{ij} = \mathbf{E}[X_i X_j]
$$

Covariance matrix has the second-order central moments as its entries:

$$
\mathbf{C} \triangleq \mathbf{E}[(\mathbf{X} - \mu)(\mathbf{X} - \mu)^T]
$$

with

$$
\mathbf{C}_{ij} = \mathbf{cov}(X_i, X_j) = \mathbf{E}[(X_i - \mu_i)(X_j - \mu_j)]
$$

Symmetric matrix

 $A \in \mathbf{R}^{n \times n}$ is called symmetric if $A = A^T$

Facts: if A is symmetric

- $\bullet\,$ all eigenvalues of A are real
- $\bullet\,$ all eigenvectors of A are orthogonal
- \bullet $\,A$ admits a decomposition

$$
A = UDU^T
$$

where $U^TU=UU^T=I\,\,(U$ is unitary) and D is diagonal

(of course, the diagonals of D are eigenvalues of $A)$

Unitary matrix

a matrix $U \in \mathbf{R}^{n \times n}$ is called **unitary** if

$$
U^T U = U U^T = I
$$

example:
$$
\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}
$$

Facts:

- \bullet a real unitary matrix is also called $\bm{\mathsf{orthogonal}}$
- \bullet a unitary matrix is always invertible and $U^{-1}=U^T$
- $\bullet\,$ columns vectors of U are mutually orthogonal
- norm is preserved under ^a unitary transformation:

$$
y = Ux \quad \Longrightarrow \quad \|y\| = \|x\|
$$

Positive definite matrix

a symmetric matrix A is **positive semidefinite**, written as $A \succeq 0$ if

 $x^T A x \geq 0$, $\forall x \in \mathbb{R}^n$

and **positive definite**, written as $A \succ 0$ if

 $x^T Ax > 0$, for all nonzero $x \in \mathbb{R}^n$

Facts: $A \succeq 0$ if and only if

 $\bullet\,$ all eigenvalues of A are non-negative

 $\bullet\,$ all principle minors of A are non-negative

example:
$$
A = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} \succeq 0
$$
 because
\n
$$
x^T A x = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}
$$
\n
$$
= x_1^2 + 2x_2^2 - 2x_1x_2
$$
\n
$$
= (x_1 - x_2)^2 + x_2^2 \ge 0
$$

or we can check from

- $\bullet\,$ eigenvalues of A are 0.38 and 2.61 (real and positive)
- the principle minors are ¹ and $\left|\begin{array}{cc} 1 & -1 \ -1 & 2 \end{array}\right|=1$ (all positive)

note: $A \succeq 0$ does not mean all entries of A are positive!

Properties of correlation and covariance matrices

let ${\bf X}$ be a (real) n -dimensional random vector with mean μ

Facts:

- \bullet ${\bf R}$ and ${\bf C}$ are $n\times n$ symmetric matrices
- \bullet $\, {\bf R}$ and $\, {\bf C}$ are positive semidefinite
- \bullet If X_1,\ldots,X_n \overline{n} are independent, then ${\bf C}$ is diagonal
- $\bullet\,$ the diagonals of ${\bf C}$ are given by the variances of X_k
- \bullet if ${\bf X}$ has zero mean, then ${\bf R}={\bf C}$

• $\mathbf{C}=\mathbf{R}-\mu\mu$ $\, T \,$

Cross Correlation and Cross Covariance

let \mathbf{X}, \mathbf{Y} be vector random variables with means μ_X, μ_Y respectively

Cross Correlation

$$
\mathbf{cor}(\mathbf{X}, \mathbf{Y}) = \mathbf{E}[\mathbf{X}\mathbf{Y}^T]
$$

if $\mathbf{cor}(\mathbf{X}, \mathbf{Y}) = 0$ then $\mathbf X$ and $\mathbf Y$ are said to be **orthogonal**

Cross Covariance

$$
\mathbf{cov}(\mathbf{X}, \mathbf{Y}) = \mathbf{E}[(\mathbf{X} - \mu_X)(\mathbf{Y} - \mu_Y)^T]
$$

=
$$
\mathbf{cor}(\mathbf{X}, \mathbf{Y}) - \mu_X \mu_Y^T
$$

if ${\bf cov}({\bf X},{\bf Y})=0$ then ${\bf X}$ and ${\bf Y}$ are said to be **uncorrelated**

Affine transformation

let $\mathbf Y$ be an affine transformation of $\mathbf X$:

 $Y = AX + b$

where ${\bf A}$ and ${\bf b}$ are deterministic matrices

•
$$
\mu_Y = \mathbf{A}\mu_X + \mathbf{b}
$$

$$
\mu_Y = \mathbf{E}[\mathbf{A}\mathbf{X} + \mathbf{b}] = \mathbf{A}\mathbf{E}[\mathbf{X}] + \mathbf{E}[\mathbf{b}] = \mathbf{A}\mu_X + \mathbf{b}
$$

• $C_Y = AC_X A^T$

$$
\mathbf{C}_Y = \mathbf{E}[(\mathbf{Y} - \mu_Y)(\mathbf{Y} - \mu_Y)^T] = \mathbf{E}[(\mathbf{A}(\mathbf{X} - \mu_X))(\mathbf{A}(\mathbf{X} - \mu_X))^T]
$$

= $\mathbf{A}\mathbf{E}[(\mathbf{X} - \mu_X)(\mathbf{X} - \mu_X)^T]\mathbf{A}^T = \mathbf{A}\mathbf{C}_X\mathbf{A}^T$

Diagonalization of covariance matrix

suppose a random vector $\mathbf Y$ is obtained via a linear transformation of $\mathbf X$

- $\bullet\,$ the covariance matrices of ${\bf X},{\bf Y}$ are ${\bf C}_X,{\bf C}_Y$ respectively
- \bullet $\, {\bf A} \,$ may represent linear filter, system gain, etc.
- \bullet the covariance of $\mathbf Y$ is $\mathbf C_Y=\mathbf A\mathbf C_X\mathbf A^T$

 $\boldsymbol{\mathsf{Problem}}\text{:}$ choose $\boldsymbol{\mathrm{A}}$ such that \mathbf{C}_Y becomes 'diagonal'

in other words, the variables Y_1,\ldots,Y_n are required to be **uncorrelated**

since \mathbf{C}_X is symmetric, it has the decomposition:

$$
\mathbf{C}_X = UDU^T
$$

where

- \bullet $\,D$ is diagonal and its entries are eigenvalues of ${\bf C}_X$
- \bullet $\;U$ is unitary and the columns of U are eigenvectors of ${\bf C}_X$

diagonalization: pick $\mathbf{A} = U^T$ to obtain

$$
\mathbf{C}_Y = \mathbf{A}\mathbf{C}_X\mathbf{A}^T = \mathbf{A}UDU^T\mathbf{A}^T = U^TUDU^TU = D
$$

as desired

one can write ${\bf X}$ in terms of ${\bf Y}$ as

$$
\mathbf{X} = U U^T \mathbf{X} = U \mathbf{Y} = \begin{bmatrix} U_1 & U_2 & \cdots & U_n \end{bmatrix} \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} = \sum_{k=1}^n Y_k U_k
$$

this equation is called **Karhunen-Loéve expansion**

- $\bullet\,$ $\bf X$ can be expressed as a weighted sum of the eigenvectors U_k
- $\bullet\,$ the weighting coefficients are *uncorrelated* random variables Y_k

example: ^X ${\bf X}$ has the covariance matrix $\begin{bmatrix} 4 & 2 \ 2 & 4 \end{bmatrix}$

design a transformation $\mathbf{Y} = \mathbf{A} \mathbf{X}$ s.t. the covariance of \mathbf{Y} is diagonal the eigenvalues of $\bf C_X$ and the corresponding eigenvectors are

$$
\lambda_1 = 6, \quad u_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \lambda_2 = 2, \quad u_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}
$$

 u_1 and u_2 are orthogonal, so if we normalize u_k so that $\|u_k\| = 1$ then

$$
U = \begin{bmatrix} \frac{u_1}{\sqrt{2}} & \frac{u_2}{\sqrt{2}} \end{bmatrix}
$$
 is unitary

therefore, $\mathbf{C}_\mathbf{X} = UDU^T$ where

$$
U = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix}, \quad D = \begin{bmatrix} 6 & 0 \\ 0 & 2 \end{bmatrix}
$$

thus, if we choose $\mathbf{A} = U^T$ then $\mathbf{C_Y} = D$ which is diagonal as desired

Whitening transformation

we wish to find a transformation $\mathbf{Y}=\mathbf{AX}$ such that

$$
\mathbf{C}_{\mathbf{Y}}=I
$$

- \bullet a white noise property: the covariance is the identity matrix
- \bullet all components in $\mathbf{{Y}}$ are all uncorrelated
- $\bullet\,$ the variances of Y_k are **normalized** to 1

from $\mathbf{C}_\mathbf{Y}=\mathbf{A}\mathbf{C}_\mathbf{X}\mathbf{A}^T$ and use the eigenvalue decomposition in $\mathbf{C}_\mathbf{X}$

$$
\mathbf{C}_{\mathbf{Y}} = \mathbf{A} U D U^T \mathbf{A}^T = \mathbf{A} U D^{1/2} D^{1/2} U^T \mathbf{A}^T
$$

denote D^1 $\frac{1}{\sqrt{2}}$ 2 the square root of D with $D \succeq 0$, *i.e.*, D^1 $\frac{1}{\sqrt{2}}$ 2 $^2D^1$ $\frac{1}{\sqrt{2}}$ 2 $^2=D$

$$
D = \mathbf{diag}(d_1, \dots, d_n) \quad \Longrightarrow \quad D^{1/2} = \mathbf{diag}(\sqrt{d_1}, \dots, \sqrt{d_n})
$$

can you find ${\bf A}$ that makes ${\bf C}_{\bf Y}$ the identity matrix ?

Gaussian random vector

 X_1, \ldots, X_n are said to be **jointly Gaussian** if their joint pdf is given by

$$
f(\mathbf{x}) \triangleq f_{\mathbf{X}}(x_1, x_2, \dots, x_n) = \frac{1}{(2\pi)^{n/2} \det(\Sigma)^{1/2}} \exp{-\frac{1}{2}(\mathbf{x} - \mu)^T \Sigma^{-1}(\mathbf{x} - \mu)}
$$

 μ is the mean $(n\times1)$ and $\Sigma\succ0$ is the covariance matrix $(n\times n)$:

$$
\mu = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_n \end{bmatrix}, \quad \Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} & \cdots & \Sigma_{1n} \\ \Sigma_{21} & \Sigma_{22} & \cdots & \Sigma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \Sigma_{n1} & \Sigma_{n2} & \cdots & \Sigma_{nn} \end{bmatrix}
$$

and

$$
\mu_k = \mathbf{E}[X_k], \quad \Sigma_{ij} = \mathbf{E}[(X_i - \mu_i)(X_j - \mu_j)]
$$

example: the joint density function of \mathbf{x} (not normalized) is given by

$$
f(x_1, x_2, x_3) = \exp \ -\frac{x_1^2 + 3x_2^2 + 2(x_3 - 1)^2 + 2x_1(x_3 - 1)}{2}
$$

 \bullet f is an exponential of *negative quadratic* in ${\bf x}$ so ${\bf x}$ must be a Gaussian

$$
f(x_1, x_2, x_3) = \exp \left(-\frac{1}{2} \begin{bmatrix} x_1 \\ x_2 \\ x_3 - 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 - 1 \end{bmatrix}
$$

 \bullet the mean vector is $(0,0,1)$ and the covariance matrix is

$$
\mathbf{C} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 0 & 2 \end{bmatrix}^{-1} = \begin{bmatrix} 2 & 0 & -1 \\ 0 & 1/3 & 0 \\ -1 & 0 & 1 \end{bmatrix}
$$

- $\bullet\,$ the variance of x_1 is highest while x_2 is smallest
- \bullet x_1 and x_2 are uncorrelated, so are x_2 and x_3

examples of Gaussian density contour (the exponent of exponential)

$$
\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{12} & \Sigma_{22} \end{bmatrix}^{-1} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 1
$$

Properties of Gaussian variables

many results on Gaussian RVs can be obtained analytically:

- \bullet marginal's of ${\bf X}$ is also Gaussian
- $\bullet\,$ conditional pdf of X_k given the other variables is a Gaussian distribution
- uncorrelated Gaussian random variables are independent
- any affine transformation of ^a Gaussian is also ^a Gaussian

these are well-known facts

and more can be found in the areas of estimation, statistical learning, etc.

Characteristic function of Gaussian

$$
\Phi(\omega) = \Phi(\omega_1, \omega_2, \dots, \omega_n) = e^{\mathrm{i}\mu^T \omega} e^{-\frac{\omega^T \Sigma \omega}{2}}
$$

Proof. By definition and arranging the quadratic term in the power of exp

$$
\Phi(\omega) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \int_{\mathbf{x}} e^{i\mathbf{x}^T \omega} e^{-\frac{(\mathbf{x} - \mu)^T \Sigma^{-1} (\mathbf{x} - \mu)}{2}} \mathbf{dx}
$$

$$
= \frac{e^{i\mu^T \omega} e^{-\frac{\omega^T \Sigma \omega}{2}}}{(2\pi)^{n/2} |\Sigma|^{1/2}} \int_{\mathbf{x}} e^{-\frac{(\mathbf{x} - \mu - i\Sigma \omega)^T \Sigma^{-1} (\mathbf{x} - \mu - i\Sigma \omega)}{2}} \mathbf{dx}
$$

$$
= \exp(i\mu^T \omega) \exp(-\frac{1}{2}\omega^T \Sigma \omega)
$$

(the integral equals 1 since it is ^a form of Gaussian distribution) for one-dimensional Gaussian with zero mean and variance $\Sigma=\sigma^2$,

$$
\Phi(\omega) = e^{-\frac{\sigma^2 \omega^2}{2}}
$$

Affine Transformation of ^a Gaussian is Gaussian

let $\mathbf X$ be an n -dimensional Gaussian, $X \sim \mathcal{N}(\mu, \Sigma)$ and define

 $Y = AX + b$

where ${\bf A}$ is $m \times n$ and ${\bf b}$ is $m \times 1$ (so ${\bf Y}$ is $m \times 1)$

$$
\Phi_{\mathbf{Y}}(\omega) = \mathbf{E}[e^{i\omega^T \mathbf{Y}}] = \mathbf{E}[e^{i\omega^T(\mathbf{AX}+\mathbf{b})}]
$$

\n
$$
= \mathbf{E}[e^{i\omega^T \mathbf{AX}} \cdot e^{i\omega^T \mathbf{b}}] = e^{i\omega^T \mathbf{b}} \Phi_{\mathbf{X}}(\mathbf{A}^T \omega)
$$

\n
$$
= e^{i\omega^T \mathbf{b}} \cdot e^{i\mu^T A^T \omega} \cdot e^{-\omega^T \mathbf{AZA}^T \omega/2}
$$

\n
$$
= e^{i\omega^T(\mathbf{A}\mu + \mathbf{b})} \cdot e^{-\omega^T A \Sigma \mathbf{A}^T \omega/2}
$$

we read off that $\mathbf Y$ is Gaussian with mean $\mathbf A\mu+\mathbf b$ and covariance $\mathbf A\Sigma\mathbf A^T$

Marginal of Gaussian is Gaussian

the k^{th} component of $\mathbf X$ is obtained by

$$
X_k = \begin{bmatrix} 0 & \cdots & 1 & 0 \end{bmatrix} \mathbf{X} \quad \triangleq \quad \mathbf{e}_k^T \mathbf{X}
$$

 $(\mathbf{e}_k$ is a standard unit column vector; all entries are zero except the k^th position)

hence, X_k $\mathbf k$ is simply a linear transformation (in fact, a projection) of $\mathbf X$

 X_k is then a Gaussian with mean

$$
\mathbf{e}_k^T\mu=\mu_k
$$

and covariance

$$
\mathbf{e}_k^T \Sigma \mathbf{e}_k = \Sigma_{kk}
$$

Uncorrelated Gaussians are independent

suppose (\mathbf{X}, \mathbf{Y}) is a jointly Gaussian vector with

mean
$$
\mu = \begin{bmatrix} \mu_x \\ \mu_y \end{bmatrix}
$$
 and covariance $\begin{bmatrix} \mathbf{C}_X & 0 \\ 0 & \mathbf{C}_Y \end{bmatrix}$

in otherwords, X and Y are *uncorrelated* Gaussians:

$$
cov(X, Y) = \mathbf{E}[XY^T] - \mathbf{E}[X]\mathbf{E}[Y]^T = 0
$$

the joint density can be written as

$$
f_{\mathbf{X}\mathbf{Y}}(\mathbf{x}, \mathbf{y}) = \frac{1}{(2\pi)^n |\mathbf{C}_X|^{1/2} |\mathbf{C}_Y|^{1/2}} \exp \left(-\frac{1}{2} \begin{bmatrix} \mathbf{x} - \mu_x \\ \mathbf{y} - \mu_y \end{bmatrix}^T \begin{bmatrix} \mathbf{C}_X^{-1} & 0 \\ 0 & \mathbf{C}_Y^{-1} \end{bmatrix} \begin{bmatrix} \mathbf{x} - \mu_x \\ \mathbf{y} - \mu_y \end{bmatrix} \right)
$$

$$
= \frac{1}{(2\pi)^{n/2} |\mathbf{C}_X|^{1/2}} e^{-\frac{1}{2} (\mathbf{x} - \mu_x)^T \mathbf{C}_X^{-1} (\mathbf{x} - \mu_x)} \cdot \frac{1}{(2\pi)^{n/2} |\mathbf{C}_Y|^{1/2}} e^{-\frac{1}{2} (\mathbf{y} - \mu_y)^T \mathbf{C}_Y^{-1} (\mathbf{y} - \mu_y)}
$$

proving the independence

we can also see from the characteristic function

$$
\Phi(\omega_1, \omega_2) = \mathbf{E} \left[\exp \left(i \begin{bmatrix} \omega_1 \\ \omega_2 \end{bmatrix}^T \begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \end{bmatrix} \right) \right]
$$
\n
$$
= \exp \left(i \begin{bmatrix} \omega_1 \\ \omega_2 \end{bmatrix}^T \begin{bmatrix} \mu_y \\ \mu_y \end{bmatrix} \right) \cdot \exp -\frac{1}{2} \begin{bmatrix} \omega_1 \\ \omega_2 \end{bmatrix}^T \begin{bmatrix} \mathbf{C}_X & 0 \\ 0 & \mathbf{C}_Y \end{bmatrix} \begin{bmatrix} \omega_1 \\ \omega_2 \end{bmatrix}
$$
\n
$$
= \exp (i\omega_1^T \mu_x) \exp -\frac{\omega_1^T \mathbf{C}_X \omega_1}{2} \cdot \exp (i\omega_2^T \mu_y) \cdot \exp -\frac{\omega_2^T \mathbf{C}_Y \omega_2}{2}
$$
\n
$$
\triangleq \Phi_1(\omega_1) \cdot \Phi_2(\omega_2)
$$

proving the independence

Conditional of Gaussian is Gaussian

let ${\bf Z}$ be an n -dimensional Gaussian which can be decomposed as

$$
\mathbf{Z} = \begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \mu_x \\ \mu_y \end{bmatrix}, \begin{bmatrix} \Sigma_{xx} & \Sigma_{xy} \\ \Sigma_{xy}^T & \Sigma_{yy} \end{bmatrix} \right)
$$

the conditional pdf of ${\bf X}$ given ${\bf Y}$ is also Gaussian with conditional mean

$$
\mu_{\mathbf{X}|\mathbf{Y}} = \mu_x + \Sigma_{xy} \Sigma_{yy}^{-1} (\mathbf{Y} - \mu_y)
$$

and conditional covariance

$$
\Sigma_{\mathbf{X}|\mathbf{Y}} = \Sigma_x - \Sigma_{xy} \Sigma_{yy}^{-1} \Sigma_{xy}^T
$$

Proof:

from the **matrix inversion lemma**, Σ^{-1} can be written as

$$
\Sigma^{-1} = \begin{bmatrix} S^{-1} & -S^{-1} \Sigma_{xy} \Sigma_{yy}^{-1} \\ -\Sigma_{yy}^{-1} \Sigma_{xy}^T S^{-1} & \Sigma_{yy}^{-1} + \Sigma_{yy}^{-1} \Sigma_{xy}^T S^{-1} \Sigma_{xy} \Sigma_{yy}^{-1} \end{bmatrix}
$$

where S is called the \textsf{Schur} complement of Σ_{xx} in Σ and

$$
S = \Sigma_{xx} - \Sigma_{xy} \Sigma_{yy}^{-1} \Sigma_{xy}^T
$$

det Σ = det $S \cdot$ det Σ_{yy}

we can show that $\Sigma \succ 0$ if any only if $S \succ 0$ and $\Sigma_{yy} \succ 0$

from $f_{\mathbf{X}|\mathbf{Y}}(\mathbf{x}|\mathbf{y}) = f_{\mathbf{X}}(\mathbf{x},\mathbf{y})/f_{\mathbf{Y}}(\mathbf{y}),$ we calculate the exponent terms

$$
\begin{bmatrix} \mathbf{x} - \mu_x \\ \mathbf{y} - \mu_y \end{bmatrix}^T \Sigma^{-1} \begin{bmatrix} \mathbf{x} - \mu_x \\ \mathbf{y} - \mu_y \end{bmatrix} - (\mathbf{y} - \mu_y)^T \Sigma_{yy}^{-1} (\mathbf{y} - \mu_y)
$$

$$
= (\mathbf{x} - \mu_x)^T S^{-1} (\mathbf{x} - \mu_x) - (\mathbf{x} - \mu_x)^T S^{-1} \Sigma_{xy} \Sigma_{yy}^{-1} (\mathbf{y} - \mu_y)
$$

\n
$$
- (\mathbf{y} - \mu_y)^T \Sigma_{yy}^{-1} \Sigma_{xy}^T S^{-1} (\mathbf{x} - \mu_x)
$$

\n
$$
+ (\mathbf{y} - \mu_y)^T (\Sigma_{yy}^{-1} \Sigma_{xy}^T S^{-1} \Sigma_{xy} \Sigma_{yy}^{-1}) (\mathbf{y} - \mu_y)
$$

\n
$$
= [\mathbf{x} - \mu_x - \Sigma_{xy} \Sigma_{yy}^{-1} (\mathbf{y} - \mu_y)]^T S^{-1} [\mathbf{x} - \mu_x - \Sigma_{xy} \Sigma_{yy}^{-1} (\mathbf{y} - \mu_y)]
$$

\n
$$
\triangleq (\mathbf{x} - \mu_{\mathbf{X}|\mathbf{Y}})^T \Sigma_{\mathbf{X}|\mathbf{Y}}^{-1} (\mathbf{x} - \mu_{\mathbf{X}|\mathbf{Y}})
$$

 $f_{\mathbf{X}|\mathbf{Y}}(\mathbf{x}|\mathbf{y})$ is an exponential of quadratic function in \mathbf{x}

so it has ^a form of Gaussian

Standard Gaussian vectors

for an n -dimensional Gaussian vector $X \sim \mathcal{N}(\mu, \mathbf{C})$ with $\mathbf{C} \succ 0$

let ${\bf A}$ be an $n\times n$ invertible matrix such that

$$
\mathbf{A}\mathbf{A}^T = \mathbf{C}
$$

 $(A \text{ is called a } \textbf{factor} \text{ of } \mathbf{C})$

then the random vector

$$
\mathbf{Z} = \mathbf{A}^{-1}(\mathbf{X} - \mu)
$$

is a standard Gaussian vector, $\it{i.e.},$

 $\mathbf{Z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

(obtain ${\bf A}$ via eigenvalue decomposition or Cholesky factorization)

Functions of random vectors

- minimum and maximum of random variables
- genera^l transformation
- affine transformation

Minimum and Maximum of RVs

let X_1, X_2, \ldots, X_n \overline{n} be independent RVs

define the minimum and maximum of RVs by

$$
Y = \min(X_1, X_2, ..., X_n), \quad Z = \max(X_1, X_2, ..., X_n)
$$

the maximum of X_1, X_2, \ldots, X_n i_n is less than z iff $X_i \leq z$ for all i , so

$$
F_Z(z) = P(X_1 \le z)P(X_2 \le z) \cdots P(X_n \le z) = (F_X(z))^n
$$

the minimum of X_1, X_2, \ldots, X_n i_n is greater than y iff $X_i\geq y$ for all i , so

$$
1 - F_Y(y) = P(X_1 > y)P(X_2 > y) \cdots P(X_n > y) = (1 - F_X(y))^n
$$

and

$$
F_Y(y) = 1 - (1 - F_X(y))^n
$$

Maximum of uniform samples

let X_1, X_2, \ldots, X_n λ_n are i.i.d. samples of $\mathcal{U}(-a,a)$

$$
Z = \max(X_1, X_2, \ldots, X_n)
$$

find the pdf of X

$$
F_Z(z) = (F_X(z))^n = \left(\frac{z+a}{2a}\right)^n, \quad -a \le z \le a
$$

where $F_Z(z) = 0$ if $z \le -a$ and $F_Z(z) = 1$ when $z \ge a$

the pdf can be obtained by

$$
f_Z(z) = \frac{d}{dz} F_Z(z) = \frac{n(z+a)^{n-1}}{(2a)^n}, \quad -a \le z \le a
$$

note: for $X_i \sim \mathcal{U}(a,b)$ with $a=0,b=1$, the pdf of Z is $\mathsf{Beta}(n,1)$

Example: Merging of independent Poisson arrivals

- \bullet $\ T_i$ denotes the interarrival times for source i
- \bullet $\ T_i$ has exponential distribution with rate λ_i
- find the distribution of the interarrival times between consecutive requests at server

each T_i satisfies the memoryless property, so the time that has elapsed since the last arrival is irrelevant

the time until the next arrival at the multiplexer is

$$
Z = \min(T_1, T_2, \ldots, T_n)
$$

therefore, the cdf of Z can be computed by:

$$
1 - F_Z(z) = P(\min(T_1, T_2, ..., T_n) > z)
$$

= $P(T_1 > z)P(T_2 > z) \cdots P(T_n > z)$
= $(1 - F_{T_1}(z))(1 - F_{T_2}(z)) \cdots (1 - F_{T_n}(z))$
= $e^{-\lambda_1 z} \cdots e^{-\lambda_n z} = e^{-(\lambda_1 + \lambda_2 + \cdots + \lambda_n)z}$

the interarrival time is an exponential RV with rate $\lambda_1 + \lambda_2 + \cdots + \lambda_n$

General transformation

 $\operatorname{\sf let} \mathbf{X}$ be a vector random variable

define $\mathbf{Z} = g(\mathbf{X}): \mathbb{R}^n \rightarrow \mathbb{R}^n$ and assume that g is invertible so that for $\mathbf{Z} = \mathbf{z}$ we can solve for \mathbf{x} uniquely:

$$
\mathbf{x} = g^{-1}(\mathbf{z})
$$

then the joint pdf of ${\bf Z}$ is given by

$$
f_{\mathbf{Z}}(\mathbf{z}) = \frac{f_{\mathbf{X}}(g^{-1}(\mathbf{z}))}{|\det J|}
$$

where $\det J$ is the determinant of the Jacobian matrix:

$$
J = \begin{bmatrix} \frac{\partial g_1}{\partial x_1} & \cdots & \frac{\partial g_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_n}{\partial x_1} & \cdots & \frac{\partial g_n}{\partial x_n} \end{bmatrix}
$$

Affine transformation

if ${\bf X}$ is a continuous random vector and ${\bf A}$ is an invertible matrix then $\mathbf{Y} = \mathbf{AX} + \mathbf{b}$ has pdf

$$
f_{\mathbf{Y}}(\mathbf{y}) = \frac{1}{|\det(\mathbf{A})|} f_{\mathbf{X}}(\mathbf{A}^{-1}(\mathbf{y} - \mathbf{b}))
$$

Gaussian case: let $\mathbf{X} \sim \mathcal{N}(0, \Sigma)$

$$
f_{\mathbf{Y}}(\mathbf{y}) = \frac{1}{(2\pi)^{n/2} |\det \mathbf{A}||\Sigma|^{1/2}} \exp -\frac{1}{2} (\mathbf{y} - \mathbf{b})^T \mathbf{A}^{-T} \Sigma^{-1} \mathbf{A}^{-1} (\mathbf{y} - \mathbf{b})
$$

$$
= \frac{1}{(2\pi)^{n/2} |\mathbf{A} \Sigma \mathbf{A}^T|^{1/2}} \exp -\frac{1}{2} (\mathbf{y} - \mathbf{b})^T (\mathbf{A} \Sigma \mathbf{A}^T)^{-1} (\mathbf{y} - \mathbf{b})
$$

we read off that $\mathbf Y$ is also Gaussian with mean $\mathbf b$ and covariance $\mathbf A \Sigma \mathbf A^T$ this agrees with the result in page 5-16 and 5-27

Example: Sum of jointly Gaussian

^a special case of linear transformation is

$$
Z = a_1X_1 + a_2X_2 + \cdots + a_nX_n
$$

where X_1, \ldots, X_n ϵ_n are jointly Gaussian

 Z can be written as

$$
Z = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix} \begin{bmatrix} X_1 \\ \vdots \\ X_n \end{bmatrix} \triangleq \mathbf{A} \mathbf{X}
$$

Z is simply a linear transformation of a Gaussian

therefore, Z is Gaussian with mean

$$
\mathbf{E}[Z] = \mathbf{A}\mu = \sum_{i=1} a_i \mathbf{E}[X_i]
$$

and variance

$$
\mathbf{var}(Z) = \mathbf{cov}(Z) = \mathbf{A} \Sigma \mathbf{A}^T = \sum_{i=1}^n \sum_{j=1}^n a_i a_j \mathbf{cov}(X_i, X_j)
$$

if X_1,\ldots,X_n are *independent* Gaussian, i.e.,

$$
cov(X_i, X_j) = 0
$$

then the variance of Z is reduced to

$$
\mathbf{var}(Z) = \sum_{i=1}^{n} a_i^2 \mathbf{cov}(X_i, X_i) = \sum_{i=1}^{n} a_i^2 \mathbf{var}(X_i)
$$

References

Chapter ⁶ in A. Leon-Garcia, Probability, Statistics, and Random Processes for Electrical Engineering, 3rd edition, Pearson Prentice Hall, ²⁰⁰⁹