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5. Random Vectors

• probabilities

• characteristic function

• cross correlation, cross covariance

• Gaussian random vectors

• functions of random vectors
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Random vectors

we denote X a random vector

X is a function that maps each outcome ζ to a vector of real numbers

an n-dimensional random variable has n components:

X =









X1

X2
...

Xn









also called a multivariate or multiple random variable
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Probabilities

Joint CDF

F (x) , FX(x1, x2, . . . , xn) = P (X1 ≤ x1, X2 ≤ x2, . . . ,Xn ≤ xn)

Joint PMF

p(x) , pX(x1, x2, . . . , xn) = P (X1 = x1, X2 = x2, . . . ,Xn = xn)

Joint PDF

f(x) , fX(x1, x2, . . . , xn) =
∂n

∂x1 . . . ∂xn
F (x)
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Marginal PMF

pXj(xj) = P (Xj = xj) =
∑

x1

. . .
∑

xj−1

∑

xj+1

. . .
∑

xn

pX(x1, x2, . . . , xn)

Marginal PDF

fXj
(xj) =

∫ ∞

−∞
. . .

∫ ∞

−∞
fX(x1, x2, . . . , xn) dx1 . . . dxj−1dxj+1 . . . dxn

Conditional PDF: the PDF of Xn given X1, . . . ,Xn−1 is

f(xn|x1, . . . , xn−1) =
fX(x1, . . . , xn)

fX1,...,Xn−1(x1, . . . , xn−1)

Random Vectors 5-4



Characteristic Function

the characteristic function of an n-dimensional RV is defined by

Φ(ω) = Φ(ω1, . . . , ωn) = E[ei(ω1X1+···+ωnXn)]

=

∫

x

eiω
Txf(x)dx

where

ω =









ω1

ω2
...
ωn









, x =









x1

x2
...
xn









Φ(ω) is the n-dimensional Fourier transform of f(x)
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Independence

the random variables X1, . . . , Xn are independent if

the joint pdf (or pmf) is equal to the product of their marginal’s

Discrete

pX(x1, . . . , xn) = pX1(x1) · · · pXn(xn)

Continuous

fX(x1, . . . , xn) = fX1(x1) · · · fXn(xn)

we can specify an RV by the characteristic function in place of the pdf,

X1, . . . , Xn are independent if

Φ(ω) = Φ1(ω1) · · ·Φn(ωn)
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Example: White noise signal in communication

the n samples X1, . . . Xn of a noise signal have the joint pdf:

fX(x1, . . . , xn) =
e−(x2

1+···+x2
n)/2

(2π)n/2
for all x1, . . . , xn

the joint pdf is the n-product of one-dimensional Gaussian pdf’s

thus, X1, . . . ,Xn are independent Gaussian random variables
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Expected Values

the expected value of a function

g(X) = g(X1, . . . , Xn)

of a vector random variable X is defined by

E[g(X)] =

∫

x

g(x)f(x)dx Continuous

E[g(X)] =
∑

x

g(x)p(x) Discrete

Mean vector

µ = E[X] = E









X1

X2
...

Xn









,









E[X1]
E[X2]

...
E[Xn]








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Correlation and Covariance matrices

Correlation matrix has the second moments of X as its entries:

R , E[XXT ] =









E[X1X1] E[X1X2] · · · E[X1Xn]
E[X2X1] E[X2X2] · · · E[X2Xn]

... ... . . . ...
E[XnX1] E[XnX2] · · · E[XnXn]









with
Rij = E[XiXj]

Covariance matrix has the second-order central moments as its entries:

C , E[(X− µ)(X− µ)T ]

with
Cij = cov(Xi,Xj) = E[(Xi − µi)(Xj − µj)]
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Symmetric matrix

A ∈ Rn×n is called symmetric if A = AT

Facts: if A is symmetric

• all eigenvalues of A are real

• all eigenvectors of A are orthogonal

• A admits a decomposition

A = UDUT

where UTU = UUT = I (U is unitary) and D is diagonal

(of course, the diagonals of D are eigenvalues of A)
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Unitary matrix

a matrix U ∈ Rn×n is called unitary if

UTU = UUT = I

example: 1√
2

[

1 −1
1 1

]

,

[

cos θ − sin θ
sin θ cos θ

]

Facts:

• a real unitary matrix is also called orthogonal

• a unitary matrix is always invertible and U−1 = UT

• columns vectors of U are mutually orthogonal

• norm is preserved under a unitary transformation:

y = Ux =⇒ ‖y‖ = ‖x‖
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Positive definite matrix

a symmetric matrix A is positive semidefinite, written as A � 0 if

xTAx ≥ 0, ∀x ∈ Rn

and positive definite, written as A ≻ 0 if

xTAx > 0, for all nonzero x ∈ Rn

Facts: A � 0 if and only if

• all eigenvalues of A are non-negative

• all principle minors of A are non-negative
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example: A =

[

1 −1
−1 2

]

� 0 because

xTAx =
[

x1 x2

]

[

1 −1
−1 2

] [

x1

x2

]

= x2
1 + 2x2

2 − 2x1x2

= (x1 − x2)
2 + x2

2 ≥ 0

or we can check from

• eigenvalues of A are 0.38 and 2.61 (real and positive)

• the principle minors are 1 and

∣

∣

∣

∣

1 −1
−1 2

∣

∣

∣

∣

= 1 (all positive)

note: A � 0 does not mean all entries of A are positive!
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Properties of correlation and covariance matrices

let X be a (real) n-dimensional random vector with mean µ

Facts:

• R and C are n× n symmetric matrices

• R and C are positive semidefinite

• If X1, . . . ,Xn are independent, then C is diagonal

• the diagonals of C are given by the variances of Xk

• if X has zero mean, then R = C

• C = R− µµT
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Cross Correlation and Cross Covariance

let X,Y be vector random variables with means µX, µY respectively

Cross Correlation

cor(X,Y) = E[XYT ]

if cor(X,Y) = 0 then X and Y are said to be orthogonal

Cross Covariance

cov(X,Y) = E[(X− µX)(Y − µY )
T ]

= cor(X,Y)− µXµT
Y

if cov(X,Y) = 0 then X and Y are said to be uncorrelated
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Affine transformation

let Y be an affine transformation of X:

Y = AX+ b

where A and b are deterministic matrices

• µY = AµX + b

µY = E[AX+ b] = AE[X] +E[b] = AµX + b

• CY = ACXAT

CY = E[(Y − µY )(Y − µY )
T ] = E[(A(X− µX))(A(X− µX))T ]

= AE[(X− µX)(X− µX)T ]AT = ACXAT
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Diagonalization of covariance matrix

suppose a random vector Y is obtained via a linear transformation of X

X Y

A

• the covariance matrices of X,Y are CX,CY respectively

• A may represent linear filter, system gain, etc.

• the covariance of Y is CY = ACXAT

Problem: choose A such that CY becomes ’diagonal’

in other words, the variables Y1, . . . , Yn are required to be uncorrelated
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since CX is symmetric, it has the decomposition:

CX = UDUT

where

• D is diagonal and its entries are eigenvalues of CX

• U is unitary and the columns of U are eigenvectors of CX

diagonalization: pick A = UT to obtain

CY = ACXAT = AUDUTAT = UTUDUTU = D

as desired
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one can write X in terms of Y as

X = UUTX = UY =
[

U1 U2 · · · Un

]









Y1

Y2
...
Yn









=

n
∑

k=1

YkUk

this equation is called Karhunen-Loéve expansion

• X can be expressed as a weighted sum of the eigenvectors Uk

• the weighting coefficients are uncorrelated random variables Yk
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example: X has the covariance matrix

[

4 2
2 4

]

design a transformation Y = AX s.t. the covariance of Y is diagonal

the eigenvalues of CX and the corresponding eigenvectors are

λ1 = 6, u1 =

[

1
1

]

, λ2 = 2, u2 =

[

1
−1

]

u1 and u2 are orthogonal, so if we normalize uk so that ‖uk‖ = 1 then

U =
[

u1√
2

u2√
2

]

is unitary

therefore, CX = UDUT where

U =

[

1/
√
2 1/

√
2

1/
√
2 −1/

√
2

]

, D =

[

6 0
0 2

]

thus, if we choose A = UT then CY = D which is diagonal as desired
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Whitening transformation

we wish to find a transformation Y = AX such that

CY = I

• a white noise property: the covariance is the identity matrix

• all components in Y are all uncorrelated

• the variances of Yk are normalized to 1

from CY = ACXA
T and use the eigenvalue decomposition in CX

CY = AUDUTAT = AUD1/2D1/2UTAT

denote D1/2 the square root of D with D � 0, i.e., D1/2D1/2 = D

D = diag(d1, . . . , dn) =⇒ D1/2 = diag(
√

d1, . . . ,
√

dn)

can you find A that makes CY the identity matrix ?
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Gaussian random vector

X1, . . . , Xn are said to be jointly Gaussian if their joint pdf is given by

f(x) , fX(x1, x2, . . . , xn) =
1

(2π)n/2 det(Σ)1/2
exp −1

2
(x−µ)TΣ−1(x−µ)

µ is the mean (n× 1) and Σ ≻ 0 is the covariance matrix (n× n):

µ =









µ1

µ2
...
µn









, Σ =









Σ11 Σ12 · · · Σ1n

Σ21 Σ22 · · · Σ2n
... ... . . . ...

Σn1 Σn2 · · · Σnn









and

µk = E[Xk], Σij = E[(Xi − µi)(Xj − µj)]
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example: the joint density function of x (not normalized) is given by

f(x1, x2, x3) = exp − x2
1 + 3x2

2 + 2(x3 − 1)2 + 2x1(x3 − 1)

2

• f is an exponential of negative quadratic in x so x must be a Gaussian

f(x1, x2, x3) = exp − 1

2





x1

x2

x3 − 1





T 



1 0 1
0 3 0
1 0 2









x1

x2

x3 − 1





• the mean vector is (0, 0, 1) and the covariance matrix is

C =





1 0 1
0 3 0
1 0 2





−1

=





2 0 −1
0 1/3 0
−1 0 1





• the variance of x1 is highest while x2 is smallest

• x1 and x2 are uncorrelated, so are x2 and x3
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examples of Gaussian density contour (the exponent of exponential)

[

x1

x2

]T [
Σ11 Σ12

Σ12 Σ22

]−1 [
x1

x2

]

= 1

uncorrelated

x1

x
2

different variance

x1

x
2

correlated

x1

x
2

Σ =

[

1 0
0 1

]

Σ =

[

1/2 0
0 1

]

Σ =

[

1 −1
−1 2

]
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Properties of Gaussian variables

many results on Gaussian RVs can be obtained analytically:

• marginal’s of X is also Gaussian

• conditional pdf of Xk given the other variables is a Gaussian distribution

• uncorrelated Gaussian random variables are independent

• any affine transformation of a Gaussian is also a Gaussian

these are well-known facts

and more can be found in the areas of estimation, statistical learning, etc.
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Characteristic function of Gaussian

Φ(ω) = Φ(ω1, ω2, . . . , ωn) = eiµ
Tω e−

ωTΣω
2

Proof. By definition and arranging the quadratic term in the power of exp

Φ(ω) =
1

(2π)n/2|Σ|1/2
∫

x

eix
Tω e−

(x−µ)TΣ−1(x−µ)
2 dx

=
eiµ

Tω e−
ωTΣω

2

(2π)n/2|Σ|1/2
∫

x

e−
(x−µ−iΣω)TΣ−1(x−µ−iΣω)

2 dx

= exp (iµTω) exp (−1

2
ωTΣω)

(the integral equals 1 since it is a form of Gaussian distribution)

for one-dimensional Gaussian with zero mean and variance Σ = σ2,

Φ(ω) = e−
σ2ω2

2
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Affine Transformation of a Gaussian is Gaussian

let X be an n-dimensional Gaussian, X ∼ N (µ,Σ) and define

Y = AX+ b

where A is m× n and b is m× 1 (so Y is m× 1)

ΦY(ω) = E[eiω
TY] = E[eiω

T (AX+b)]

= E[eiω
TAX · eiωTb] = eiω

TbΦX(A
Tω)

= eiω
Tb · eiµTATω · e−ωTAΣATω/2

= eiω
T (Aµ+b) · e−ωTAΣATω/2

we read off that Y is Gaussian with mean Aµ+ b and covariance AΣAT
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Marginal of Gaussian is Gaussian

the kth component of X is obtained by

Xk =
[

0 · · · 1 0
]

X , eTkX

(ek is a standard unit column vector; all entries are zero except the kth

position)

hence, Xk is simply a linear transformation (in fact, a projection) of X

Xk is then a Gaussian with mean

eTkµ = µk

and covariance
eTk Σ ek = Σkk
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Uncorrelated Gaussians are independent

suppose (X,Y) is a jointly Gaussian vector with

mean µ =

[

µx

µy

]

and covariance

[

CX 0
0 CY

]

in otherwords, X and Y are uncorrelated Gaussians:

cov(X,Y ) = E[XY T ]−E[X ]E[Y ]T = 0

the joint density can be written as

fXY(x,y) =
1

(2π)n|CX|1/2|CY |1/2
exp −1

2

[

x− µx

y − µy

]T [
C−1

X 0
0 C−1

Y

] [

x− µx

y − µy

]

=
1

(2π)n/2|CX|1/2e
−1

2(x−µx)
TC

−1
X (x−µx)· 1

(2π)n/2|CY |1/2
e−

1
2(y−µy)

TC
−1
Y (y−µy)

proving the independence
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we can also see from the characteristic function

Φ(ω1, ω2) = E

[

exp

(

i

[

ω1

ω2

]T [
X

Y

]

)]

= exp

(

i

[

ω1

ω2

]T [
µy

µy

]

)

· exp − 1

2

[

ω1

ω2

]T [
CX 0
0 CY

] [

ω1

ω2

]

= exp (iωT
1 µx) exp − ωT

1 CXω1

2
· exp (iωT

2 µy) · exp − ωT
2 CYω2

2

, Φ1(ω1) · Φ2(ω2)

proving the independence
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Conditional of Gaussian is Gaussian

let Z be an n-dimensional Gaussian which can be decomposed as

Z =

[

X

Y

]

∼ N
([

µx

µy

]

,

[

Σxx Σxy

ΣT
xy Σyy

])

the conditional pdf of X given Y is also Gaussian with conditional mean

µX|Y = µx +ΣxyΣ
−1
yy (Y − µy)

and conditional covariance

ΣX|Y = Σx − ΣxyΣ
−1
yy Σ

T
xy
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Proof:

from the matrix inversion lemma, Σ−1 can be written as

Σ−1 =





S−1 −S−1ΣxyΣ
−1
yy

−Σ−1
yy Σ

T
xyS

−1 Σ−1
yy +Σ−1

yy Σ
T
xyS

−1ΣxyΣ
−1
yy





where S is called the Schur complement of Σxx in Σ and

S = Σxx − ΣxyΣ
−1
yy Σ

T
xy

detΣ = detS · detΣyy

we can show that Σ ≻ 0 if any only if S ≻ 0 and Σyy ≻ 0
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from fX|Y(x|y) = fX(x,y)/fY(y), we calculate the exponent terms

[

x− µx

y − µy

]T

Σ−1

[

x− µx

y − µy

]

− (y − µy)
TΣ−1

yy (y − µy)

= (x− µx)
TS−1(x− µx)− (x− µx)

TS−1ΣxyΣ
−1
yy (y − µy)

−(y − µy)
TΣ−1

yy Σ
T
xyS

−1(x− µx)

+(y − µy)
T (Σ−1

yyΣ
T
xyS

−1ΣxyΣ
−1
yy )(y − µy)

= [x− µx − ΣxyΣ
−1
yy (y − µy)]

TS−1[x− µx − ΣxyΣ
−1
yy (y − µy)]

, (x− µX|Y)
TΣ−1

X|Y(x− µX|Y)

fX|Y(x|y) is an exponential of quadratic function in x

so it has a form of Gaussian
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Standard Gaussian vectors

for an n-dimensional Gaussian vector X ∼ N (µ,C) with C ≻ 0

let A be an n× n invertible matrix such that

AAT = C

(A is called a factor of C)

then the random vector
Z = A−1(X− µ)

is a standard Gaussian vector, i.e.,

Z ∼ N (0, I)

(obtain A via eigenvalue decomposition or Cholesky factorization)
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Functions of random vectors

• minimum and maximum of random variables

• general transformation

• affine transformation
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Minimum and Maximum of RVs

let X1,X2, . . . ,Xn be independent RVs

define the minimum and maximum of RVs by

Y = min(X1,X2, . . . ,Xn), Z = max(X1, X2, . . . , Xn)

the maximum of X1,X2, . . . ,Xn is less than z iff Xi ≤ z for all i, so

FZ(z) = P (X1 ≤ z)P (X2 ≤ z) · · ·P (Xn ≤ z) = (FX(z))n

the minimum of X1, X2, . . . , Xn is greater than y iff Xi ≥ y for all i, so

1− FY (y) = P (X1 > y)P (X2 > y) · · ·P (Xn > y) = (1− FX(y))n

and
FY (y) = 1− (1− FX(y))n
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Maximum of uniform samples

let X1,X2, . . . ,Xn are i.i.d. samples of U(−a, a)

Z = max(X1, X2, . . . , Xn)

find the pdf of X

FZ(z) = (FX(z))n =

(

z + a

2a

)n

, −a ≤ z ≤ a

where FZ(z) = 0 if z ≤ −a and FZ(z) = 1 when z ≥ a

the pdf can be obtained by

fZ(z) =
d

dz
FZ(z) =

n(z + a)n−1

(2a)n
, −a ≤ z ≤ a

note: for Xi ∼ U(a, b) with a = 0, b = 1, the pdf of Z is Beta(n, 1)
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Example: Merging of independent Poisson arrivals

...
Source 1 Source 2 Source n

Server

web page request

• Ti denotes the interarrival times for source i

• Ti has exponential distribution with rate λi

• find the distribution of the interarrival times between consecutive
requests at server
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each Ti satisfies the memoryless property, so the time that has elapsed
since the last arrival is irrelevant

the time until the next arrival at the multiplexer is

Z = min(T1, T2, . . . , Tn)

therefore, the cdf of Z can be computed by:

1− FZ(z) = P (min(T1, T2, . . . , Tn) > z)

= P (T1 > z)P (T2 > z) · · ·P (Tn > z)

= (1− FT1(z))(1− FT2(z)) · · · (1− FTn(z))

= e−λ1z · · · e−λnz = e−(λ1+λ2+···+λn)z

the interarrival time is an exponential RV with rate λ1 + λ2 + · · ·+ λn
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General transformation

let X be a vector random variable

define Z = g(X) : Rn → R
n and assume that g is invertible

so that for Z = z we can solve for x uniquely:

x = g−1(z)

then the joint pdf of Z is given by

fZ(z) =
fX(g

−1(z))

|detJ |

where detJ is the determinant of the Jacobian matrix:

J =





∂g1/∂x1 · · · ∂g1/∂xn
... . . . ...

∂gn/∂x1 · · · ∂gn/∂xn




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Affine transformation

if X is a continuous random vector and A is an invertible matrix

then Y = AX+ b has pdf

fY(y) =
1

|det(A)|fX(A
−1(y − b))

Gaussian case: let X ∼ N (0,Σ)

fY(y) =
1

(2π)n/2| detA||Σ|1/2 exp − 1

2
(y − b)TA−TΣ−1A−1(y − b)

=
1

(2π)n/2|AΣAT |1/2 exp − 1

2
(y − b)T (AΣAT )−1(y − b)

we read off that Y is also Gaussian with mean b and covariance AΣAT

this agrees with the result in page 5-16 and 5-27
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Example: Sum of jointly Gaussian

a special case of linear transformation is

Z = a1X1 + a2X2 + · · ·+ anXn

where X1, . . . , Xn are jointly Gaussian

Z can be written as

Z =
[

a1 · · · an
]





X1
...

Xn



 , AX

Z is simply a linear transformation of a Gaussian
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therefore, Z is Gaussian with mean

E[Z] = Aµ =
∑

i=1

aiE[Xi]

and variance

var(Z) = cov(Z) = AΣAT =
n
∑

i=1

n
∑

j=1

aiaj cov(Xi,Xj)

if X1, . . . ,Xn are independent Gaussian, i.e.,

cov(Xi,Xj) = 0

then the variance of Z is reduced to

var(Z) =
n
∑

i=1

a2i cov(Xi, Xi) =
n
∑

i=1

a2i var(Xi)
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