EE401 Random Processes for EE

5. Random Vectors
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Random vectors

we denote X a random vector

X is a function that maps each outcome ¢ to a vector of real numbers

an n-dimensional random variable has n components:

also called a multivariate or multiple random variable
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Probabilities

Joint CDF

F(x) éFX(a:l,:vg,...,a:n) =P(X1 <z, Xo<x9,..., X, <)

Joint PMF

Joint PDF
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Marginal PMF

px;(a;) = Z DD pr:vl,:vz,... n)

Jjj 1 CEJ_|_1

Marginal PDF

fXj(.CUj) = / / fx(ZIZl,ZEQ,...,ZIZ‘n) dzl...d$j_1d$j+1...d$n

Conditional PDF: the PDF of X,, given X¢,...,X,,_1 is

fx(x1,...,xp)
le ..... Xn_l('xl)"')xn—l)

f(xn‘ajla <o 7:En—1) —
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Characteristic Function

the characteristic function of an n-dimensional RV is defined by
O(w) =P(wyy...,wp) = E[ei(lelJr"'er”X”)]

[

where L L
Wi L1
%) L2
w — . 9 X —
Wn Ln

®(w) is the n-dimensional Fourier transform of f(x)
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Independence

the random variables X, ..., X,, are independent if
the joint pdf (or pmf) is equal to the product of their marginal's

Discrete
px(r1,...,7n) = px,(21) - - px, (70)

Continuous
fx(@1, .. an) = fx(21) - fx, (2n)
we can specify an RV by the characteristic function in place of the pdf,

X1,...,X,, are independent if

O(w) = Py (wy) -+ Py (wn)
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Example: White noise signal in communication

the n samples X1, ... .X,, of a noise signal have the joint pdf:

e~ (2T ++a7,) /2
fx(x1,...,xn) = OOl forall x1,..., 2,

the joint pdf is the n-product of one-dimensional Gaussian pdf's

thus, Xq,...,X,, are independent Gaussian random variables
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Expected Values

the expected value of a function

g(X) — g(X17 ‘o ,Xn)

of a vector random variable X is defined by

E[g(X)] = /g(x)f(x)dx Continuous

E[g(X)] = g(x)p(x) Discrete

X

X, E[X}]
W=EX]=E || 2 Blx
X, | E[X,]

Random Vectors

5-8



Correlation and Covariance matrices

Correlation matrix has the second moments of X as its entries:

E[X1X:] E[X:1X5] -+ E[X1X,]
R 2 E[XXT] _ E[X?Xl_ E_X:QXQ] - E_X:QX”_
_E[XnXL E[X,X5] --- E:Xan:_
with

R;; = BE[X;X]
Covariance matrix has the second-order central moments as its entries:
C £ E[(X-p)(X—p)']

with
Ci; = COV(Xv;an) = E[(X; —Mz‘)(Xj - Mj)]
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Symmetric matrix

A € R™™"™ is called symmetric if A = AT

Facts: if A is symmetric

e all eigenvalues of A are real
e all eigenvectors of A are orthogonal

e A admits a decomposition
A=UDU"
where UTU = UU? = I (U is unitary) and D is diagonal
(of course, the diagonals of D are eigenvalues of A)
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Unitary matrix

a matrix U € R"*" is called unitary if

Ul =v0U" =1

le: 1 —1| |cosf® —sinf
exampre. 1 1| |sinf cos0

Sl

Facts:

e a real unitary matrix is also called orthogonal
e a unitary matrix is always invertible and U~! = U*
e columns vectors of U are mutually orthogonal

e norm is preserved under a unitary transformation:

y=Uz — [yl = [l
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Positive definite matrix

a symmetric matrix A is positive semidefinite, written as A > 0 if
et Az >0, VzeR"
and positive definite, written as A = 0 if

e Az > 0, for all nonzero x € R"

Facts: A > 0 if and only if

e all eigenvalues of A are non-negative

e all principle minors of A are non-negative
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I -1

example: A = [_1 9

] > 0 because

vl Ar =[x o] [_11 _21] [ij

= 27 + 225 — 22179

= (11 —x2)* + 23 >0
or we can check from

e cigenvalues of A are 0.38 and 2.61 (real and positive)

= 1 (all positive)

I -1
-1 2

e the principle minors are 1 and ‘

note: A > 0 does not mean all entries of A are positive!
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Properties of correlation and covariance matrices

let X be a (real) n-dimensional random vector with mean p

Facts:

e R and C are n X n symmetric matrices

e R and C are positive semidefinite

o If Xq,...,X,, are independent, then C is diagonal
e the diagonals of C are given by the variances of X}
e if X has zero mean, then R = C

e C=R—pup"
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Cross Correlation and Cross Covariance

let X,Y be vector random variables with means ux, 1y respectively

Cross Correlation

cor(X,Y) = E[XY']
if cor(X,Y) =0 then X and Y are said to be orthogonal
Cross Covariance
cov(X,Y) = E[X - pux)(Y - py)']
— cor(X,Y) - pxpl
if cov(X,Y) =0 then X and Y are said to be uncorrelated
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Affine transformation

let Y be an affine transformation of X:
Y=AX+b

where A and b are deterministic matrices

e iy =Aux +b

py = E[AX +b] = AEX]+ E[b]=Aux+b

e Cy = ACxAT

Cy =E[(Y — uy)(Y — py)"] = E[(A(X — pux))(A(X — pux))"]
= AE[(X — ux)(X — px)']AT = ACx A"
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Diagonalization of covariance matrix

suppose a random vector Y is obtained via a linear transformation of X

e the covariance matrices of X, Y are Cx, Cy respectively

e A may represent linear filter, system gain, etc.

e the covariance of Y is Cy = ACx A’

Problem: choose A such that Cy becomes 'diagonal’
in other words, the variables Y7, ...,Y,, are required to be uncorrelated
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since Cx is symmetric, it has the decomposition:

Cy =UDU"

where

e D is diagonal and its entries are eigenvalues of Cx

e [/ is unitary and the columns of U are eigenvectors of Cx

diagonalization: pick A = U’ to obtain

Cy = ACxA" = AUDU'AT =U'UDU'U = D

as desired
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one can write X in terms of Y as

Yi

X =UUTX =UY = [U) Uy --- U] || = > YUy
' k=1
Y,

this equation is called Karhunen-Loéve expansion

e X can be expressed as a weighted sum of the eigenvectors Uy

e the weighting coefficients are uncorrelated random variables Y}
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example: X has the covariance matrix [;l Z]

design a transformation Y = AX s.t. the covariance of Y is diagonal

the eigenvalues of Cx and the corresponding eigenvectors are

1 1
)\1 — 6, Ul = [1] , )\2 = 2, U — [_1]
u1 and uo are orthogonal, so if we normalize uy, so that ||ug|| = 1 then

U= [% %} IS unitary

therefore, Cx = UDU? where

-l A ok g

thus, if we choose A = U? then Cy = D which is diagonal as desired
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Whitening transformation
we wish to find a transformation Y = A X such that
Cy =1

e a white noise property: the covariance is the identity matrix
e all components in Y are all uncorrelated

e the variances of Y. are normalized to 1
from Cy = ACxA™ and use the eigenvalue decomposition in Cx
Cy = AUDUTAT = AUD'?DY2UT AT
denote D/2 the square root of D with D = 0, i.e., DY/2DY2 = D
D =diag(dy,...,d,) = DY?=diag(\/di,...,\/dy)
can you find A that makes Cy the identity matrix ?
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Gaussian random vector

Xq,...,X, are said to be jointly Gaussian if their joint pdf is given by

1 1 Ty —1
(27‘(‘)”/2 d@t(E)l/Q eXp __(X_ILL) Z (X_ILL)

f(x) = fx(z1,22,...,1,) = =

o is the mean (n x 1) and ¥ > 0 is the covariance matrix (n X n):

1 (Y11 Yip o Yip)
e S R
_,un_ _Enl EnZ e Enn_

and
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example: the joint density function of x (not normalized) is given by

ZC% + 3£C% + 2(333 — 1)2 -+ 2331(333 — 1)

f(x1, 20, 23) = exp —

2

f is an exponential of negative quadratic in x so x must be a Gaussian

the mean vector is (0,0, 1) and the covariance matrix is

C =

—_ O =
S W O
N O =

X1
X9

_x3 o 1_

-1 -

T

—_ O =

the variance of ;1 is highest while x5 is smallest

x1 and xo are uncorrelated, so are x5 and x5
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S W O

N O =

L1
L2
r3 — 1
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examples of Gaussian density contour (the exponent of exponential)
T ~1
Tl [211 212 T _ 4
To| |d12 222 T2

uncorrelated different variance ~ correlated

S I O
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Properties of Gaussian variables

many results on Gaussian RVs can be obtained analytically:

e marginal’'s of X is also Gaussian
e conditional pdf of X} given the other variables is a Gaussian distribution
e uncorrelated Gaussian random variables are independent

e any affine transformation of a Gaussian is also a Gaussian

these are well-known facts
and more can be found in the areas of estimation, statistical learning, etc.
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Characteristic function of Gaussian

. T
P(w) = P(wi,wa,...,wy) = gt W o= e

Proof. By definition and arranging the quadratic term in the power of exp

1 T s N
(I)(W) — (zﬂ)n/z‘z‘l/foe € : dx

T
- T w Pw
el W ™ _(x—u—iEw)TE_l(x—u—iEw)
e 2 dx
X

(27-‘-)71/2‘2‘1/2

1
—exp (iuw) exp (—§wTEw)

(the integral equals 1 since it is a form of Gaussian distribution)

for one-dimensional Gaussian with zero mean and variance ¥ = o2,
2 2
_cw
O(w) =e 2
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Affine Transformation of a Gaussian is Gaussian

let X be an n-dimensional Gaussian, X ~ N (u,Y) and define
Y =AX+b

where A ism xn andbism x 1 (so Y ism x 1)

(I)Y(LU) _ E[einY]:E[ein(AX—I—b)]

. T . T . T
— E[elw AX el b] — ¥ b(I)X(ATw)
. T < T AT
— W b elt A w e
6in(perb) . e—wTAZATw/Z

—wlASATw/2

we read off that Y is Gaussian with mean A + b and covariance AY AT
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Marginal of Gaussian is Gaussian

the k™" component of X is obtained by
Xe=[0 -+ 1 0]X £ X

(ex is a standard unit column vector; all entries are zero except the kth
position)

hence, X} is simply a linear transformation (in fact, a projection) of X

X i1s then a Gaussian with mean
T

and covariance
e% > €L — Ekk
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Uncorrelated Gaussians are independent

suppose (X,Y) is a jointly Gaussian vector with

Cx O
0 Cy

] and covariance [

in otherwords, X and Y are uncorrelated Gaussians:
cov(X,Y)=E XY -EXIE[Y]" =0

the joint density can be written as

T —1
B 1 1 X — Uy CX 0 X — Mg
fXY(X7Y) — (27T)n|CX‘1/2‘CY|1/2 eXp 5 [y _ Hy] [ 0 C;l] [y . Hy]
1
(27)n/2|Cx [1/2°

—1 —1
—L(x—pae) T CY (x—pua), —Ly—py) Ty (y—py)

(27T)n/2|CY|1/26

proving the independence
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we can also see from the characteristic function

= exp (iwf 1) exp —

,“y-

oy |

2 0 (wi) - a(w2)

proving the independence

Random Vectors

wr'erle

2

- exp (iwy f1y) - exp —

el S

) o -

wg Cvywo

2
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Conditional of Gaussian is Gaussian

let Z be an n-dimensional Gaussian which can be decomposed as
X L4 ) >
7 — N N T ’ Tx wy])
s () B

the conditional pdf of X given Y is also Gaussian with conditional mean

and conditional covariance

Sxjy = Lz — zwyzy—;zfy
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Proof:

from the matrix inversion lemma, X! can be written as

S~ —STI X
—13T Q-1 —1 —1T Q-1 —1
=Xy XS Yo+ 22,5 zxyzyy_

Y=

where S is called the Schur complement of >, in > and

S = Yoo — SayX,, Te,
det = detS-det,,

we can show that X > 0 if any only if § > 0 and X, >~ 0
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from fxv(x|y) = fx(x,¥)/fy(y), we calculate the exponent terms

T
X — Ug —1 | X — Uy Ty —1
> — (v — ) T2 Ny —
[y _ uy] [y _ uy] (y = y)" 2y (v — 1)

= (X = pr2)  STHX = ) = (X = pa) TS TN B (y — )
—(y = 1y) By B0, S TH(X — )
= 1) (B 2ay ST R0y B0 ) (v — )

=[x = e = By Xy (v — )] TR = e — By By (v — 1))

£ (x - pxpy) " Dy (X — pxpy)

fx|v(x|y) is an exponential of quadratic function in x

so it has a form of Gaussian
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Standard Gaussian vectors

for an n-dimensional Gaussian vector X ~ N (u, C) with C > 0

let A be an n X n invertible matrix such that
AAT =C

(A is called a factor of C)

then the random vector
Z=A"X~p)

Is a standard Gaussian vector, i.e.,

Z ~ N(0,1I)

(obtain A via eigenvalue decomposition or Cholesky factorization)

Random Vectors 5-34



Functions of random vectors

e minimum and maximum of random variables
e general transformation

e affine transformation
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Minimum and Maximum of RVs

let X1, Xo,...,X,, beindependent RVs

define the minimum and maximum of RVs by

Y:min(Xl,XQ,...,Xn), Z:maX(Xl,Xg,...,Xn)

the maximum of X, Xs,..., X, is less than z iff X; < z for all 7, so

Fz(z2)=P(X1 <2)P(Xo<z2)---P(X, <2z2)=(Fx(2))"

the minimum of X1, Xo, ..., X, is greater than y iff X; > y for all 7, so
1 - Fy(y) = P(X1>y)P(X2>y) - P(X, >y) = (1 - Fx(y)"

and
Fy(y) =1—(1-Fx(y))"
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Maximum of uniform samples
let X1, Xo,..., X, are i.i.d. samples of U(—a,a)
/4 = HlaX(Xl, XQ, .o ,Xn)

find the pdf of X

FZ(Z):(FX(Z))HZ( - )n a<z2<a

where F'z(z2) =0 if 2 < —a and Fz(z) =1 when z > a

the pdf can be obtained by

_d ) = n(z+a)* !
fZ(Z) FZ( ) (2&)” y

— —a<z<a
dz -

note: for X; ~U(a,b) with a = 0,b =1, the pdf of Z is Beta(n, 1)
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Example: Merging of independent Poisson arrivals

Source 1 Source 2 Source n
%U l%D o l%D
web page request
\ l Server /

(1]

e I denotes the interarrival times for source 2

e 7 has exponential distribution with rate \;
e find the distribution of the interarrival times between consecutive

requests at server
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each T; satisfies the memoryless property, so the time that has elapsed
since the last arrival is irrelevant

the time until the next arrival at the multiplexer is
/= HliIl(Tl, TQ, ce ,Tn)
therefore, the cdf of Z can be computed by:

1 — Fyz(z) = P(min(1Ty,Ts,...,T,) > 2)
= P(Ty > 2)P(1y > z)--- P(T,, > 2)

= (1= Fry(2))(1 = Fry(2)) - - - (1 = Fr,,(2))

—A1z . —Anz — 6_(>‘1‘|‘>\2‘|‘"'—|—>\n)z

= € - €

the interarrival time is an exponential RV with rate A\ + As + -+ - + A\,
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General transformation

let X be a vector random variable

define Z = ¢(X) : R” — R"™ and assume that g is invertible

so that for Z = z we can solve for x uniquely:

x=yg '(z)

then the joint pdf of Z is given by

where det J is the determinant of the Jacobian matrix:

J =

Random Vectors

f2(z) =

_091/8:1:1

_agn/é?a:l

_ fx(g7 (=)

| det J|

891/8:5”_

Ogn/O0xy, |
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Affine transformation

if X is a continuous random vector and A is an invertible matrix

then Y = AX + b has pdf

1

= \det(A)|fX(A_1(y —b))

fx(y)

Gaussian case: let X ~ N (0,X)

1 1 Tl A —
fyly) = 2m) 2] det A|[S]12 exp —§(y—b)TA TS —1A~(y — b)

1 1
B —~(y —-b)"(AZAT)'(y -
(27)"/2| AT AT|1/2 exXp 2(y )" ( ) (y —b)

we read off that Y is also Gaussian with mean b and covariance AX AT

this agrees with the result in page 5-16 and 5-27
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Example: Sum of jointly Gaussian

a special case of linear transformation is
Z:ale—l—a2X2+---+aan

where X1, ..., X, are jointly Gaussian

/Z can be written as

AX

N
|
S
[T
S
S
|I>

Z is simply a linear transformation of a Gaussian
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therefore, Z is Gaussian with mean
=Aup= Z a; E| X
i=1

and variance

var(Z) = cov(Z) = AXA! = Z Za a;cov(X;, X,)

1=1 j7=1

if X1,...,X,, are independent Gaussian, i.e.,
cov(X;, X;) =0

then the variance of Z is reduced to

M:

var(Z) = Z a cov(X;, X;)
1=1 =1

CL VaI'
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