
EE401 Random Processes for EE Jitkomut Songsiri

4. Pairs of Random Variables

• probabilities

• conditional probability and expectation

• independence

• joint characteristic function

• functions of random variables
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Definition

let ζ be an outcome in the sample space S

a pair of RVs Z(ζ) is a function that maps ζ to a pair of real numbers

Z(ζ) = (X(ζ), Y (ζ))

example: a web page provides the user with a choice either to watch an
ad or move directly to the requested page

let ζ be the patterns of user arrivals to a webpage

• N1(ζ) be the number of times the webpage is directly requested

• N2(ζ) be the number of that the ads is chosen

(N1(ζ), N2(ζ)) assigns a pair of nonnegative integers to each outcome ζ
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Events of interest

events involving a pair of RVs (X, Y ) can be represented by regions

Example:

y
yy

xxx(4, 0)

(0, 4)
(5, 5)

A

B

C

A = {X + Y ≤ 4}, B = {min(X,Y ) ≤ 5}, C = {X2 + Y 2 ≤ 25}

• A: total revenue from two sources is less than 4

• C: total noise power is less than r2
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Events and Probabilities

we consider the events that that the product form:

C = {X in A} ∩ {Y in B}

the probability of product-form events is

P (C) = P ({X in A} ∩ {Y in B})
= P (X in A, Y in B)
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Probability for pairs of random variables

Joint cumulative distribution function

FXY (a, b) = P (X ≤ a, Y ≤ b)

Properties:

y

x

(a, b)

• a joint CDF is a nondecreasing function of x and y:

FXY (x1, y1) ≤ FXY (x2, y2), if x1 ≤ x2 and y1 ≤ y2

• FXY (x1,−∞) = 0, FXY (−∞, y1) = 0, FXY (∞,∞) = 1

• P (x1 < X ≤ x2, y1 < Y ≤ y2)

= FXY (x2, y2)− FXY (x2, y1)− FXY (x1, y2) + FXY (x1, y1)
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Joint PMF for discrete RVs

pXY (x, y) = P (X = x, Y = y), (x, y) ∈ S

Joint PDF for continuous RVs

fXY (x, y) =
∂2FXY (x, y)

∂x∂y

Marginal PMF

pX(x) =
∑

y∈S

pXY (x, y), pY (y) =
∑

x∈S

pXY (x, y)

Marginal PDF

fX(x) =

∫ ∞

−∞

fXY (x, z)dz, fY (y) =

∫ ∞

−∞

fXY (z, y)dz
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Example 1: Jointly Gaussian Random Variables

if X,Y are jointly Gaussian, a joint pdf of X and Y can be given by

fXY (x, y) =
1

2π
√

1− ρ2
exp − (x2 − 2ρxy + y2)

2(1− ρ2)
, −∞ < x, y < ∞

−2

0

2

−2

0

2

0

0.05

0.1

0.15

0.2

fXY (x, y)

with |ρ| < 1

find the marginal PDF’s
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the marginal pdf of X is found by integrating fXY (x, y) over y:

fX(x) =
e−x2/2(1−ρ2)

2π
√

1− ρ2

∫ ∞

−∞

e−(y2−2ρxy)/2(1−ρ2)dy

=
e−x2/2

√
2π

∫ ∞

−∞

e−(y−ρx)2/2(1−ρ2)

√

2π(1− ρ2)
dy

=
e−x2/2

√
2π

• the second step follows from completing the square in (y − ρx)2

• the last integral equals 1 since its integrand is a Gaussian pdf with
mean ρx and variance 1− ρ2

• the marginal pdf of X is also a Gaussian with mean 0 and variance 1

• from the symmetry of fXY (x, y) in x and y, the marginal pdf of Y is
also the same as X
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Example 2

consider X and Y with a joint PDF

fXY (x, y) = ce−xe−y, 0 ≤ y ≤ x < ∞

find the constant c, the marginal PDFs and P (X + Y ≤ 1)

y y

x x

x
=

y

x
=

y x
+
y
=
1

1
2

1
2

the constant c is found from the normalization condition:

1 =

∫ ∞

0

∫ x

0

ce−xe−ydydx =⇒ c = 2
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the marginal PDFs are obtained by

fX(x) =

∫ ∞

0

fXY (x, y)dy =

∫ x

0

2e−xe−ydy, 0 ≤ x < ∞

fY (y) =

∫ ∞

0

fXY (x, y)dx =

∫ ∞

y

2e−xe−ydx = 2e−y, 0 ≤ y < ∞

P (X + Y ≤ 1) can be found by taking the intersection of the region where
the joint PDF is nonzero and the event {X + Y ≤ 1}

P (X + Y ≤ 1) =

∫ 1/2

0

∫ 1−y

y

2e−xe−ydxdy =

∫ 1/2

0

2e−y[e−y − e−(1−y)]dy

= 1− 2e−1
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Conditional Probability

Discrete RVs

the conditional PMF of Y given X = x is defined by

pY |X(y|x) = P (Y = y|X = x) =
P (X = x, Y = y)

P (X = x)

=
pXY (x, y)

pX(x)

Continuous RVs

the conditional PDF of Y given X = x is defined by

fY |X(y|x) =
fXY (x, y)

fX(x)
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Example: Number of defects in a region

• let X be the total number of defects on a chip

X ∼ Poisson(α)

• let Y be the number of defects falling in region R

• if X = n (given), then Y is binomial with (n, p)

pY |X(k|n) =











0, k > n
(

n

k

)

pk(1− p)n−k, 0 ≤ k ≤ n

• we can show that
Y ∼ Poisson(αp)
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P (Y = k) =
∞
∑

n=0

P (Y = k|X = n)P (X = n)

=
∞
∑

n=k

(

n
k

)

pk(1− p)n−kα
ne−α

n!

=
(αp)ke−α

k!

∞
∑

n=k

[(1− p)α]n−k

(n− k)!

=
(αp)ke−αe(1−p)α

k!
=

(αp)k

k!
e−αp
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Example: Customers arrive at a service station

• let N be # of customers arriving at a station during time t

N ∼ Poisson(βt)

• let T be the service time for each customer

T ∼ exponential(α)

• we can show that # of customers that arrive during the service time is
a geometric RV with probability of success α/(α+ β)
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P (N = k) =

∫ ∞

0

P (N = k|T = t)fT (t)dt

=

∫ ∞

0

(

(βt)k

k!
e−βt

)

αe−αtdt

=
αβk

k!

∫ ∞

0

tke−(α+β)tdt

let r = (α+ β)t, then

P (N = k) =
αβk

k!(α+ β)k+1

∫ ∞

0

rke−rdr

=

(

α

α+ β

)(

β

α+ β

)k

(the last integral is a gamma function and is equal to k!)

Pairs of Random Variables 4-15



Conditional Expectation

the conditional expectation of Y given X = x is defined by

Continuous RVs

E[Y |X ] =

∫ ∞

−∞

y fY |X(y|x)dy

Discrete RVs

E[Y |X ] =
∑

y

y pY |X(y|x)

• E[Y |X ] is the center of mass associated with the conditional pdf or pmf

• E[Y |X ] can be viewed as a function of random variable X

• E[E[Y |X ]] = E[Y ]
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in fact, we can show that

E[h(Y )] = E[E[h(Y )|X ]]

for any function h(·) that E[|h(Y )|] < ∞
proof.

E[E[h(Y )|X ]] =

∫ ∞

−∞

E[h(Y )|x]fX(x)dx

=

∫ ∞

−∞

∫ ∞

−∞

h(y)fY |X(y|x)dy fX(x)dx

=

∫ ∞

−∞

h(y)

∫ ∞

−∞

fXY (x, y) dxdy

=

∫ ∞

−∞

h(y)fY (y) dy

= E[h(Y )]
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Example: Average defects of a chip in a region

From the example on page 4-12,

E[Y ] = E[E[Y |X ]]

=
∞
∑

n=0

np P (X = n)

= p
∞
∑

n=0

nP (X = n)

= pE[X ] = αp
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Example: Average arrivals in a service time

from the example on page 4-14,

E[N ] = E[E[N |T ]]

=

∫ ∞

0

E[N |T = t]fT (t)dt

=

∫ ∞

0

βtfT (t)dt

= βE[T ]

=
β

α
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Example: Variance of arrivals in a service time

same example as in page 4-12

N is Poisson RV with parameter βt when T = t is given, so

E[N |T = t] = βt, E[N2|T = t] = (βt) + (βt)2

the second moment of N can be calculated by

E[N2] = E[E[N2|T ]]

=

∫ ∞

0

E[N2|T = t] fT (t) dt

=

∫ ∞

0

(βt+ β2t2) fT (t) dt

= βE[T ] + β2
E[T 2]
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therefore,

var(N) = E[N2]− (E[N ])2

= β2
E[T 2] + βE[T ]− β2(E[T ])2

= β2
var(T ) + βE[T ]

• if T is not random (E[T ] is constant and var(T ) = 0), the mean and
variance of N are those of a Poisson RV with parameter βE[T ]

• when T is random, the mean of N remains the same, but var(N)
increases by the term β2

var(T )

• bote that the above result holds for any distribution fT (t)

• if T is exponential with parameter α, then E[T ] = 1/α and
var(T ) = 1/α2, so

E[N ] =
β

α
, var(N) =

β2

α2
+

β

α
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Independence of two random variables

X and Y are independent if and only if

FXY (x, y) = FX(x)FY (y), ∀x, y

this is equivalent to

Discrete Random Variables

pXY (x, y) = pX(x)pY (y)

pY |X(y|x) = pY (y)

Continuous Random Variables

fXY (x, y) = fX(x)fY (y)

fY |X(y|x) = fY |X(y)

If X and Y are independent, so are any pair of functions g(X) and h(Y )
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Example

let X and Y be Gaussian RVs with zero mean and unit variance

the product of the marginal pdf’s of X and Y is

fX(x)fY (y) =
1

2π
exp − (x2 + y2)

2
, −∞ < x, y < ∞

from the example on page 4-7, the joint pdf of X and Y is

fXY (x, y) =
1

2π
√

1− ρ2
exp − (x2 − 2ρxy + y2)

2(1− ρ2)
, −∞ < x, y < ∞

therefore the jointly Guassian X and Y are independent if and only if

ρ = 0

ρ is called correlation coefficient between X and Y
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Expected Values and Covariance

the expected value of Z = g(X,Y ) is defined as

E[Z] =

∫ ∞

−∞

∫ ∞

−∞

g(x, y) fXY (x, y) dx dy X, Y continuous

E[Z] =
∑

x

∑

y

g(x, y) pXY (x, y) X, Y discrete

• E[X + Y ] = E[X ] +E[Y ]

• E[XY ] = E[X ]E[Y ] if X and Y are independent

Covariance of X and Y

cov(X,Y ) = E[(X −E[X ])(Y −E[Y ])]

• cov(X,Y ) = E[XY ]−E[X ]E[Y ]

• cov(X,Y ) = 0 if X and Y are independent (the converse is NOT true)
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Correlation Coefficient

denote
σX =

√

var(X), σY =
√

var(Y )

the standard deviations of X and Y

the correlation coefficient of X and Y is defined by

ρXY =
cov(X, Y )

σXσY

• −1 ≤ ρXY ≤ 1

• ρXY gives the linear dependence between X and Y : for Y = aX + b,

ρXY = 1 if a > 0 and ρXY = −1 if a < 0

• X and Y are said to be uncorrelated if ρXY = 0
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Numerical examples of correlation

examples of pairs (x, y) from nonlinear functions
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data generation: X ∼ N (0, 1) and Y = f(X); ρ is empirically computed

it is also possible to compute theoretical values of ρ
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if X and Y are independent then X and Y are uncorrelated

but the converse is NOT true

example: uncorrelated but dependent random variables

let θ be a uniform RV in the interval (0, 2π) and let

X = cos θ, Y = sin θ

y

xθ
1

1

−1

−1

• the marginals of X and Y are arcsine pdf’s

• the products of the marginals of X and Y is nonzero
in the square region

• (X,Y ) is the point on the unit circle, so they are
are dependent

E[XY ] =
1

2π

∫ 2π

0

sinφ cosφ dφ =
1

4π

∫ 2π

0

sin 2φ dφ = 0

since E[X ] = E[Y ] = 0, the above eq. implies X and Y are uncorrelated
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Joint Characteristic Function

the joint characteristic function of X and Y is defined by

ΦXY (λ, ω) = E[ei(λX+ωY )] =

∫ ∞

−∞

∫ ∞

−∞

ei(λX+ωY )fXY (x, y) dx dy

the joint characterestic function is a 2D Fourier transform

if X and Y are independent

ΦXY (λ, ω) = E[eiλX]E[eiωY ] = ΦX(λ)ΦY (ω)
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Example

let U ∼ N (0, 1) and V ∼ N (0, 1) be independent RVs

define
X = U + V, Y = U − V

the joint characteristic function of X,Y is obtained by

ΦXY (λ, ω) = E[ei(λ(U+V )+ω(U−V ))]

= E[ei(λ+ω)U+i(λ−ω)V ]

= E[ei(λ+ω)U ]E[ei(λ−ω)V ]

= ΦU(λ+ ω)ΦV (λ− ω)

= e−(λ+ω)2/2e−(λ−ω)2/2

= = e−(λ2+ω2) = ΦX(λ)ΦY (ω)

X and Y are also Gaussian with zero mean and variance 2
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from the identity:

∂2
E[ei(λX+ωY )]

∂λ∂ω
= i2E[XY ei(λX+ωY )]

the joint characteristic function is also useful for finding E[XY ], since

E[XY ] =
1

i2
∂2

E[ei(λX+ωY )]

∂λ∂ω

∣

∣

∣

∣

λ=0,ω=0

= −∂2
E[e−(λ2+ω2)]

∂λ∂ω

∣

∣

∣

∣

∣

λ=0,ω=0

= −e−(λ2+ω2)(4λω)|λ=0,ω=0

= 0

thus X and Y are uncorrelated

(note that X and Y have zero mean)
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Function of Multiple Random Variables

• sum of random variables: Z = X + Y

• division of random variables: Z = X/Y

• linear transformation
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Sum of Random Variables

y

x

x+ y ≤ z

Let Z = X + Y

P (Z ≤ z) = P (X + Y ≤ z)

integrate the joint pdf fXY over the yellow region

CDF of Z: FZ(z) = P (Z ≤ z) =
∞
∫

−∞

z−x
∫

−∞

fXY (x, y)dydx

PDF of Z: fZ(z) =
dFZ(z)

dz
=

∞
∫

−∞

fXY (x, z − x)dx

when X,Y are independent, the pdf of Z has a form of convolution:

fZ(z) =

∫ ∞

−∞

fX(x)fY (z − x)dx
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Example

find the pdf of the sum Z = X + Y

X, Y are jointly Gaussian with zero mean and unit variance with
correlation coefficient ρ = −1/2

fZ(z) =

∫ ∞

−∞

fXY (x, z − x)dx

=
1

2π
√

(1− ρ2)

∫ ∞

−∞

e−(x2−2ρx(z−x)+(z−x)2)/2(1−ρ2)dx

=
1

2π
√

3/4

∫ ∞

−∞

e−(x2−xz+z2)/2(3/4)dx

=
e−z2/2

√
2π

the sum of these two nonindependent Gaussian is also a Gaussian RV
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Characteristic function of a sum

let X and Y be independent RVs and define

Z = X + Y

then CF of X is the product of CFs of X and Y :

ΦZ(ω) = ΦX(ω)ΦY (ω)

proof.

ΦZ(ω) = E[eiωZ] = E[eiω(X+Y )]

= E[eiωX] E[eiωY ] (∵ X and Y are independent)

= ΦX(ω) ΦY (ω)
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Example: sum of independent binomials

let X and Y be i.i.d. binomials RVs with parameters n, p

PX(k) = PY (k) =

(

n
k

)

pk qn−k (q = 1− p)

first compute the CF of X and Y

ΦX(ω) = ΦY (ω) =
n
∑

k=0

eiωk

(

n
k

)

pk qn−k = (peiω + q)n

the CF of Z is then given by

ΦZ(ω) = ΦX(ω) ΦY (ω) = (peiω + q)2n

conclusion: Z is also a binomial with parameters 2n and p

Pairs of Random Variables 4-35



Division of Random Variables

let Z = X/Y

if Y = y (given), then Z = X/y, a scaled version of X

therefore, if Y is fixed then the distribution of Z must be the same as X

fZ|Y (z|y) = |y|fX|Y (yz|y)

use this result to find the pdf of Z:

fZ(z) =

∫ ∞

−∞

fZ|Y (z|y)fY (y) dy

=

∫ ∞

−∞

|y|fX|Y (yz|y)fY (y) dy

=

∫ ∞

−∞

|y|fXY (yz, y) dy
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Division of Exponential RVs

let X and Y be exponential RVs with mean 1

fX(x) = e−x, x ≥ 0, fY (y) = e−y, y ≥ 0

assume that X,Y are independent, so

fXY (x, y) = fX(x)fY (y) = e−(x+y)

the pdf of Z = Y/X can be determined by

fZ(z) =

∫ ∞

0

ye−yze−ydy =
1

(z + 1)2
, z > 0
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Linear Transformation

let A be an invertible linear transformation such that
[

U
V

]

= A

[

X
Y

]

⇐⇒
[

X
Y

]

= A−1

[

U
V

]

(x, y)

(u, v)dx

dy
A dM :

area of the parallelogram

P (X ∈ dx, Y ∈ dy) = fXY (x, y)dxdy, P (U ∈ du, V ∈ dV ) = fUV (u, v)dM

it can be shown that

dM = | detA|dx dy,

fUV (u, v) =
1

| detA|fXY (x, y)
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Example: Linear Transformation of a Gaussian

let X and Y be jointly Gaussian RVs with the joint pdf

fXY (x, y) =
1

2π
√

3/4
exp − 2(x2 − xy + y2)

3

let U and V be obtained from (X,Y ) by

[

U
V

]

=
1√
2

[

1 1
−1 1

] [

X
Y

]

⇐⇒
[

X
Y

]

=
1√
2

[

1 −1
1 1

] [

U
V

]

therefore the pdf of U and V is

fUV (u, v) =
1

π
√
3
exp − (u2/3 + v2)

U and V become independent, zero-mean Gaussian RVs
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