EE401 Random Processes for EE

4. Pairs of Random Variables

probabilities

conditional probability and expectation
independence

joint characteristic function

functions of random variables
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Definition

let ( be an outcome in the sample space S

a pair of RVs Z(() is a function that maps ( to a pair of real numbers

example: a web page provides the user with a choice either to watch an
ad or move directly to the requested page

let ( be the patterns of user arrivals to a webpage

e Ni(() be the number of times the webpage is directly requested

e N5(() be the number of that the ads is chosen

(N1(C), N2(()) assigns a pair of nonnegative integers to each outcome (
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Events of interest

events involving a pair of RVs (X, Y’) can be represented by regions

Example:

Ly Ly

A &

A={X+Y <4}, B={min(X,Y) <5}, C={X*+Y?<25}

LS

X

e A: total revenue from two sources is less than 4

e (: total noise power is less than 7?2
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Events and Probabilities

we consider the events that that the product form:

C={XinA}N{Y in B}

the probability of product-form events is

P(C) = P({X in A} n{Y in B}
— P(Xin A, Yin B)
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Probability for pairs of random variables

Joint cumulative distribution function

Fxy(a,b) = P(X <a,Y <b) S(a,b)

VS

Properties:

e a joint CDF is a nondecreasing function of z and y:

Fxy(x1,11) < Fxy(xo,y2), if x1 < x9and y1 < yo

o Fxy(xi,—00) =0, Fxy(—00,y1) =0, Fxy(co,00) =1
o Pl <X <mg,y1 <Y <o)

= Fxy(xa,y2) — Fxy(x2,y1) — Fxy(x1,y2) + Fxy(x1,91)
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Joint PMF for discrete RVs

pXY(xvy) :P(XZCIZ‘,Y:y), (xvy) GS
Joint PDF for continuous RVs

82FXY (CC, y)
0x0y

fxv(z,y) =
Marginal PMF

px(ZC) — ZpXY(xay)a pY(y) — ZpXY(iE;y)

yeSs TES

Marginal PDF

fx(x) = /_O; fxv (@, 2)dz,  fy(y) = /_O; fxv(z,y)dz
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Example 1: Jointly Gaussian Random Variables

if X,Y are jointly Gaussian, a joint pdf of X and Y can be given by
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Ixvy(z,y) = exp —
211/1 — p? 2(1 = p?
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find the marginal PDF’s
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the marginal pdf of X is found by integrating fxv(x,y) over y:

—22/2(1—p?) poo

27'(-\/ 1 — p2 — 00
B o~ /2 oo 6—(y—p$)2/2(1—02)d
V2 s V2m(1 — p?) /

—z2/2

V2T

€

e the second step follows from completing the square in (y — pz)?

e the last integral equals 1 since its integrand is a Gaussian pdf with
mean px and variance 1 — p?

e the marginal pdf of X is also a Gaussian with mean 0 and variance 1
e from the symmetry of fxy(z,y) in z and y, the marginal pdf of Y is

also the same as X
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Example 2
consider X and Y with a joint PDF
fxy(z,y) =ce e, 0<y<ar <0

find the constant ¢, the marginal PDFs and P(X +Y < 1)

&
N
|
&
$

the constant ¢ is found from the normalization condition:

o0 e
1= / / ce Ye Ydydr = c =2
0o Jo
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the marginal PDFs are obtained by

fX(CU) — / fxy(a?,y)dy = / 2¢ Ye Vdy, 0<x < o0
0 0
Yy

fy(y) = / Ixy(z,y)de = / 2e Fe Ydr =2e7Y, 0<y<oo
0

P(X +Y <1) can be found by taking the intersection of the region where
the joint PDF is nonzero and the event {X +Y <1}

1/2 l—y 1/2
PIX+Y <1) = / / 2 e Ydady = / 2e Ve ¥ — e I Y)]dy
0 Y 0

—1—92¢ !
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Conditional Probability

Discrete RVs

the conditional PMF of Y given X = x is defined by

P(X =2x,Y =y)

pXY(xa y)
px ()

Continuous RVs

the conditional PDF of Y given X = x is defined by

o fxv(z,y)
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Example: Number of defects in a region

e let X be the total number of defects on a chip

X ~ Poisson(«)

e let Y be the number of defects falling in region R

o if X =n (given), then Y is binomial with (n,p)

]{j =
prix(kin) = <Z>pk(1—p)”’“, 0<k<n
\

e we can show that
Y ~ Poisson(ap)
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P(Y=k) = > P(Y=kX=n)P(X=n)
= Z;( . )p’“(l —p)”_kan;,_a
_ (ap)fem o~ (L —p)a]"F
k! — (n—k)!
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Example: Customers arrive at a service station

e let V be # of customers arriving at a station during time ¢

N ~ Poisson(t)

e let T be the service time for each customer

T ~ exponential(a)

e we can show that # of customers that arrive during the service time is
a geometric RV with probability of success a/(a + ()
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) ae” X dt

let r = (o + B)t, then

" -
P(N=k) = k!(oz(j—ﬁ)’““/o rRe " dr

N (a?w) (oz—ﬁw)k

(the last integral is a gamma function and is equal to k!)
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Conditional Expectation

the conditional expectation of Y given X = z is defined by

Continuous RVs

E[Y|X] = /OO y fyx(ylz)dy

— o0

Discrete RVs
ElY[X] = Zy py|x (y|z)

e E[Y|X] is the center of mass associated with the conditional pdf or pmf

o E|

=

X can be viewed as a function of random variable X

o E[E[Y|X]] = E[Y]
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in fact, we can show that

for any function h(-) that E[|hA(Y)]] < oo

proof.

E[E[h(Y)|X] /OO E[h(Y)[2] fx (2)da

B / / y) fyx (ylz)dy fx(z)da
B /_oo my) /_OO fxv (z,y) dedy
Iy (

= /_Z h(y)fy(y) dy

= E[A(Y)]
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Example: Average defects of a chip in a region

From the example on page 4-12,

Pairs of Random Variables

E[Y]

pE[X] = ap
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Example: Average arrivals in a service time

from the example on page 4-14,

E[N] = E[E[NT]]
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Example: Variance of arrivals in a service time

same example as in page 4-12

N is Poisson RV with parameter St when T =t is given, so
E[N|T =t] = t, E[N*T =t] = (6t) + (Bt)*
the second moment of N can be calculated by

E[N*] = E[E[NT]]

8

E[N?|T =t] fr(t) dt

(Bt + B*t?) fr(t) dt

—  BE[T]+ 6°E[T?

o\go\

Pairs of Random Variables 4-20



therefore,

var(N) = E[N2] — (E[N])2
= [B°E[T”] + BE[T] - 5°(E[T])’
= B?var(T) + BE[T]

e if T is not random (E|T] is constant and var(7") = 0), the mean and
variance of N are those of a Poisson RV with parameter SE|T]]

e when T is random, the mean of N remains the same, but var(V)
increases by the term 32 var(T)

e bote that the above result holds for any distribution fr(t)

e if T is exponential with parameter «, then E[T] =1/« and
var(T) = 1/a?, so

2
E[N] = g, var(N) = %Jrg
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Independence of two random variables

X and Y are independent if and only if

FXY(xay) :Fx(ﬂf)Fy(y), V.CU,y
this is equivalent to

Discrete Random Variables

pxv(z,y) = px(z)py(y)
py|x(ylz) = py(y)

Continuous Random Variables

fxv(z,y) = fx(z)fy(y)
fY|X(y‘x) = fY|X(y)

If X and Y are independent, so are any pair of functions g(X) and h(Y)
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Example

let X and Y be Gaussian RVs with zero mean and unit variance

the product of the marginal pdf's of X and Y is

2 2
fx(x)fy(y) = % exp — @ ;y ),

—o0 < T,y <o

from the example on page 4-7, the joint pdf of X and Y is

1 (2% = 2pzy + y°)
Jxv(z,y) = exp — :
(@9) 27y/1 — p2 2(1 = p?)

therefore the jointly Guassian X and Y are independent if and only if

—o0o < T,y <X

p=0
p is called correlation coefficient between X and Y
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Expected Values and Covariance

the expected value of Z = ¢g(X,Y) is defined as

i
N
[

/ / g(x,y) fxy(z,y) de dy X,Y continuous

ElZ] = ) ) g(z,y) pxv(z,y) X,Y discrete
r Yy

e E[XY]=E[X|E[Y]  if X and Y are independent
Covariance of X and Y

cov(X,Y) = E[(X — E[X])(Y — E[Y])]
e cov(X,Y) = E[XY] - E[X]E[Y]

e cov(X,Y)=0if X and Y are independent (the converse is NOT true)
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Correlation Coefficient

denote

ox =y var(X), oy =/ var(Y)
the standard deviations of X and Y

the correlation coefficient of X and Y is defined by

o —1<pxy <1

e pxy gives the linear dependence between X and Y: for Y = aX + b,

pxy =1 ifa>0 and pxy=-1 ifa<0

e X and Y are said to be uncorrelated if pxy =0
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Numerical examples of correlation

examples of pairs (x,y) from nonlinear functions

y =22 p=0.23525 y=1/z, p=0.044911
12 250
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8 150
> 6 s > 100
4 > o 50
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2 Qo%q, M‘w 0 o 0 O COmMIEOTDC @ 0@ @HUO00 0 O @ O
0 %—-\ aanE®™®) ! 1 | 50 I |
3 2 -1 0 1 2 3 4 -3 2 -1 0 1 2 3 4
X X
y = sin(z), p = 0.91775 y = tanh(x), p = 0.96371
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05 \:’.‘s" o 05
> o & o > o0
05 o 70‘\@@\ 05 .Q.\«"“‘Q
Rl | 4 | I | ]
3 2 1 0 1 2 3 4 -3 2 - 0 1 2 3 4
X X

data generation: X ~ N(0,1) and Y = f(X); p is empirically computed
it is also possible to compute theoretical values of p
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if X and Y are independent then X and Y are uncorrelated
but the converse is NOT true
example: uncorrelated but dependent random variables

let # be a uniform RV in the interval (0, 27) and let
X =cosf, Y =sinf

e the marginals of X and Y are arcsine pdf's

e the products of the marginals of X and Y is nonzero
x . :
~ in the square region

e (X,Y) is the point on the unit circle, so they are
are dependent

1 1

27 27
E[XY]:%/O singbcosgbdgbzﬂfo sin2¢ dp =0

since E[X] = E[Y] = 0, the above eq. implies X and Y are uncorrelated
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Joint Characteristic Function

the joint characteristic function of X and Y is defined by

Pxy(A\w) = E[ei(/\XWY)] = / / €i(AX+wY)fXY(iU7 y) dz dy

the joint characterestic function is a 2D Fourier transform

if X and Y are independent

(I)Xy()\,w) — E[GMX]E[GMY] = (I)X()\)(I)y(W)
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Example

let U ~N(0,1) and V ~ N(0,1) be independent RVs

define
X=U+V, Y=U-V

the joint characteristic function of X, Y is obtained by

(I)Xy()\,w) _ E:ei()\(U—I—V)—i-w(U—V))]

) 'ei()\—f—w)U—i-i()\—w)V]

) 'ei(A—l—w)U]E[ei()\—w)V]

= Oy AN+ w)Py (A —w)

_ w2 (—w)?/2

2 2

X and Y are also Gaussian with zero mean and variance 2
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from the identity:

82E[6i(>\X—|—wY)]

_ '2E XY i(AX—I—wY)
ONOw PE[XYe |

the joint characteristic function is also useful for finding E[XY], since
1 aQE[ei(AX—l—wY)]
2 9Nw N

aQE[e—(AQerQ)]
B ONOw

E[XY] =

A=0,w=0
= —em Ny
— € ( w) A=0,w=0

= 0

thus X and Y are uncorrelated

(note that X and Y have zero mean)
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Function of Multiple Random Variables

e sum of random variables: Z =X +Y
e division of random variables: Z = X/Y

e linear transformation
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Sum of Random Variables

1Yy let Z=X+Y

K\ - P(Z<2)=P(X+Y < 2)

integrate the joint pdf fxy over the yellow region

(O O ¥

CDF of Z: Fy(2)=P(Z<z)= [ [ fxv(z,y)dydx
PDF of Z: fz(z) = dsz(z) = 70 fxv(x,z —x)dx

— o0

when X, Y are independent, the pdf of Z has a form of convolution:

fz(z) = /_OO fx(x)fy(z — x)dx
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Example

find the pdf of the sum Z =X +Y

X.,Y are jointly Gaussian with zero mean and unit variance with
correlation coefficient p = —1/2

o) = [ o; Fv (o, 2 — )

~ (@ =2pn(z=2)+(2~2))/2(1-p") g

- zw\/(i——p%/j:e

1 o
/ o (a2 42%)/2(3/4) 4.,
374

N 271'\/7

—22/2

V2m

€

the sum of these two nonindependent Gaussian is also a Gaussian RV
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Characteristic function of a sum

let X and Y be independent RVs and define

Z=X+Y

then CF of X is the product of CFs of X and Y:
CIDZ(w) = (I)X((U)(I)y(CU)
proof.

(I)Z(CU) _ E[ein] _ E[eiw(X—l—Y)]
— E[e“*]| E[¢Y] (. X and Y are independent)
= Ox(w) Py (w)
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Example: sum of independent binomials

let X and Y be i.i.d. binomials RVs with parameters n, p

Px (k) = Py (k) = ( Z )p’“ ¢ " (g=1-p)

first compute the CF of X and Y

. iw n n— iw n
Px(w) = Br(e) = 3¢ (1 )k = e )
k=0

the CF of Z is then given by
Oy(w) = Px(w) Py (w) = (pe'* + q)*"

conclusion: 7 is also a binomial with parameters 2n and p
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Division of Random Variables

et 7= X/Y
if Y =y (given), then Z = X/y, a scaled version of X

therefore, if Y is fixed then the distribution of Z must be the same as X

fziv (2ly) =yl fxv (y=zly)
use this result to find the pdf of Z:
) = [t dy
= /OO ylfxpy (yzly) fy (y) dy

— OO

— / ylfxy (yz,y) dy

— OO
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Division of Exponential RVs

let X and Y be exponential RVs with mean 1
fx(@)=e" >0, fy(y)=eY, y>0

assume that X, Y are independent, so

Fxv(@,y) = fx(@)fy(y) = e @+

the pdf of Z =Y/X can be determined by

> 1
fz(z) = / ye Ve Ydy = z>0
0
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Linear Transformation

let A be an invertible linear transformation such that
Ul X X! 4 |U
v =aly] ==l

A dM :
(z,y) area of the parallelogram

dx (u,v)
P(X €dzx,Y € dy) = fxy(x,y)dxdy, PU € du,V €dV) = fuy(u,v)dM

It can be shown that

dM = |det A|dx dy,
1

Pairs of Random Variables 4-38



Example: Linear Transformation of a Gaussian

let X and Y be jointly Gaussian RVs with the joint pdf

1 2(2* — zy + y°)
x,Y) = exp —
fxv(z,y) 9 3/4 P 3

let U and V be obtained from (X,Y") by

V=l ]

therefore the pdf of U and V is

V=70

1
™3

fov(u,v) = exp — (u?/3 + v?)

U and V become independent, zero-mean Gaussian RVs
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