1. Review of Probability

- Random Experiments
- The Axioms of Probability
- Conditional Probabilty
- Independence of Events
- Sequential Experiments
- Discrete-time Markov chain

Random Experiments

An experiment in which the outcome varies in an unpredictable fashionwhen the experiment is repeated under the same conditions

Examples:

- $\bullet\,$ Select a ball from an urn containing balls numbered 1 to n
- Toss ^a coin and note the outcome
- Roll ^a dice and note the outcome
- Measure the time between page requests in ^a Web server
- Pick a number at random between 0 and 1

Sample space

Sample space is the set of all possible outcomes, denoted by S

- obtained by listing all the elements, e.g., $S = \{H, T\}$, or
- $\bullet\,$ giving a property that specifies the elements, e.g., $S=\{x\mid 0\leq x\leq 3\}$

Same experimental procedure may have different sample spaces

- Experiment 1: Pick two numbers at random between zero and one
- Experiment 2: Pick a number X at random between 0 and 1, then pick a number Y at random between 0 and X

Three possibilities for the number of outcomes in sample spaces

finite, countably infinite, uncountably infinite

Examples:

$$
S_1 = \{1, 2, 3, ..., 10\}
$$

\n
$$
S_2 = \{HH, HT, TTT, TH\}
$$

\n
$$
S_3 = \{x \in \mathbb{Z} \mid 0 \le x \le 10\}
$$

\n
$$
S_4 = \{1, 2, 3, ... \}
$$

\n
$$
S_5 = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid 0 \le y \le x \le 1\}
$$

\n
$$
S_6 = \text{Set of functions } X(t) \text{ for which } X(t) = 0 \text{ for } t \ge t_0
$$

 ${\sf Discrete}$ sample space: if S is countable (S_1,S_2,S_3,S_4)

Continuous sample space: if S is not countable (S_5, S_6)

Events

Event is ^a subset of ^a sample space when the outcome satisfies certainconditions

Examples: A_k denotes an event corresponding to the experiment E_k

 E_1 : Select a ball from an urn containing balls numbered 1 to 10 A_1 : An even-numbered ball (from 1 to 10) is selected

$$
S_1 = \{1, 2, 3, ..., 10\}, \quad A_1 = \{2, 4, 6, 8, 10\}
$$

 E_2 : Toss a coin twice and note the sequence of heads and tails A_2 : The two tosses give the same outcome

$$
S_2 = \{\mathsf{HH}, \mathsf{HT}, \mathsf{TT}, \mathsf{TH}\}, \quad A_2 = \{\mathsf{HH}, \mathsf{TT}\}
$$

 E_3 : Count $\#$ of voice packets containing only silence from 10 speakers A_3 : No active packets are produced

$$
S_3 = \{ x \in \mathbb{Z} \mid 0 \le x \le 10 \}, \quad A_3 = \{ 0 \}
$$

Two events of special interest:

- \bullet Certain event, S , which consists of all outcomes and hence always occurs
- Impossible event or null event, \emptyset , which contains no outcomes and never occurs

Review of Set Theory

- \bullet $A = B$ if and only if $A \subset B$ and $B \subset A$
- \bullet $A\cup B$ (union): set of outcomes that are in A *or* in B
- \bullet $A \cap B$ (intersection): set of outcomes that are in A and in B
- A and B are disjoint or mutually exclusive if $A \cap B = \emptyset$
- \bullet A^{c} (complement): set of all elements not in A
- $A \cup B = B \cup A$ and $A \cap B = B \cap A$
- \bullet $A \cup (B \cup C) = (A \cup B) \cup C$ and $A \cap (B \cap C) = (A \cap B) \cap C$
- \bullet $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ and $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- DeMorgan's Rules

$$
(A \cup B)^{c} = A^{c} \cap B^{c}, \quad (A \cap B)^{c} = A^{c} \cup B^{c}
$$

Axioms of Probability

Probabilities are numbers assigned to events indicating how likely it is that the events will occur

A *Probability law* is a rule that assigns a number $P(A)$ to each event A

 $P(A)$ is called the *the probability of* A and satisfies the following axioms

Axiom 1 $P(A) \ge 0$

Axiom 2 $P(S) = 1$

Axiom 3 If $A \cap B = \emptyset$ then $P(A \cup B) = P(A) + P(B)$

Probability Facts

- $P(A^c) = 1 P(A)$
- $P(A) \leq 1$
- $P(\emptyset) = 0$
- $\bullet\,$ If A_1,A_2,\ldots,A_n are pairwise mutually exclusive then

$$
P\left(\bigcup_{k=1}^{n} A_k\right) = \sum_{k=1}^{n} P(A_k)
$$

- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- If $A \subset B$ then $P(A) \leq P(B)$

Conditional Probability

The probability of event A given that event B has occured

The conditional probability, $P(A|B)$, is defined as

$$
P(A|B) = \frac{P(A \cap B)}{P(B)}, \quad \text{for } P(B) > 0
$$

If B is known to have occured, then A can occurs only if $A \cap B$ occurs

Simply renormalizes the probability of events that occur jointly with B

Useful in finding probabilities in sequential experiments

Example: Tree diagram of picking balls

Selecting two balls at random without replacement

 B_1, B_2 $\rm _2$ are the events of getting a black ball in the first and second draw

$$
P(B_2|B_1) = \frac{1}{4}
$$
, $P(W_2|B_1) = \frac{3}{4}$, $P(B_2|W_1) = \frac{2}{4}$, $P(W_2|W_1) = \frac{2}{4}$

The probability of a path is the *product* of the probabilities in the transition

$$
P(B_1 \cap B_2) = P(B_2|B_1)P(B_1) = \frac{12}{45} = \frac{1}{10}
$$

Example: Tree diagram of Binary Communication

 A_i : event the input was i ,

, B_i : event the reciever was i

$$
P(A_0 \cap B_0) = (1 - p)(1 - \varepsilon)
$$

\n
$$
P(A_0 \cap B_1) = (1 - p)\varepsilon
$$

\n
$$
P(A_1 \cap B_0) = p\varepsilon
$$

\n
$$
P(A_1 \cap B_1) = p(1 - \varepsilon)
$$

Theorem on Total Probability

Let B_1, B_2, \ldots, B_n \overline{n} be mutually exclusive events such that

 $S=B_1\cup B_2\cup\cdots\cup B_n$

(their union equals the sample space)

Event A can be partitioned as

$$
A = A \cap S = (A \cap B_1) \cup (A \cap B_2) \cup \dots \cup (A \cap B_n)
$$

Since $A \cap B_k$ are disjoint, the probability of A is

$$
P(A) = P(A \cap B_1) + P(A \cap B_2) + \cdots + P(A \cap B_n)
$$

or equivalently,

$$
P(A) = P(A|B_1)P(B_1) + P(A|B_2)P(B_2) + \cdots + P(A|B_n)P(B_n)
$$

Example: revisit the tree diagram of picking two balls

Find the probability of the event that the second ball is white

$$
P(W_2) = P(W_2|B_1)P(B_1) + P(W_2|W_1)P(W_1)
$$

= $\frac{3}{4} \cdot \frac{2}{5} + \frac{1}{2} \cdot \frac{3}{5} = \frac{3}{5}$

Bayes' Rule

The conditional probablity of event A given B is related to the inverse conditional probability of event B given A by

$$
P(A|B) = \frac{P(B|A)P(A)}{P(B)}
$$

- \bullet $P(A)$ is called a *priori* probability
- \bullet $P(A|B)$ is called a *posteriori* probability

Let A_1, A_2, \ldots, A_n be a partition of S

$$
P(A_i|B) = \frac{P(B|A_i)P(A_i)}{\sum_{k=1}^{n} P(B|A_k)P(A_k)}
$$

Example: Binary Channel

 A_i event the input was i B_i event the receiver output was i Input is equally likely to be 0 or 1

$$
P(B_1) = P(B_1|A_0)P(A_0) + P(B_1|A_1)P(A_1) = \varepsilon(1/2) + (1-\varepsilon)(1/2) = 1/2
$$

Applying Bayes' Rule, we obtain

$$
P(A_0|B_1) = \frac{P(B_1|A_0)P(A_0)}{P(B_1)} = \frac{\varepsilon/2}{1/2} = \varepsilon
$$

If $\varepsilon < 1/2$, input 1 is more likely than 0 when 1 is observed

Review of Probability 1-16

Independence of Events

Events A and B are *independent* if

```
P(A \cap B) = P(A)P(B)
```
- $\bullet\,$ Knowledge of event B does not alter the probability of event A
- This implies $P(A|B) = P(A)$

Example: System Reliability

- System is 'up' if the controller and at least *two* units are functioning
- $\bullet\,$ Controller fails with probability p
- $\bullet\,$ Peripheral unit fails with probability a
- All components fail independently
- \bullet A : event the controller is functioning
- \bullet B_i : event unit i is functioning
- $\bullet\;F\colon$ event two or more peripheral units are functioning

Find the probability that the system is up

The event F can be partition as

 $F = (B_1 \cap B_2 \cap B_3^c) \cup (B_1 \cap B_2^c \cap B_3) \cup (B_1^c \cap B_2 \cap B_3) \cup (B_1 \cap B_2 \cap B_3)$

Thus,

$$
P(F) = P(B_1)P(B_2)P(B_3^c) + P(B_1)P(B_2^c)P(B_3)
$$

+
$$
P(B_1^c)P(B_2)P(B_3) + P(B_1)P(B_2)P(B_3)
$$

=
$$
3(1-a)^2a + (1-a)^3
$$

$$
P(\text{system is up}) = P(A \cap F) = P(A)P(F)
$$

= $(1-p)P(F) = (1-p)\{3(1-a)^2a + (1-a)^3\}$

Sequential Independent Experiments

- \bullet Consider a random experiment consisting of n independent experiments
- $\bullet\,$ Let A_1, A_2, \ldots, A_n $_n$ be events of the experiments
- We can compute the probability of events of the sequential experiment

$$
P(A_1 \cap A_2 \cap \dots \cap A_n) = P(A_1)P(A_2) \dots P(A_n)
$$

- Example: Bernoulli trial
	- $-$ Perform an experiment and note if the event A occurs
 $\overline{+}$
	- The outcome is "success" or "failure"
	- $-$ The probability of success is p and failure is $1-p$

Binomial Probability

- \bullet Perform n Bernoulli trials and observe the number of successes
- $\bullet\hskip2pt$ Let X be the number of successes in n trials
- The probability of X is given by the *Binomial probability law*

$$
P(X = k) = {n \choose k} p^{k} (1-p)^{n-k}
$$

for $k = 0, 1, \ldots, n$

• The binomial coefficient

$$
\binom{n}{k} = \frac{n!}{k!(n-k)!}
$$

is the number of ways of picking k out of n for the successes

Example: Error Correction Coding

- Transmit each bit three times
- Decoder takes ^a majority vote of the receivedbits

Compute the probability that the receiver makes an incorrect decision

- View each transmission as ^a Bernoulli trial
- $\bullet\,$ Let X be the number of wrong bits from the receiver

$$
P(X \ge 2) = {3 \choose 2} \varepsilon^2 (1 - \varepsilon) + {3 \choose 3} \varepsilon^3
$$

Mutinomial Probability

- Generalize the binomial probability law to the occurrence of more thanone event
- $\bullet\hskip0.1cm$ Let B_1, B_2, \ldots, B_m be possible events with

$$
P(B_k) = p_k
$$
, and $p_1 + p_2 + \cdots + p_m = 1$

- \bullet Suppose n independent repetitions of the experiment are performed
- $\bullet\,$ Let X_j be the number of times each B_j occurs
- \bullet The probability of the vector (X_1, X_2, \ldots, X_m) is given by

$$
P(X_1 = k_1, X_2 = k_2, \dots, X_m = k_m) = \frac{n!}{k_1! k_2! \dots k_m!} p_1^{k_1} p_2^{k_2} \dots p_m^{k_m}
$$

where $k_1 + k_2 + \dots + k_m = n$

Geometric Probability

- Repeat independent Bernoulli trials until the the first success occurs
- $\bullet\,$ Let X be the number of trials until the occurrence of the first success
- The probability of this event is called the *geometric probability law*

$$
P(X = k) = (1 - p)^{k-1}p
$$
, for $k = 1, 2, ...$

 \bullet The geometric probabilities sum to 1:

$$
\sum_{k=1}^{\infty} P(X = k) = p \sum_{k=1}^{\infty} q^{k-1} = \frac{p}{1-q} = 1
$$

where $q = 1 - p$

 $\bullet\,$ The probability that more than n trials are required before a success

$$
P(X > n) = (1 - p)^n
$$

Example: Error Control by Retransmission

- \bullet $\ A$ sends a message to B over a radio link
- \bullet $\,B\,$ can detect if the messages have errors
- $\bullet\,$ The probability of transmission error is q
- Find the probability that ^a message needs to be transmitted more thantwo times

Each transmission is a Bernoulli trial with probability of success $p=1$ $- q$

The probability that more than 2 transmissions are required is

$$
P(X>2) = q^2
$$

Sequential Dependent Experiments

Sequence of subexperiments in which the outcome of ^a ^givensubexperiment determine which subexperiment is performed next

Example: Select the urn for the first draw by flipping ^a fair coi n

Draw ^a ball, note the number on the ball and replace it back in its urn

The urn used in the next experiment depends on $#$ of the ball selected

Trellis Diagram

Sequence of outcomes

Probability of ^a sequence of outcomes

is the product of probabilities along the path

Markov Chains

Let A_1, A_2, \ldots, A_n be a sequence of events from n sequential experiments The probability of ^a sequence of events is ^given by

$$
P(A_1A_2\cdots A_n) = P(A_n|A_1A_2\cdots A_{n-1})P(A_1A_2\cdots A_{n-1})
$$

If the outcome of A_{n-1} only determines the n^{th} experiment and A_n then

$$
P(A_n|A_1A_2\cdots A_{n-1})=P(A_n|A_{n-1})
$$

and the sequential experiments are called *Markov Chains* Thus,

$$
P(A_1A_2\cdots A_n) = P(A_n|A_{n-1})P(A_{n-1}|A_{n-2})\cdots P(A_2|A_1)P(A_1)
$$

Find $P(0011)$ in the urn example

Review of Probability 1-28

The probability of the sequence ⁰⁰¹¹ is ^given by

 $P(0011) = P(1|1)P(1|0)P(0|0)P(0)$

where the transition probabilities are

$$
P(1|1) = \frac{5}{6}
$$
, $P(1|0) = \frac{1}{3}$, $P(0|0) = \frac{2}{3}$

and the initial probability is ^given by

$$
P(0) = \frac{1}{2}
$$

Hence,

$$
P(0011) = \frac{5}{6} \cdot \frac{1}{3} \cdot \frac{2}{3} \cdot \frac{1}{2} = \frac{5}{54}
$$

Discrete-time Markov chain

a Markov chain is a random sequence that has n possible states:

$$
x(t) \in \{1, 2, \ldots, n\}
$$

with the property that

$$
\mathbf{prob}(\ x(t+1) = i \mid \ x(t) = j \) = p_{ij}
$$

where $P = [p_{ij}] \in \mathbf{R}^n$ × $\, n \,$

- \bullet $\,p_{ij}$ is the transition probability from state j to state i
- \bullet $\,P$ is called the transition matrix of the Markov chain
- $\bullet\,$ the state $x(t)$ still cannot be determined with *certainty*

example:

^a customer may rent ^a car from any of three locations and return to any of the three locations

Properties of transition matrix

let P be the transition matrix of a Markov chain

- $\bullet\,$ all entries of P are real *nonnegative* numbers
- $\bullet\,$ the entries in any column are summed to 1 or $\mathbf{1}^T$ ${}^T P={\bf 1}^T$:

$$
p_{1j}+p_{2j}+\cdots+p_{nj}=1
$$

(a property of a **stochastic matrix**)

- $\bullet\,$ 1 is an eigenvalue of P
- $\bullet\,$ if q is an eigenvector of P corresponding to eigenvalue $1,$ then

$$
P^k q = q, \quad \text{for any } k = 0, 1, 2, \dots
$$

Probability vector

we can represent probability distribution of $x(t)$ as *n*-vector

$$
p(t) = \begin{bmatrix} \textbf{prob}(|x(t)| = 1) \\ \vdots \\ \textbf{prob}(|x(t)| = n) \end{bmatrix}
$$

 $\bullet \, \, p(t)$ is called a state probability vector at time t

•
$$
\sum_{i=1}^{n} p_i(t) = 1
$$
 or $\mathbf{1}^T p(t) = 1$

• the state probability propagates like ^a linear system:

$$
p(t+1) = Pp(t)
$$

 $\bullet\,$ the state PMF at time t is obtained by multiplying the initial PMF by P^t

$$
p(t) = P^t p(0)
$$
, for $t = 0, 1, ...$

example: a Markov model for packet speech

- two states of packet speech: contain 'silent activity' or 'speech activity'
- the transition matrix is $P=$ $=\begin{bmatrix} 0.8 & 0.4 \ 0.2 & 0.6 \end{bmatrix}$
- $\bullet\,$ the initial state probability is $p(0)=(1,0)$
- the packet in the first state is 'silent' with certainty

- $\bullet\,$ eigenvalues of P are 1 and 0.4
- $\bullet\,$ calculate P^t by using 'diagonalization' or 'Cayley-Hamilton theorem'

$$
P^{t} = \begin{bmatrix} (5/3)(0.4 + 0.2 \cdot 0.4^{t}) & (2/3)(1 - 0.4^{t}) \\ (1/3)(1 - 0.4^{t}) & (5/3)(0.2 + 0.4^{t+1}) \end{bmatrix}
$$

\n- \n
$$
P^t \rightarrow \begin{bmatrix} 2/3 & 2/3 \\ 1/3 & 1/3 \end{bmatrix}
$$
 as $t \rightarrow \infty$ \n (all columns are the same in limit!)\n
\n- \n $\lim_{t \to \infty} p(t) = \begin{bmatrix} 2/3 & 2/3 \\ 1/3 & 1/3 \end{bmatrix} \begin{bmatrix} p_1(0) \\ 1 - p_1(0) \end{bmatrix} = \begin{bmatrix} 2/3 \\ 1/3 \end{bmatrix}$ \n
\n

 $p(t)$ does not depend on the *initial state probability* as $t\rightarrow\infty$

$$
\text{what if } P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \text{?}
$$

• we can see that

$$
P^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad P^3 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \dots
$$

 $\bullet \ \ P^t$ does not converge but oscillates between two values

under what condition $p(t)$ converges to a constant vector as $t\rightarrow\infty$?

Definition: a transition matrix is **regular** if some integer power of it has all *positive* entries

Fact: if P is regular and let w be *any* probability vector, then

$$
\lim_{t \to \infty} P^t w = q
$$

where q is a \bold{fixed} probability vector, independent of t

Steady state probabilities

we are interested in the steady state probability vector

$$
q = \lim_{t \to \infty} p(t) \qquad \text{(if converges)}
$$

 $\bullet\,$ the steady-state vector q of a regular transition matrix P satisfies

$$
\lim_{t \to \infty} p(t+1) = P \lim_{t \to \infty} p(t) \qquad \Longrightarrow \qquad Pq = q
$$

(in other words, q is an eigenvector of P corresponding to eigenvalue $1)$

 $\bullet\,$ if we start with $p(0)=q$ then

$$
p(t) = Pt p(0) = 1t q = q, \quad \text{for all } t
$$

 q is also called the $\sf{stationary}\; {\sf state}\; {\sf PMF}\; {\sf of}\; {\sf the}\; {\sf Markov}\; {\sf chain}$

probabilities of weather conditions ^given the weather on the preceding day:

$$
P = \begin{bmatrix} 0.4 & 0.2\\ 0.6 & 0.8 \end{bmatrix}
$$

(probability that it will rain tomorrow given today is sunny, is (0.2))

^given today is sunny with probability ¹, calculate the probability of ^a rainy day in long term

References

Chapter ² in A. Leon-Garcia, Probability, Statistics, and Random Processes for Electrical Engineering, 3rd edition, Pearson Prentice Hall, ²⁰⁰⁹