
EE401 (Semester 1) Jitkomut Songsiri

9. Important random processes

definitions, properties, and applications

• Random walk: genetic drifts, slowly-varying parameters, neuron firing

• Gaussian: popularly used by its tractability

• Wiener/Brownian: movement dynamics of particles

• White noise: widely used by its independence property

• Markov: population dynamics, market trends, page-rank algorithm

• Poisson: number of phone calls in a varying interval

• ARMAX: time series model in finance, engineering
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Bernoulli random process

a (time) sequence of indepenent Bernoulli RV is an iid Bernoulli RP

example:

• I [n] is an indicator function of the event at time n where I [n] = 1 when
success and I [n] = 0 when fail

• let D[n] = 2I [n]− 1 and it is called random step process

D[n] = 1 or − 1

D[n] can represent the deviation of a particle movement along a line
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Sum process

the sum of a sequence of iid random variables, X1,X2, . . .

S[n] = X1 +X2 + · · ·+Xn, n = 1, 2, . . .

where S[0] = 0, is called the sum process

• we can write S[n] = S[n− 1] +Xn (recursively)

• the sum process has independent increments in nonoverlapping intervals

S[n]−S[n−1] = Xn, S[n−1]−S[n−2] = Xn−1, . . . , S[2]−S[1] = X2

(since Xk’s are iid)

• the sum process has stationary increments

P (S[n]− S[k] = y) = P (S[n− k] = y), n > k
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autocovariance of the sum process:

• assume Xk’s have mean m and variance σ2

• E[S[n]] = nm (Xk’s are iid)

• var[S[n]] = nσ2 (Xk’s are iid)

we can show that
C(n, k) = min(n, k)σ2

the proof follows from letting n ≤ k, and so n = min(n, k)

C(n, k) = E[(S[n]− nm)(S[k]− km)]

= E[(S[n]− nm){(S[n]− nm) + (S[k]− km)− (S[n]− nm)}]
= E[(S[n]− nm)2] +E[(S[n]− nm)(S[k]− S[n]− (k − n)m)]

= E[(S[n]− nm)2] +E[(S[n]− nm)]E[(S[k]− S[n]− (k − n)m)]

(apply that S[n] has independent increments and E[S[n]− nm] = 0)
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more properties of a sum process

• the joint pdf/pmf of S(1), . . . , S(n) is given by the product of pdf of
S(1) and the marginals of individual increments

– Xk’s are integer-valued
– Xk’s are continuous-valued

• the sum process is a Markov process (more on this)
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Binomial counting process

let I [n] be iid Bernoulli random process

the sum process S[n] of I [n] is then the counting process

• it gives the number successses in the first n Bernoulli trial

• the counting process is an increasing function

• S[n] is binomial with parameter p (probability of success)
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Random walk

let D[n] be iid random step process where

D[n] =

{

1, with probability p

−1, with probability p

the random walk process X [n] is defined by

X [0] = 0, X [n] =
n
∑

k=1

D[k], k ≥ 1

• the random walk is a sum process

• we can show that E[X [n]] = n(2p− 1)

• the random walk has a tendency to either grow if p > 1/2 or to
decrease if p < 1/2
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a random walk example as the sum of Bernoulli sequences with p = 1/2
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100 sample paths of random walk

E[X(n)] = 0 and var[X(n)] = n (variance grows over time)
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properties:

• X [n] has independent stationary increments in nonoverlapping time
intervals

P [X [m]−X [n] = y] = P [X [m− n] = y]

(increments in intervals of the same length have the same distribution)

• a random walk is related to an autoregressive process since

X [n+ 1] = X [n] +D[n+ 1]

(widely used to model financial time series, biological signals, etc)

stock price: logX [n+ 1] = logX [n] + βD[n+ 1]

• extension: if D[n] is a Gaussian process, we say X [n] is a Gaussian
random walk
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Gaussian process

an RP X(t) is a Gaussian process if the samples

X1 = X(t1),X2 = X(t2), Xk = X(tk)

are jointly Gaussian RV for all k and all choices of t1, . . . , tk

that is the joint pdf of samples from time instants is given by

fX1,...,Xk
(x1, . . . , xk) =

1

(2π)k/2|Σ|1/2e
−(1/2)(x−m)TΣ−1(x−m)

m =









m(t1)
m(t2)

...
m(tk)









,Σ =









C(t1, t1) C(t1, t2) · · · C(t1, tk)
C(t2, t1) C(t2, t2) · · · C(t2, tk)

... ... ...
C(tk, t1) · · · C(tk, tk)
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properties:

• Gaussian RPs are specified completely by the mean and covariance
functions

• Gaussian RPs can be both continuous-time and discrete-time

• linear operations on Gaussian RPs preserve Gaussian properties
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example: let X(t) be a zero-mean Gaussian RP with

C(t1, t2) = 4e−3|t1−t2|

find the joint pdf of X(t) and X(t+ s)
we see that

C(t, t+ s) = 4e−3s, var[X(t)] = C(t, t) = 4

therefore, the joint of pdf of X(t) and X(t+ s) is the Gaussian
distribution parametrized by

fX(t),X(t+s)(x1, x2) =
1

(2π)|Σ|1/2e
−(1/2)





x1

x2





T

Σ−1





x1

x2





where

Σ =

[

4 4e−3s

4e−3s 4

]
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example: let X(t) be a Gaussian RP and let Y (t) = X(t+ d)−X(t)

• mean of Y (t) is

my(t) = E[Y (t)] = mx(t+ d)−mx(t)

• the autocorrelation of Y (t) is

Ry(t1, t2) = E[(X(t1 + d)−X(t1))(X(t2 + d)−X(t2))]

= Rx(t1 + d, t2 + d)− Rx(t1 + d, t2)−Rx(t1, t2 + d) +Rx(t1, t2)

• the autocovariance of Y (t) is then

Cy(t1, t2) = E[(X(t1+d)−X(t1)−my(t1))(X(t2+d)−X(t2)−my(t2))]

= Cx(t1 + d, t2 + d)− Cx(t1 + d, t2)− Cx(t1, t2 + d) + Cx(t1, t2)
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since Y (t) is the sum of two Gaussians then Y (t) must be Gaussian

• any k-time samples of Y (t)

Y (t1), Y (t2), . . . , Y (tk)

is linear transformation of jointly Gaussians, so Y (t1), . . . , Y (tk) have
jointly Gaussian pdf

• for example, find joint pdf of Y (t) and Y (t+ s): need only mean and
covariance

– my(t) and my(t+ s)
– covariance is given by

Σ =

[

Cy(t, t) Cy(t, t+ s)
Cy(t, t+ s) Cy(t+ s, t+ s)

]
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Wiener process

consider the random step on page 9-2

symmetric walk (p = 1/2), magnitude step of M , time step of h seconds

let Xh(t) be the accumulated sum of random step up to time t

• Xh(t) = M(D[1] +D[2] + · · ·+D[n]) = MS[n] where n = [t/h]

• E[Xh(t)] = 0

• var[Xh(t)] = M2n

Wiener process X(t): obtained from Xh(t) by shrinking the magnitude
and time step to zero in a precise way

h → 0, M → 0, with M =
√
αh where α > 0 is constant

(meaning; if v = M/h represents a particle speed then v → ∞ as
displacement M goes to 0)
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properties of Wiener (also called Wiener-Levy) process:

• E[X(t)] = 0 (zero mean of all time)

• var[X(t)] = (
√
αh)2 · (t/h) = αt (stays finite and nonzero)

• X(t) = limh→0M(D[1] + · · ·+D[n]) = limn→∞
√
αtS[n]√

n

approaching the sum of an infinite number of RV

• by CLT, pdf X(t) approaches Gaussian with mean zero and variance αt

fX(t)(x) =
1√
2παt

e−
x2

2αt

• X(t) has independent stationary increments (from random walk form)

• Wiener process is a Gaussian random process (X(tk) is obtained as
linear transformation of increments)

• Wiener process is used to model Brownian motion (movement of
particles in fluid)
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• the covariance function of Wiener process is

C(t1, t2) = αmin(t1, t2), α > 0

to show this, let t1 ≥ t2,

C(t1, t2) = E[X(t1)X(t2)] = E[(X(t1)−X(t2) +X(t2))X(t2)]

= E[(X(t1)−X(t2)X(t2)] + var[X(t2)]

= 0 + αt2

using X(t1)−X(t2) and X(t2) are independent (when t1 ≥ t2)

if t2 < t1, we do the same and obtain C(t1, t2) = αt1
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sample paths of Wiener process when α = 2
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100 realizations of Wiener process

E[X(t)] = 0 and var[X(t)] = αt (variance grows over time)
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White noise process

a random process X(t) is white noise if

• E[X(t)] = 0 (zero mean for all t)

• E[X(t)X(s)] = 0 for t 6= s (uncorrelated with another time sample)

in another word,

• the correlation function of a white noise is the impulse function

R(t1, t2) = αδ(t1 − t2), α > 0

• power spectral density is flat (more on this): S(ω) = α, ∀ω
• X(t) has infinite power, varies extremely rapidly in time, and is most
unpredictable
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those two properties of white noise are derived from the definition that

white Gaussian noise process is the time derivative of Wiener process

recall the correlation of wiener process is Rwiener(t1, t2) = αmin(t1, t2)

R(t1, t2) = E[X(t1)X(t2)] = E

[

∂

∂t1
Xwiener(t1) ·

∂

∂t2
Xwiener(t2)

]

=
∂

∂t1

∂

∂t2
Rwiener(t1, t2) =

∂

∂t1

∂

∂t2

{

αt2, t2 < t1

αt1, t2 ≥ t1

=
∂

∂t1
αu(t1 − t2), u is the step function

but u is not differentiable at t1 = t2, so the second derivative does not exist

instead, we generalize this notion using delta function

R(t1, t2) = αδ(t1 − t2)
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example of white noite Gaussian process with variance 2
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• mean function (averaged over 10,000 realizations) is close to zero

• sample autocorrelation is close to a delta function where R(0) ≈ 2

Important random processes 9-21



Poisson process

let N(t) be the number of event occurrences in the interval [0, t]

properties:

• non-decreasing function (of time t)

• integer-valued and continuous-time RP

assumptions:

• events occur at an average rate of λ events per seconds

• the interval [0, t] is divided into n subintervals and let h = t/n

• the probability of more than one event occurrences in a subinterval is
negligible compared to the probability of observing one or zero events

• whether or not an event occurs in a subinterval is independent of the
outcomes in other subintervals
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meaning:

• the outcome in each subinterval can be viewed as a Bernoulli trial

• these Bernoulli trials are independent

• N(t) can be approximated by the binomial counting process

Binomial counting process:

• let the probability of an event occurrence in subinterval is p

• average number of events in [0, t] is λt = np

• let n → ∞ (h = t/n → 0) and p → 0 while np = λt is fixed

• from the following approximation when n is large

P (N(t) = k) =

(

n
k

)

pk(1− p)n−k ≈ (λt)k

k!
e−λt, k = 0, 1, . . .

N(t) has a Poisson distribution and is called a Poisson process
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example of Poisson process λ = 0.5

• generated by taking cumulative sum of n-sequence Bernoulli with and
p = λT/n where n = 1000 and T = 50

0 10 20 30 40 50

t

0

5

10

15

20

25

30

35

X
[t
]

Poisson process with  = 0.5
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• the rate of Poisson process grows as λt for t ∈ [0, T ]

• the mean and variance functions (approximate over 100 realizations)
have linear trend over time
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joint pmf: for t1 < t2,

P [N(t1) = i, N(t2) = j] = P [N(t1) = i]P [N(t2)−N(t1) = j − i]

= P [N(t1) = i]P [N(t2 − t1) = j − i]

=
(λt1)

ie−λt1

i!

(λ(t2 − t1))
je−λ(t2−t1)

(j − i)!

autocovariance: C(t1, t2) = λmin(t1, t2)

for t1 ≤ t2,

C(t1, t2) = E[(N(t1)− λt1)(N(t2)− λt2)]

= E[(N(t1)− λt1){N(t2)−N(t1)− λt2 + λt1 + (N(t1)− λt1)}]
= E[(N(t1)− λt1)]E[(N(t2)−N(t1)− λ(t2 − t1)] + var[N(t1)]

= λt1

we have used independent and stationary increments property
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examples:

• random telegraph signal

• the number of car accidents at a site or in an area

• the requests for individuals documents on a web server

• the number of customers arriving at a store

Important random processes 9-26



Time between events in Poisson process

let T be the time between event occurrences in a Poisson process

• the probability involving T follows

P [T > t] = P [no events in t seconds] = (1− p)n

=

(

1− λt

n

)n

→ e−λt, as n → ∞

T is an exponential RV with parameter λ

• the interarrival time in the underlying binomial proces are independent
geometric RV

• the sequence of interarrival times T [n] in a Poisson process form an iid
sequence of exponential RVs with mean 1/λ

• the sum S[n] = T [1] + · · ·+ T [n] has Erland distribution
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Markov process

for any time instants, t1 < t2 < · · · < tk < tk+1, if

discrete-valued

P [X(tk+1) = xk+1 | X(tk) = xk, . . . , X(t1) = x1] =

P [X(tk+1 = xk+1 | X(tk) = xk]

continuous-valued

f(xk+1 | X(tk) = xk, . . . , X(t1) = x1) = f(xk+1 | X(tk) = xk)

then we say X(t) is a Markov process

joint pdf conditioned on several time instants reduce to pdf conditioned on
the most recent time instant
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properties:

• pmf and pdf of Markov processes are conditioned on several time
instants can reduce to pmf/pdf that is only conditioned on the most

recent time instant

• an integer-valued Markov process is called a Markov chain (more
details on this)

• the sum of iid sequence where S[0] = 0 is a Markov process

• a Poisson process is a continuous-time Markov process

• a Wiener process is a continous-valued Markov process

• in fact, any independent-increment process is also Markov
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to see this, for a discrete-valued RP,

P [X(tk+1) = xk+1 | X(tk) = xk, . . . , X(t1) = x1]

= P [X(tk+1)−X(tk) = xk+1 − xk | X(tk) = xk, . . . , X(t1) = x1]

= P [X(tk+1)−X(tk) = xk+1 − xk | X(tk) = xk] by independent increments

= P [X(tk+1) = xk+1 | X(tk) = xk]

more examples of Markov process

• birth-death Markov chains: transitions only between adjacent states are
allowed

p(t+ 1) = Pp(t), P is tri-diagonal

• M/M/1 queue (a queuing model): continuous-time Markov chain

ṗ(t) = Qp(t)
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Discrete-time Markov chain

a Markov chain is a random sequence that has n possible states:

X(t) ∈ {1, 2, . . . , n}

with the property that

prob( X(t+ 1) = i | X(t) = j ) = pij

where P = [pij] ∈ Rn×n

• pij is the transition probability from state j to state i

• P is called the transition matrix of the Markov chain

• the state X(t) still cannot be determined with certainty

• {1, 2, . . . , n} is called label (simply mapped to integers)

Important random processes 9-31



example:

a customer may rent a car from any of three locations and return to any of
the three locations

Rented from location

1 2 3
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0.1 0.2 0.6 2

0.1 0.5 0.2 3

Returned to location

1
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0.6

0.2

0.1
0.3

0.2 0.2

0.8

3 2
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Properties of transition matrix

let P be the transition matrix of a Markov chain

• all entries of P are real nonnegative numbers

• the entries in any column are summed to 1 or 1TP = 1T :

p1j + p2j + · · ·+ pnj = 1

(a property of a stochastic matrix)

• 1 is an eigenvalue of P

• if q is an eigenvector of P corresponding to eigenvalue 1, then

P kq = q, for any k = 0, 1, 2, . . .
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Probability vector

we can represent probability distribution of x(t) as n-vector

p(t) =





prob( x(t) = 1 )
...

prob( x(t) = n )





• p(t) is called a state probability vector at time t

• ∑n
i=1 pi(t) = 1 or 1Tp(t) = 1

• the state probability propagates like a linear system:

p(t+ 1) = Pp(t)

• the state PMF at time t is obtained by multiplying the initial PMF by P t

p(t) = P tp(0), for t = 0, 1, . . .
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example: a Markov model for packet speech

• two states of packet speech: contain ’silent activity’ or ’speech activity’

• the transition matrix is P =

[

0.8 0.4
0.2 0.6

]

• the initial state probability is p(0) = (1, 0)

• the packet in the first state is ’silent’ with certainty
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• eigenvalues of P are 1 and 0.4

• calculate P t by using ’diagonalization’ or ’Cayley-Hamilton theorem’

P t =

[

(5/3)(0.4 + 0.2 · 0.4t) (2/3)(1− 0.4t)
(1/3)(1− 0.4t) (5/3)(0.2 + 0.4t+1)

]

• P t →
[

2/3 2/3
1/3 1/3

]

as t → ∞ (all columns are the same in limit!)

• limt→∞ p(t) =

[

2/3 2/3
1/3 1/3

] [

p1(0)
1− p1(0)

]

=

[

2/3
1/3

]

p(t) does not depend on the initial state probability as t → ∞
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what if P =

[

0 1
1 0

]

?

• we can see that

P 2 =

[

1 0
0 1

]

, P 3 =

[

0 1
1 0

]

, . . .

• P t does not converge but oscillates between two values

under what condition p(t) converges to a constant vector as t → ∞ ?

Definition: a transition matrix is regular if some integer power of it has
all positive entries

Fact: if P is regular and let w be any probability vector, then

lim
t→∞

P tw = q

where q is a fixed probability vector, independent of t
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Steady state probabilities

we are interested in the steady state probability vector

q = lim
t→∞

p(t) (if converges)

• the steady-state vector q of a regular transition matrix P satisfies

lim
t→∞

p(t+ 1) = P lim
t→∞

p(t) =⇒ Pq = q

(in other words, q is an eigenvector of P corresponding to eigenvalue 1)

• if we start with p(0) = q then

p(t) = P tp(0) = 1tq = q, for all t

q is also called the stationary state PMF of the Markov chain
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example: weather model (’rainy’ or ’sunny’)

probabilities of weather conditions given the weather on the preceding day:

P =

[

0.4 0.2
0.6 0.8

]

(probability that it will rain tomorrow given today is sunny, is 0.2)

given today is sunny with probability 1, calculate the probability of a rainy
day in long term
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Gauss-Markov process

let W [n] be a white Gaussian noise process with W [1] ∼ N (0, σ2)

definition: a Gauss-Markov process is a first-order autoregressive process

X [1] = W [1], X [n] = aX [n− 1] +W [n], n ≥ 1, |a| < 1

• clearly, X [n] is Markov since the state X [n] only depends on X [n− 1]

• X [n] is Gaussian because if we let

Xk = X [k], Wk = W [k], k = 1, 2, . . . , n (time instants)
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1 0 · · · 0 0
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... ... . . . ... ...

an−2 an−3 ... 1 0
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pdf of (X1, . . . ,Xn) is Gaussian for all n
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questions involving a Gauss-Markov process

setting:

• we can observe Y [n] = X [n] + V [n] where V represents a sensor noise

• only Y can be observed, but we do not know X

question: can we estimate X [n] from information of Y [n] and statistical
properties of W and V ?

solution: yes we can. one choice is to apply a Kalman filter
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example: a = 0.8, Y [k] = 2X [k] + V [k]
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X [k] is estimated by Kalman filter
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