9. Important random processes

definitions, properties, and applications

- Random walk: genetic drifts, slowly-varying parameters, neuron firing
- Gaussian: popularly used by its tractability
- Wiener/Brownian: movement dynamics of particles
- **White noise:** widely used by its independence property
- Markov: population dynamics, market trends, page-ran^k algorithm
- Poisson: number of phone calls in ^a varying interval
- ARMAX: time series model in finance, engineering

Bernoulli random process

^a (time) sequence of indepenent Bernoulli RV is an iid Bernoulli RP

example:

- \bullet $I[n]$ is an indicator function of the event at time n where $I[n]=1$ when success and $I[n] = 0$ when fail
- $\bullet\,$ let $D[n]=2I[n]-1$ and it is called random step process

$$
D[n] = 1 \text{ or } -1
$$

 $D[n]$ can represent the *deviation* of a particle movement along a line

Sum process

the sum of a sequence of iid random variables, X_1, X_2, \ldots

$$
S[n] = X_1 + X_2 + \dots + X_n, \quad n = 1, 2, \dots
$$

where $S[0]=0$, is called the ${\bf sum}$ process

- $\bullet\,$ we can write $S[n]=S[n-1]+X_n$ (recursively)
- $\bullet\,$ the sum process has *independent increments* in nonoverlapping intervals

$$
S[n] - S[n-1] = X_n, \quad S[n-1] - S[n-2] = X_{n-1}, \dots, S[2] - S[1] = X_2
$$

(since X_k 's are iid)

 $\bullet\,$ the sum process has *stationary increments*

$$
P(S[n] - S[k] = y) = P(S[n - k] = y), \quad n > k
$$

autocovariance of the sum process:

- \bullet assume X_k 's have mean m and variance σ^2
- $\bullet \ \mathbf{E}[S[n]] = nm\,\left(X_k\text{'s are iid}\right)$
- $\mathbf{var}[S[n]] = n\sigma$ 2 2 $\left(X_{k}\!\!^{\prime}$ s are iid)

we can show that

$$
C(n,k) = \min(n,k)\sigma^2
$$

the proof follows from letting $n\leq k$, and so $n=\min(n,k)$

$$
C(n,k) = \mathbf{E}[(S[n] - nm)(S[k] - km)]
$$

= $\mathbf{E}[(S[n] - nm)\{(S[n] - nm) + (S[k] - km) - (S[n] - nm)\}]$
= $\mathbf{E}[(S[n] - nm)^2] + \mathbf{E}[(S[n] - nm)(S[k] - S[n] - (k - n)m)]$
= $\mathbf{E}[(S[n] - nm)^2] + \mathbf{E}[(S[n] - nm)]\mathbf{E}[(S[k] - S[n] - (k - n)m)]$

(apply that $S[n]$ has independent increments and $\mathbf{E}[S[n] -nm] = 0$

Important random processes 9-4

more properties of ^a sum process

- $\bullet\,$ the joint pdf/pmf of $S(1),\ldots,S(n)$ is given by the product of pdf of $S(1)$ and the marginals of individual *increments*
	- X_k 's are integer-valued
	- X_k 's are continuous-valued
- the sum process is ^a Markov process (more on this)

Binomial counting process

let $I[n]$ be iid Bernoulli random process

the sum process $S[n]$ of $I[n]$ is then the $\bm{{\rm counting}}$ process

- $\bullet\,$ it gives the number successses in the first n Bernoulli trial
- the counting process is an increasing function
- $\bullet \ \ S[n]$ is binomial with parameter p (probability of success)

Random walk

let $D[n]$ be iid random step process where

$$
D[n] = \begin{cases} 1, & \text{with probability } p \\ -1, & \text{with probability } p \end{cases}
$$

the random walk process $X[n]$ is defined by

$$
X[0] = 0
$$
, $X[n] = \sum_{k=1}^{n} D[k]$, $k \ge 1$

- the random walk is ^a sum process
- we can show that $\mathbf{E}[X[n]] = n(2p-1)$
- the random walk has a tendency to either grow if $p > 1/2$ or to decrease if $p < 1/2$

a random walk example as the sum of Bernoulli sequences with $p = 1/2$

 $\mathbf{E}[X(n)]=0$ and $\mathbf{var}[X(n)]=n$ (variance grows over time)

properties:

 $\bullet~~X[n]$ has *independent stationary increments* in nonoverlapping time intervals

$$
P[X[m] - X[n] = y] = P[X[m - n] = y]
$$

(increments in intervals of the same length have the same distribution)

• a random walk is related to an **autoregressive process** since

$$
X[n+1] = X[n] + D[n+1]
$$

(widely used to model financial time series, biological signals, etc)

stock price:
$$
\log X[n+1] = \log X[n] + \beta D[n+1]
$$

 $\bullet\,$ extension: if $D[n]$ is a Gaussian process, we say $X[n]$ is a $\, {\bf Gaussian} \,$ random walk

Gaussian process

an RP $X(t)$ is a ${\bf Gaussian}$ process if the samples

$$
X_1 = X(t_1), X_2 = X(t_2), \quad X_k = X(t_k)
$$

are jointly Gaussian RV for all k and all choices of t_1, \ldots, t_k

that is the joint pdf of samples from time instants is ^given by

$$
f_{X_1,...,X_k}(x_1,...,x_k) = \frac{1}{(2\pi)^{k/2}|\Sigma|^{1/2}} e^{-(1/2)(x-m)^T\Sigma^{-1}(x-m)}
$$

\n
$$
m = \begin{bmatrix} m(t_1) \\ m(t_2) \\ \vdots \\ m(t_k) \end{bmatrix}, \Sigma = \begin{bmatrix} C(t_1, t_1) & C(t_1, t_2) & \cdots & C(t_1, t_k) \\ C(t_2, t_1) & C(t_2, t_2) & \cdots & C(t_2, t_k) \\ \vdots & \vdots & & \vdots \\ C(t_k, t_1) & \cdots & & C(t_k, t_k) \end{bmatrix}
$$

properties:

- Gaussian RPs are specified completely by the mean and covariance functions
- Gaussian RPs can be both continuous-time and discrete-time
- linear operations on Gaussian RPs preserve Gaussian properties

 $\boldsymbol{\mathsf{example}}\boldsymbol{:} \text{ let } X(t) \text{ be a zero-mean Gaussian RP with }$

$$
C(t_1, t_2) = 4e^{-3|t_1 - t_2|}
$$

find the joint pdf of $X(t)$ and $X(t + s)$ we see that

$$
C(t, t + s) = 4e^{-3s}
$$
, $\text{var}[X(t)] = C(t, t) = 4$

therefore, the joint of pdf of $X(t)$ and $X(t + s)$ is the Gaussian
distribution remementional by distribution parametrized by

$$
f_{X(t),X(t+s)}(x_1,x_2) = \frac{1}{(2\pi)|\Sigma|^{1/2}}e^{-\left(1/2\right)\begin{bmatrix}x_1\\x_2\end{bmatrix}^T\Sigma^{-1}\begin{bmatrix}x_1\\x_2\end{bmatrix}}
$$

where

$$
\Sigma = \begin{bmatrix} 4 & 4e^{-3s} \\ 4e^{-3s} & 4 \end{bmatrix}
$$

example: let $X(t)$ be a Gaussian RP and let $Y(t) = X(t+d) - X(t)$

 $\bullet\,$ mean of $Y(t)$ is

$$
m_y(t) = \mathbf{E}[Y(t)] = m_x(t + d) - m_x(t)
$$

 $\bullet\,$ the autocorrelation of $Y(t)$ is

$$
R_y(t_1, t_2) = \mathbf{E}[(X(t_1 + d) - X(t_1))(X(t_2 + d) - X(t_2))]
$$

= $R_x(t_1 + d, t_2 + d) - R_x(t_1 + d, t_2) - R_x(t_1, t_2 + d) + R_x(t_1, t_2)$

 $\bullet\,$ the autocovariance of $Y(t)$ is then

$$
C_y(t_1, t_2) = \mathbf{E}[(X(t_1+d) - X(t_1) - m_y(t_1))(X(t_2+d) - X(t_2) - m_y(t_2))]
$$

= $C_x(t_1 + d, t_2 + d) - C_x(t_1 + d, t_2) - C_x(t_1, t_2 + d) + C_x(t_1, t_2)$

since $Y(t)$ is the sum of two Gaussians then $Y(t)$ must be Gaussian

 $\bullet\,$ any k -time samples of $Y(t)$

$$
Y(t_1), Y(t_2), \ldots, Y(t_k)
$$

is linear transformation of jointly Gaussians, so $Y(t_1),\ldots,Y(t_k)$ have jointly Gaussian pdf

- for example, find joint pdf of $Y(t)$ and $Y(t + s)$: need only mean and covariance
	- $-m_y(t)$ and $m_y(t+s)$
	- covariance is ^given by

$$
\Sigma = \begin{bmatrix} C_y(t,t) & C_y(t,t+s) \\ C_y(t,t+s) & C_y(t+s,t+s) \end{bmatrix}
$$

Wiener process

consider the random step on page 9-2

symmetric walk $(p=1/2)$, magnitude step of M , time step of h seconds let $X_h(t)$ be the accumulated sum of random step up to time t

- $X_h(t) = M(D[1] + D[2] + \cdots + D[n]) = MS[n]$ where $n = [t/h]$
- $\mathbf{E}[X_h(t)] = 0$
- $\mathbf{var}[X_h(t)] = M^2 n$

Wiener process $X(t)$: obtained from $X_h(t)$ by shrinking the magnitude and time step to zero in a *precise way*

$$
h \to 0
$$
, $M \to 0$, with $M = \sqrt{\alpha h}$ where $\alpha > 0$ is constant

(meaning; if $v = M/h$ represents a particle speed then $v \to \infty$ as
displacement M goes to 0) displacement M goes to 0)

properties of Wiener (also called Wiener-Levy) process:

- $\bullet \ \mathbf{E}[X(t)]=0$ (zero mean of all time)
- $\bullet~~\textbf{var}[X(t)]=(\sqrt{\alpha h})^2$ · $\cdot\left(t/h\right) =\alpha t$ (stays finite and nonzero)
- $X(t) = \lim_{h \to 0} M(D[1] + \cdots + D[n]) = \lim_{n \to \infty} \sqrt{\alpha t} \frac{S[n]}{\sqrt{n}}$ $n \sigma$ approaching the sum of an *infinite* number of RV
- $\bullet\,$ by CLT, pdf $X(t)$ approaches Gaussian with mean zero and variance αt

$$
f_{X(t)}(x) = \frac{1}{\sqrt{2\pi\alpha t}}e^{-\frac{x^2}{2\alpha t}}
$$

- $\bullet\,\,X(t)$ has independent stationary increments (from random walk form)
- $\bullet\,$ Wiener process is a Gaussian random process $(X(t_k)$ is obtained as linear transformation of increments)
- Wiener process is used to model Brownian motion (movement of particles in fluid)

• the covariance function of Wiener process is

$$
C(t_1, t_2) = \alpha \min(t_1, t_2), \quad \alpha > 0
$$

to show this, let $t_1 \geq t_2$,

$$
C(t_1, t_2) = \mathbf{E}[X(t_1)X(t_2)] = \mathbf{E}[(X(t_1) - X(t_2) + X(t_2))X(t_2)]
$$

= $\mathbf{E}[(X(t_1) - X(t_2)X(t_2)] + \mathbf{var}[X(t_2)]$
= $0 + \alpha t_2$

using $X(t_1) - X(t_2)$ and $X(t_2)$ are independent (when $t_1 \geq t_2$)

if $t_2 < t_1$, we do the same and obtain $C(t_1,t_2) = \alpha t_1$

sample paths of Wiener process when $\alpha = 2$

 $\mathbf{E}[X(t)]=0$ and $\mathbf{var}[X(t)]=\alpha t$ (variance grows over time)

White noise process

a random process $X(t)$ is white noise if

- $\mathbf{E}[X(t)]=0$ (zero mean for all t)
- $\mathbf{E}[X(t)X(s)]=0$ for $t\neq s$ (uncorrelated with another time sample)

in another word,

• the correlation function of a white noise is the *impulse function*

$$
R(t_1, t_2) = \alpha \delta(t_1 - t_2), \quad \alpha > 0
$$

- power spectral density is flat (more on this): $S(\omega) = \alpha$, $\forall \omega$
- $\bullet\,\,X(t)$ has infinite power, varies extremely rapidly in time, and is most unpredictable

those two properties of white noise are derived from the definition that

white Gaussian noise process is the *time derivative* of Wiener process recall the correlation of wiener process is $R_{\text{wiener}}(t_1,t_2) = \alpha \min(t_1,t_2)$

$$
R(t_1, t_2) = \mathbf{E}[X(t_1)X(t_2)] = \mathbf{E}\left[\frac{\partial}{\partial t_1} X_{\text{wiener}}(t_1) \cdot \frac{\partial}{\partial t_2} X_{\text{wiener}}(t_2)\right]
$$

= $\frac{\partial}{\partial t_1} \frac{\partial}{\partial t_2} R_{\text{wiener}}(t_1, t_2) = \frac{\partial}{\partial t_1} \frac{\partial}{\partial t_2} \begin{cases} \alpha t_2, & t_2 < t_1 \\ \alpha t_1, & t_2 \ge t_1 \end{cases}$
= $\frac{\partial}{\partial t_1} \alpha u(t_1 - t_2)$, *u* is the step function

but u is not differentiable at $t_1=t_2$, so the second derivative does not exist instead, we generalize this notion using delta function

$$
R(t_1, t_2) = \alpha \delta(t_1 - t_2)
$$

example of white noite Gaussian process with variance 2

- \bullet mean function (averaged over 10,000 realizations) is close to zero
- \bullet $\bullet\,$ sample autocorrelation is close to a delta function where $R(0)\approx 2$

Poisson process

let $N(t)$ be the number of event occurrences in the interval $\left[0,t\right]$ properties:

- $\bullet\,$ non-decreasing function (of time $t)$
- integer-valued and continuous-time RP

assumptions:

- $\bullet\,$ events occur at an average rate of λ events per seconds
- $\bullet\,$ the interval $[0,t]$ is divided into n subintervals and let $h=t/n$
- the probability of *more than one event* occurrences in a subinterval is negligible compared to the probability of observing one or zero events
- whether or not an event occurs in ^a subinterval is independent of the outcomes in other subintervals

meaning:

- the outcome in each subinterval can be viewed as ^a Bernoulli trial
- these Bernoulli trials are independent
- $\bullet \; N(t)$ can be *approximated* by the binomial counting process

Binomial counting process:

- $\bullet\,$ let the probability of an event occurrence in subinterval is p
- $\bullet\,$ average number of events in $[0,t]$ is $\lambda t = np$
- let $n \to \infty$ $(h = t/n \to 0)$ and $p \to 0$ while $np = \lambda t$ is fixed
- $\bullet\,$ from the following approximation when n is large

$$
P(N(t) = k) = {n \choose k} p^{k} (1-p)^{n-k} \approx \frac{(\lambda t)^{k}}{k!} e^{-\lambda t}, \quad k = 0, 1, \dots
$$

 $N(t)$ has a Poisson distribution and is called a $\boldsymbol{\mathsf{Poisson}}$ process

example of Poisson process $\lambda=0.5$

 $\bullet\,$ generated by taking cumulative sum of n -sequence Bernoulli with and $p = \lambda T / n$ where $n = 1000$ and $T = 50$

- $\bullet\,$ the rate of Poisson process grows as λt for $t\in[0,T]$
- the mean and variance functions (approximate over ¹⁰⁰ realizations) have linear trend over time

joint pmf: for $t_1 < t_2$,

$$
P[N(t_1) = i, N(t_2) = j] = P[N(t_1) = i]P[N(t_2) - N(t_1) = j - i]
$$

=
$$
P[N(t_1) = i]P[N(t_2 - t_1) = j - i]
$$

=
$$
\frac{(\lambda t_1)^i e^{-\lambda t_1} (\lambda (t_2 - t_1))^{j} e^{-\lambda (t_2 - t_1)}}{i!}
$$

(j - i)!

autocovariance: $C(t_1,t_2) = \lambda \min(t_1,t_2)$

for $t_1 \leq t_2$, $C(t_1, t_2) = \mathbf{E}[(N(t_1) - \lambda t_1)(N(t_2) - \lambda t_2)]$ = $\mathbf{E}[(N(t_1) - \lambda t_1)\{N(t_2) - N(t_1) - \lambda t_2 + \lambda t_1 + (N(t_1) - \lambda t_1)\}]$ $= \mathbf{E}[(N(t_1) - \lambda t_1)]\mathbf{E}[(N(t_2) - N(t_1) - \lambda (t_2 - t_1)] + \mathbf{var}[N(t_1)]$ $=$ λt_1

we have used *independent and stationary increments* property

examples:

- random telegraph signal
- the number of car accidents at ^a site or in an area
- the requests for individuals documents on ^a web server
- the number of customers arriving at ^a store

Time between events in Poisson process

let T be the time between event occurrences in a Poisson process

 $\bullet\,$ the probability involving T follows

$$
P[T > t] = P[\text{no events in } t \text{ seconds}] = (1 - p)^n
$$

$$
= \left(1 - \frac{\lambda t}{n}\right)^n \to e^{-\lambda t}, \text{ as } n \to \infty
$$

 T is an exponential RV with parameter λ

- the interarrival time in the underlying binomial proces are independent geometric RV
- $\bullet\,$ the sequence of interarrival times $T[n]$ in a Poisson process form an iid sequence of *exponential* RVs with mean $1/\lambda$
- $\bullet\,$ the sum $S[n]=T[1]+\cdots+T[n]$ has Erland distribution

Markov process

for any time instants, $t_1 < t_2 < \cdots < t_k < t_{k+1}$, if

discrete-valued

$$
P[X(t_{k+1}) = x_{k+1} | X(t_k) = x_k, ..., X(t_1) = x_1] =
$$

$$
P[X(t_{k+1} = x_{k+1} | X(t_k) = x_k]
$$

continuous-valued

$$
f(x_{k+1} | X(t_k) = x_k, \ldots, X(t_1) = x_1) = f(x_{k+1} | X(t_k) = x_k)
$$

then we say $X(t)$ is a **Markov** process

joint pdf conditioned on several time instants reduce to pdf conditioned onthe *most recent* time instant

properties:

- pmf and pdf of Markov processes are conditioned on several time instants can reduce to pmf/pdf that is only conditioned on the *most* recent time instant
- an integer-valued Markov process is called ^a Markov chain (more details on this)
- $\bullet\,$ the sum of iid sequence where $S[0]=0$ is a Markov process
- ^a Poisson process is ^a continuous-time Markov process
- ^a Wiener process is ^a continous-valued Markov process
- in fact, any independent-increment process is also Markov

to see this, for ^a discrete-valued RP,

$$
P[X(t_{k+1}) = x_{k+1} | X(t_k) = x_k, ..., X(t_1) = x_1]
$$

= $P[X(t_{k+1}) - X(t_k) = x_{k+1} - x_k | X(t_k) = x_k, ..., X(t_1) = x_1]$
= $P[X(t_{k+1}) - X(t_k) = x_{k+1} - x_k | X(t_k) = x_k]$ by independent increments
= $P[X(t_{k+1}) = x_{k+1} | X(t_k) = x_k]$

more examples of Markov process

• birth-death Markov chains: transitions only between adjacent states are allowed

$$
p(t+1) = Pp(t)
$$
, P is tri-diagonal

 $\bullet\,$ M/M/1 queue (a queuing model): continuous-time Markov chain

$$
\dot{p}(t) = Qp(t)
$$

Discrete-time Markov chain

a Markov chain is a random sequence that has n possible states:

$$
X(t) \in \{1, 2, \ldots, n\}
$$

with the property that

$$
\mathbf{prob}(\ X(t+1)=i\ \mid\ X(t)=j\)=p_{ij}
$$

where $P = [p_{ij}] \in \mathbf{R}^n$ \times $\, n \,$

- \bullet $\,p_{ij}$ is the transition probability from state j to state i
- \bullet $\,P$ is called the transition matrix of the Markov chain
- $\bullet\,$ the state $X(t)$ still cannot be determined with *certainty*
- $\bullet \ \ \{1,2,\ldots, n\}$ is called *label* (simply mapped to integers)

example:

^a customer may rent ^a car from any of three locations and return to any of the three locations

Properties of transition matrix

let P be the transition matrix of a Markov chain

- $\bullet\,$ all entries of P are real *nonnegative* numbers
- $\bullet\,$ the entries in any column are summed to 1 or $\mathbf{1}^T$ ${}^T P={\bf 1}^T$:

$$
p_{1j}+p_{2j}+\cdots+p_{nj}=1
$$

(a property of a ${\sf stochastic \; matrix})$

- $\bullet\,$ 1 is an eigenvalue of P
- $\bullet\,$ if q is an eigenvector of P corresponding to eigenvalue $1,$ then

$$
P^k q = q, \quad \text{for any } k = 0, 1, 2, \dots
$$

Probability vector

we can represent probability distribution of $x(t)$ as *n*-vector

$$
p(t) = \begin{bmatrix} \textbf{prob}(\ x(t) = 1 \) \\ \vdots \\ \textbf{prob}(\ x(t) = n \) \end{bmatrix}
$$

 $\bullet\,$ $p(t)$ is called a state probability vector at time t

•
$$
\sum_{i=1}^{n} p_i(t) = 1
$$
 or $\mathbf{1}^T p(t) = 1$

• the state probability propagates like ^a linear system:

$$
p(t+1) = Pp(t)
$$

 $\bullet\,$ the state PMF at time t is obtained by multiplying the initial PMF by P^t

$$
p(t) = P^t p(0)
$$
, for $t = 0, 1, ...$

example: a Markov model for packet speech

- two states of packet speech: contain 'silent activity' or 'speech activity'
- the transition matrix is $P=$ $=\begin{bmatrix} 0.8 & 0.4 \ 0.2 & 0.6 \end{bmatrix}$
- $\bullet\,$ the initial state probability is $p(0)=(1,0)$
- the packet in the first state is 'silent' with certainty

- $\bullet\,$ eigenvalues of P are 1 and 0.4
- $\bullet\,$ calculate P^t by using 'diagonalization' or 'Cayley-Hamilton theorem'

$$
P^{t} = \begin{bmatrix} (5/3)(0.4 + 0.2 \cdot 0.4^{t}) & (2/3)(1 - 0.4^{t}) \\ (1/3)(1 - 0.4^{t}) & (5/3)(0.2 + 0.4^{t+1}) \end{bmatrix}
$$

\n- \n
$$
P^t \rightarrow \begin{bmatrix} 2/3 & 2/3 \\ 1/3 & 1/3 \end{bmatrix}
$$
 as $t \rightarrow \infty$ \n (all columns are the same in limit!)\n
\n- \n $\lim_{t \to \infty} p(t) = \begin{bmatrix} 2/3 & 2/3 \\ 1/3 & 1/3 \end{bmatrix} \begin{bmatrix} p_1(0) \\ 1 - p_1(0) \end{bmatrix} = \begin{bmatrix} 2/3 \\ 1/3 \end{bmatrix}$ \n
\n

 $p(t)$ does not depend on the *initial state probability* as $t\rightarrow\infty$

$$
\text{what if } P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \text{?}
$$

• we can see that

$$
P^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad P^3 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \dots
$$

 $\bullet \ \ P^t$ does not converge but oscillates between two values

under what condition $p(t)$ converges to a constant vector as $t\rightarrow\infty$?

Definition: a transition matrix is **regular** if some integer power of it has all *positive* entries

Fact: if P is regular and let w be *any* probability vector, then

$$
\lim_{t \to \infty} P^t w = q
$$

where q is a \bold{fixed} probability vector, independent of t

Steady state probabilities

we are interested in the steady state probability vector

$$
q = \lim_{t \to \infty} p(t) \qquad \text{(if converges)}
$$

 $\bullet\,$ the steady-state vector q of a regular transition matrix P satisfies

$$
\lim_{t \to \infty} p(t+1) = P \lim_{t \to \infty} p(t) \qquad \Longrightarrow \qquad Pq = q
$$

(in other words, q is an eigenvector of P corresponding to eigenvalue $1)$

• if we start with $p(0) = q$ then

$$
p(t) = Pt p(0) = 1t q = q, \quad \text{for all } t
$$

 q is also called the $\sf{stationary}\; {\sf state}\; {\sf PMF}\; {\sf of}\; {\sf the}\; {\sf Markov}\; {\sf chain}$

probabilities of weather conditions ^given the weather on the preceding day:

$$
P = \begin{bmatrix} 0.4 & 0.2\\ 0.6 & 0.8 \end{bmatrix}
$$

(probability that it will rain tomorrow given today is sunny, is (0.2))

^given today is sunny with probability ¹, calculate the probability of ^a rainy day in long term

Gauss-Markov process

let $W[n]$ be a white Gaussian noise process with $W[1]\sim \mathcal{N}(0,\sigma^2)$ definition: ^a Gauss-Markov process is ^a first-order autoregressive process

$$
X[1] = W[1], \quad X[n] = aX[n-1] + W[n], \quad n \ge 1, \quad |a| < 1
$$

- $\bullet\,$ clearly, $X[n]$ is Markov since the state $X[n]$ only depends on $X[n-1]$
- $\bullet \,\, X[n]$ is Gaussian because if we let

 $X_k = X[k], \quad W_k = W[k], \quad k = 1, 2, \ldots, n$ (time instants) $\sqrt{2}$ $\overline{}$ X_1 X_2 ... X_{n-1} X_n pdf of (X_1,\ldots,X_n) is Gaussian for all n 1 $\overline{}$ = $\sqrt{ }$ $\begin{array}{c} \end{array}$ $\begin{array}{ccccccccc}\n1 & 0 & \cdots & 0 & 0 \\
\vdots & & 1 & & 0 & 0\n\end{array}$ a 1 · · · 0 0

: : : : : :
 a^{n-2} a^{n-3} : 1 0 a^{n-1} a^{n-2} \cdots a 1 $\overline{}$ $\overline{}$ $\sqrt{2}$ $\begin{array}{c} \end{array}$ $W_1\,$ $W_2\,$... $\overline{W_{n-1}}$ W_n 1 $\overline{}$

questions involving ^a Gauss-Markov process

setting:

- $\bullet\,$ we can observe $Y[n]=X[n]+V[n]$ where V represents a sensor noise
- $\bullet\,$ only Y can be observed, but we do not know X

question: can we estimate $X[n]$ from information of $Y[n]$ and statistical properties of W and V ?

solution: yes we can. one choice is to apply ^a Kalman filter

example: $a = 0.8$, $Y[k] = 2X[k] + V[k]$

 $X[k]$ is estimated by Kalman filter

References

Chapter ⁹ in A. Leon-Garcia, Probability, Statistics, and Random Processes for Electrical Engineering, 3rd edition, Pearson Prentice Hall, ²⁰⁰⁹

Chapter ⁹ in

 H. Stark and J. W. Woods, Probability, Statistics, and Random Processes for Engineers, 4th edition, Pearson, ²⁰¹²