
EE401 (Semester 1) Jitkomut Songsiri

2. Random Variables

• definition

• probability measures: CDF, PMF, PDF

• expected values and moments

• examples of RVs
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Definition

Real line
S

SX

x

X(ζ) = x

ζ

a random variable X is a function mapping an outcome to a real number

• the sample space, S, is the domain of the random variable

• SX is the range of the random variable

example: toss a coin three times and note the sequence of heads and tails

S = {HHH,HHT,HTH,THH,HTT,THT,TTH,TTT}

Let X be the number of heads in the three tosses

SX = {0, 1, 2, 3}
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Types of Random Variables

Discrete RVs take values from a countable set

example: let X be the number of times a message needs to be transmitted
until it arrives correctly

SX = {1, 2, 3, . . .}
Continuous RVs take an infinite number of possible values

example: let X be the time it takes before receiving the next phone calls

Mixed RVs have some part taking values over an interval like typical
continuous variables, and part of it concentrated on particular values like
discrete variables
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Probability measures

Cumulative distribution function (CDF)

F (a) = P (X ≤ a)

Probability mass function (PMF) for discrete RVs

p(k) = P (X = k)

Probability density function (PDF) for continuous RVs

f(x) =
dF (x)

dx
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Cumulative Distribution Function (CDF)

Properties

0 ≤ F (a) ≤ 1

F (a) → 1, as a → ∞
F (a) → 0, as a → −∞
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∑
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Probability Density Function

Probability Density Function (PDF)

• f(x) ≥ 0

• P (a ≤ X ≤ b) =
∫ b

a
f(x)dx

• F (x) =
x
∫

−∞

f(u)du

Probability Mass Function (PMF)

• p(k) ≥ 0 for all k

• ∑

k∈S

p(k) = 1

Random Variables 2-6



Expected values

let g(X) be a function of random variable X

E[g(X)] =















∑

x∈S

g(x)p(x) X is discrete

∞
∫

−∞

g(x)f(x)dx X is continuous

Mean

µ = E[X ] =















∑

x∈S

xp(x) X is discrete

∞
∫

−∞

xf(x)dx X is continuous

Variance
σ2 = var[X ] = E[(X − µ)2]

nth Moment
E[Xn]
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Facts

Let Y = g(X) = aX + b, a, b are constants

• E[Y ] = aE[X ] + b

• var[Y ] = a2 var[X ]

• var[X ] = E[X2]− (E[X ])2
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Example of Random Variables

Discrete RVs

• Bernoulli

• Binomial

• Multinomial

• Geometric

• Negative binomial

• Poisson

• Uniform

Continuous RVs

• Uniform

• Exponential

• Gaussian (Normal)

• Gamma

• Rayleigh

• Cauchy

• Laplacian
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Bernoulli random variables

let A be an event of interest

a Bernoulli random variable X is defined as

X = 1 if A occurs and X = 0 otherwise

it can also be given by the indicator function for A

X(ζ) =

{

0, if ζ not in A

1, if ζ in A

PMF: p(1) = p, p(0) = 1− p, 0 ≤ p ≤ 1

Mean: E[X ] = p

Variance: var[X ] = p(1− p)
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Example of Bernoulli PMF: p = 1/3
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Binomial random variables

• X is the number of successes in a sequence of n independent trials

• each experiment yields success with probability p

• when n = 1, X is a Bernoulli random variable

• SX = {0, 1, 2, . . . , n}
• ex. Transmission errors in a binary channel: X is the number of errors
in n independent transmissions

PMF

p(k) = P (X = k) =

(

n
k

)

pk(1− p)n−k, k = 0, 1, . . . , n

Mean
E[X ] = np

Variance
var[X ] = np(1− p)
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Example of Binomial PMF: p = 1/3, n = 10
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Multinomial coefficient

suppose we partition a set of n objects into m subsets B1, B2, . . . , Bm

• Bi is assigned ki elements and k1 + k2 + · · ·+ km = n

• denote Ni the number of possible assignments to the subset Bi

N1 =

(

n

k1

)

, N2 =

(

n− k1
k2

)

, . . . , Nm−1 =

(

n− k1 − k2 − · · · − km−2

km−1

)

• the number of possible partitions is N1N2 · · ·Nm−1 =
n!

k1!k2!···km! and is
called the multinomial coefficient
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Mutinomial random variables

• a generalization of binomial random variables to consider a trial having
more than two possible outcomes

• in each trial, there are m possible events, denoted by B1, B2, . . . , Bm

with
P (Bk) = pk, and p1 + p2 + · · ·+ pm = 1

• suppose n independent repetitions of the experiment are performed

• let Xj be the number of times each Bj occurs

P (X1 = k1, X2 = k2, . . . , Xm = km) =
n!

k1!k2! . . . km!
pk11 pk22 · · · pkmm

where k1 + k2 + · · ·+ km = n

• the multinomial coefficient is the number of possible orderings that
X1 = k, . . . ,Xm = km
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PMF: the joint probability of vector X = (X1, X2, . . . , Xm)

P (X1 = k1, X2 = k2, . . . , Xm = km) =
n!

k1!k2! . . . km!
pk11 pk22 · · · pkmm

where ki ∈ {0, 1, . . . , n} and k1 + k2 + · · ·+ km = 1

Mean
E[Xi] = npi

Variance

var[Xi] = npi(1− pi), cov(Xi,Xj) = −npipj, i 6= j

some applications:

• the data of N samples can be categorized into K classes, e.g., N
subjects with blood types of A, B, AB, and O

• multinomial logistic regression in K-class classification
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Geometric random variables

• repeat independent Bernoulli trials, each has probability of success p

• X is the number of experiments required until the first success occurs

• SX = {1, 2, 3, . . .}
• ex. Message transmissions: X is the number of times a message needs
to be transmitted until it arrives correctly

PMF
p(k) = P (X = k) = (1− p)k−1p

Mean

E[X ] =
1

p

Variance

var[X ] =
1− p

p2
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Example of Geometric PMF: p = 1/3
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• parameters: p = 1/4, 1/3, 1/2
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Negative binomial (Pascal) random variables

• repeat independent Bernoulli trials until observing the rth success

• X is the number of trials required until the rth success occurs

• X can be viewed as the sum of r geometrically RVs

• SX = {r, r + 1, r + 2, . . .}

PMF

p(k) = P (X = k) =

(

k − 1
r − 1

)

pr(1− p)k−r, k = r, r + 1, . . .

Mean
E[X ] =

r

p
Variance

var[X ] =
r(1− p)

p2
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Example of negative binomial PMF: p = 1/3, r = 5
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Poisson random variables

• X is a number of events occurring in a certain period of time

• events occur with a known average rate

• the expected number of occurrences in the interval is λ

• SX = {0, 1, 2, . . .}
• examples:

– number of emissions of a radioactive mass during a time interval
– number of queries arriving in t seconds at a call center
– number of packet arrivals in t seconds at a multiplexer

PMF

p(k) = P (X = k) =
λk

k!
e−λ, k = 0, 1, 2, . . .

Mean E[X ] = λ

Variance var[X ] = λ

Random Variables 2-21



Example of Poisson PMF: λ = 2
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Derivation of Poisson distribution

• approximate a binomial RV when n is large and p is small

• define λ = np, in 1898 Bortkiewicz showed that

p(k) =

(

n
k

)

pk(1− p)n−k ≈ λk

k!
e−λ

Proof.

p(0) = (1− p)n = (1− λ/n)n ≈ e−λ, n → ∞
p(k + 1)

p(k)
=

(n− k)p

(k + 1)(1− p)
=

(1− k/n)λ

(k + 1)(1− λ/n)

take the limit n → ∞

p(k + 1) =
λ

k + 1
p(k) =

(

λ

k + 1

)(

λ

k

)

· · ·
(

λ

1

)

p(0) =
λk+1

(k + 1)!
e−λ
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Comparison of Poisson and Binomial PMFs
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p = 1/2, n = 10 p = 1/10, n = 100

• red: Poisson

• blue: Binomial
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Exponential random variables

• arise when describing the time between occurrence of events

• examples:

– the time between customer demands for call connections
– the time used for a bank teller to serve a customer

• λ is the rate at which events occur

• a continuous counterpart of the geometric random variable

PDF

f(x) =

{

λe−λx, if x ≥ 0

0, if x < 0

Mean E[X ] = 1
λ

Variance var[X ] = 1
λ2
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Example of Exponential PDF
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• parameters: λ = 1, 1/2, 1/3
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Memoryless property

P (X > t+ h|X > t) = P (X > h)

• P (X > t+ h|X > t) is the probability of having to wait additionally at
least h seconds given that one has already been waiting t seconds

• P (X > h) is the probability of waiting at least h seconds when one first
begins to wait

• thus, the probability of waiting at least an additional h seconds is the
same regardless of how long one has already been waiting

Proof.

P (X > t+ h|X > t) =
P{(X > t+ h) ∩ (X > t)}

P (X > t)
, for h > 0

=
P (X > t+ h)

P (X > t)
=

e−λ(t+h)

e−λt
= e−λh
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this is not the case for other non-negative continuous RVs

in fact, the conditional probability

P (X > t+ h|X > t) =
1− P (X ≤ t+ h)

1− P (X ≤ t)
=

1− F (t+ h)

1− F (t)

depends on t in general
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m-Erlang random variables

0 t2 t

X2

tm−1 tm+1

. . .

. . .t1

X1

tm

Xm Xm+1

• the kth event occurs at time tk

• the times X1, X2, . . . , Xm between events are exponential RVs

• N(t) denotes the number of events in t seconds, which is a Poisson RV

• Sm = X1 +X2 + · · ·+Xm is the elapsed time until the mth occurs

we can show that Sm is an m-Erlang random variable
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Proof. Sm ≤ t iff m or more events occur in t seconds

F (t) = P (Sm ≤ t) = P (N(t) ≥ m)

= 1−
m−1
∑

k=0

(λt)k

k!
e−λt

to get the density function of Sm, we take the derivative of F (t):

f(t) =
dF (t)

dt
=

m−1
∑

k=0

e−λt

k!

(

λ(λt)k − kλ(λt)k−1
)

=
λ(λt)m−1e−λt

(m− 1)!
⇒ Erlang distribution with parameters m,λ

• the sum of m exponential RVs with rate λ is an m-Erlang RV

• if m becomes large, the m-Erlang RV should approach the normal RV

• from the pdf, m-erlang is a special case of gamma variable with
parameter α = m
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Uniform random variables

Discrete Uniform RVs

• X has n possible values, x1, . . . , xn that are equally probable

• PMF

p(x) =

{

1
n, if x ∈ {x1, . . . , xn}
0, otherwise

Continuous Uniform RVs

• X takes any values on an interval [a, b] that are equally probable

• PDF

f(x) =

{

1
(b−a), for x ∈ [a, b]

0, otherwise

• Mean: E[X ] = (a+ b)/2

• Variance: var[X ] = (b− a)2/12
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Example of Discrete Uniform PMF: X = 0, 1, 2, . . . , 10
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Example of Continuous Uniform PMF: X ∈ [0, 2]
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Gaussian (Normal) random variables

• arise as the outcome of the central limit theorem

• the sum of a large number of RVs is distributed approximately normally

• many results involving Gaussian RVs can be derived in analytical form

• let X be a Gaussian RV with parameters mean µ and variance σ2

Notation X ∼ N (µ, σ2)

PDF

f(x) =
1√
2πσ2

exp− (x− µ)2

2σ2
, −∞ < x < ∞

Mean E[X ] = µ

Variance var[X ] = σ2
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let Z ∼ N (0, 1) be the normalized Gaussian variable

CDF of Z is

FZ(z) =
1√
2π

∫ z

−∞

e−t2/2dt , Φ(z)

then CDF of X ∼ N (µ, σ2) can be obtained by

FX(x) = Φ

(

x− µ

σ

)

in MATLAB, the error function is defined as

erf(x) =
2√
π

∫ x

0

e−t2dt

hence, Φ(z) can be computed via the erf command as

Φ(z) =
1

2

[

1 + erf

(

z√
2

)]
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Example of Gaussian PDF
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• parameters: µ = 1, σ = 1, 2, 3

Random Variables 2-35



Gamma random variables

• appears in many applications:

– the time required to service customers in queuing system
– the lifetime of devices in reliability studies
– the defect clustering behavior in VLSI chips

• let X be a Gamma variable with parameters α, λ

PDF

f(x) =
λ(λx)α−1e−λx

Γ(α)
, x ≥ 0; α, λ > 0

where Γ(z) is the gamma function, defined by

Γ(z) =

∫ ∞

0

xz−1e−xdx, z > 0

Mean E[X ] = α
λ Variance var[X ] = α

λ2
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Properties of the gamma function

Γ(1/2) =
√
π

Γ(z + 1) = zΓ(z) for z > 0

Γ(m+ 1) = m!, for m a nonnegative integer

the value of Γ(1/2) is obtaind by a change of variable u =
√
x to Gaussian

Special cases

a Gamma RV becomes

• exponential RV when α = 1

• m-Erlang RV when α = m, a positive integer

• chi-square RV with k DOF when α = k/2, λ = 1/2
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Example of Gamma PDF
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• blue: α = 0.2, λ = 0.2 (long tail)

• green: α = 1, λ = 0.5 (exponential)

• red: α = 3, λ = 1/2 (Chi square with 6 DOF)

• black: α = 5, 20, 50, 100 and α/λ = 10 (α-Erlang with mean 10)
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Chi-squared random variables

• arise as a sum of k i.i.d. Gaussian variables

• ex. sample variance of i.i.d. Gassian samples {X1, . . . , XN} with
variance σ2; it is well-known that (N − 1)s2/σ2 is X 2

N−1

• appear in asymptotic properties of estimators

• X ∼ X 2
k : chi-square variable with degree of freedom k

PDF

f(x) =
1

2k/2Γ(k/2)
xk/2−1e−x/2, x ≥ 0, k ∈ Z

+

Mean
E[X ] = k

Variance
var[X ] = 2k
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Example of chi-squared PDF
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Rayleigh random variables

• arise when observing the magnitude of a vector

• ex. The absolute values of random complex numbers whose real and
imaginary are i.i.d. Gaussian

PDF
f(x) =

x

σ2
e−x2/2σ2

, x ≥ 0, α > 0

Mean
E[X ] = σ

√

π/2

Variance

var[X ] =
4− π

2
σ2

if X is Rayleigh, then X2 is X 2
2
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Example of Rayleigh PDF
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• parameters: σ = 1, 2, 3
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Laplacian random variables

PDF
f(x) =

α

2
e−α|x−µ|, −∞ < x < ∞

Mean
E[X ] = µ

Variance

var[X ] =
2

α2

• arise as the difference between two i.i.d exponential RVs

• unlike Gaussian, the Laplace density is expressed in terms of the
absolute difference from the mean
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Example of Laplacian PDF
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• parameters: µ = 1, α = 1, 2, 3, 4, 5
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Related MATLAB commands

• cdf returns the values of a specified cumulative distribution function

• pdf returns the values of a specified probability density function

• randn generates random numbers from the standard Gaussian
distribution

• rand generates random numbers from the standard uniform distribution

• random generates random numbers drawn from a specified distribution

• histogram plots a histogram of data samples
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