EE401 (Semester 1) Jitkomut Songsiri

6. Sums of Random Variables

e mean and variance
e PDF of sums of independent RVs
e laws of large numbers

e central limit theorems
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Mean and Variance
let X1, Xo,...,X,, be asequence of RVs
regardless of statistical dependence, we have

the variance of a sum of RVs is, however, NOT equal to the sum of
variances

var(X; + Xo + - - Zvar (X%) —|—ZZCOV X, Xk)
1=1 k=1

If X1, Xs,...,X,, are uncorrelated, then

var(X; + Xo + -+ 4+ X,,) = var(X;y) + var(Xs) + - - - + var(X,,)
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PDF of sums of independent RVs

consider the sum of n independent RVs
Sp=X1+Xa+ + X,
the characteristic function of \S,, is

Dg(w) = E[eijn] _ E[ejw(X1+X2+“'+Xn)]
— E[eijl] o E[GJan]

— (I)Xl(w) T (I)Xn(w)

thus the pdf of S, is found by finding the inverse Fourier of ®g(w):

fs(X) =F 7 ®x, (w) - P, (w))
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Example
find the pdf of a sum of n independent exponential RVs
all exponential variables have parameter o

the characteristic function of a single exponential RV is

we see that S,, is an n-Erlang RV
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Sample mean

let X be an RV with E[X] = u (unknown)
X1, Xo9,...,X,, denote n independent, repeated measurements of X
X's are independent, identically distributed (i.i.d.) RVs

the sample mean of the sequences is used to estimate E[X]|:

1 n
M, = — X
n= X
g=1
two statistical quantities for characterizing the sample mean’s properties:

e E[M,|: we say M, is unbiased if E[M,] = u

e var(M,): we examine this value when n is large
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the sample mean is an unbiased estimator for yu:

E[M,] = E %zn:Xj —ZE
L g=1

suppose var(X) = o2 (true variance)

since X;'s are i.i.d, the variance of M,, is

2 2

na o
VaI' —5 E VaI' 5 =
n n n

hence, the variance of the sample mean approaches zero as the number of
samples increases
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Weak Law of Large Numbers

let X1, Xo,...,X,, be a sequence of iid RVs with finite mean E[X]| = u
and variance ¢?

for any € > 0,
lim P| M, —pul<e]=1

n—oo

e for large enough n, the sample mean will be close to the true mean with
high probability

e Proof. apply Chebyshev inequality:

o2 o?

5 = PlM,—pl<e>1-—
ne

PHMn_M|2€]§

ne
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scattergram of 1000 realizations of the sample mean
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e M, 's are computed from 2-dimensional Gaussian with zero mean

e as n increases, the probability of M,,’s are concentrated at zero is high
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Strong Law of Large Numbers

let X1, Xo,...,X,, be a sequence of iid RVs with finite mean E[X]| = u
and finite variance, then

Pllim M, =ul=1

n—oo

e M, is the sequence of sample mean computed using X; through Xy

e with probability 1, every sequence of sample mean calculations will
eventually approach and stay close to E[X| = u

e the strong law implies the weak law
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Central Limit Theorem

let X1, Xs,...,X,, be asequence of iid RVs with

finite mean E[X] = i and finite variance o

let .S,, be the sum of the first n RVs in the sequences:

and define
Sy —npu

T/

Zin

then

lim P(Z, <z —* /2y

==/
= — (&
n— 00 2 oo

as n becomes large, the CDF of normalized S,, approaches Gaussian
distribution
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Proof of Central Limit Theorem

first note that

Sn —nu 1
7, = - X, —
o J\/ﬁz;( k= 1)

the characteristic function of Z,, is given by

. n
Jw

exp

by (w) = E[“]=E

(Xk — M)]

E

TT et u)/O\/_]

k=1
__ (E[eJ""(X M)/U\/_

(using the fact that X}'s are iid)
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expanding the exponential expression gives

. . 2
EleX-w/ovm _ 1. Yy _ (w)” v 2
e ] +0\/ﬁ( u)+2!n02( )"+
~ 1_w_2
2n

(the higher order term can be neglected as n becomes large)

then we obtain
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e blue lines are the CDF of the sum of n exponential RVs with A =1
where n = 5 (left) and n = 50 (right)

e red dashed line is the CDF of a Gaussian RV with the same mean (n/)\)
and variance n/\?

e as n increases, the CDF approaches that of Gaussian distribution
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e blue lines are the CDFs of the sum of n Bernoulli RVs with p = 1/2
where n = 5 (left) and n = 25 (right)

e red dashed line is the CDF of a Gaussian with mean np and variance
np(1 —p)
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Example

the time between events is iid exponential RVs with mean m sec

find the probability that the 1000th event occurs in time interval
(1000 + 50)m

e X is the time between events

e S, is the time of the nth event (then S, = X; + Xo + -+ + X,,)

e E[S,] = nm and var(S,,) = nm?

the CLT gives

P(950m S SlOOO S 1050m)

(950m — 1000m 1050m — 1000m>
m~/ 1000 m+/ 1000

Q

®(1.58) — ®(—1.58)

Sums of Random Variables 6-15



References

Chapter 7 in
A. Leon-Garcia, Probability, Statistics, and Random Processes for
Electrical Engineering, 3rd edition, Pearson Prentice Hall, 2009

Sums of Random Variables 6-16



