11. Wide-sense stationary processes

- definition
- properties of correlation function
- power spectral density (Wiener Khinchin theorem)
- cross-correlation
- cross spectrum
- linear system with random inputs
- designing optimal linear filters

Definition

the second-order joint cdf of an RP $\boldsymbol{X}(t)$ is

 $F_{X(t_1),X(t_2)}(x_1,x_2)$

(joint cdf of two different times)

we say X(t) is wide-sense (or second-order) stationary if

$$F_{X(t_1),X(t_2)}(x_1,x_2) = F_{X(t_1+\tau),X(t_2+\tau)}(x_1,x_2)$$

the second-order joint cdf do not change for all t_1, t_2 and for all τ results:

- $\mathbf{E}[X(t)] = m$ (mean is constant)
- $R(t_1, t_2) = R(t_2 t_1)$ (correlation depends only on the time gap)

Properties of correlation function

let X(t) be a wide-sense scalar real-valued RP with correlation function $R(t_1,t_2)$

- since $R(t_1,t_2)$ depends only on t_1-t_2 , we usually write $R(\tau)$ where $\tau = t_1 t_2$ instead
- $R(0) = \mathbf{E}[X(t)^2]$ for all t
- $R(\tau)$ is an even function of τ

$$R(\tau) \triangleq \mathbf{E}[X(t+\tau)X(t)] = \mathbf{E}[X(t)X(t+\tau)] \triangleq R(-\tau)$$

• $|R(\tau)| \le R(0)$ (correlation is maximum at lag zero)

$$\mathbf{E}[(X(t+\tau)-X(t))^2] \ge 0 \Longrightarrow 2\mathbf{E}[X(t+\tau)X(t)] \le \mathbf{E}[X(t+\tau)^2] + \mathbf{E}[X(t)^2]$$

• the autocorrelation is a measure of rate of change of a WSS

$$P(|X(t+\tau) - X(t)| > \epsilon)$$

= $P(|X(t+\tau) - X(t)|^2 > \epsilon^2) \le \frac{\mathbf{E}[|X(t+\tau) - X(t)|^2]}{\epsilon^2} = \frac{2(R(0) - R(\tau))}{\epsilon^2}$

• for complex-valued RP, $R(\tau)=R^*(-\tau)$

$$R(\tau) \triangleq \mathbf{E}[X(t+\tau)X^*(t)]$$

=
$$\mathbf{E}[X(t)X^*(t-\tau)]$$

=
$$\overline{\mathbf{E}[X(t-\tau)X^*(t)]}$$

$$\triangleq R^*(-\tau)$$

• if R(0) = R(T) for some T then $R(\tau)$ is **periodic** with period T and X(t) is **mean square periodic**, *i.e.*,

$$\mathbf{E}[(X(t+T) - X(t))^2] = 0$$

 $R(\tau)$ is periodic because

$$(R(\tau + T) - R(\tau))^{2}$$

= {E[(X + t + \tau + T) - X(t + \tau))X(t)]}²
\$\le \mathbf{E}[(X(t + \tau + T) - X(t + \tau))^{2}]\mathbf{E}[X^{2}(t)]\$ (Cauchy-Schwarz ineq)
= 2[R(0) - R(T)]R(0) = 0

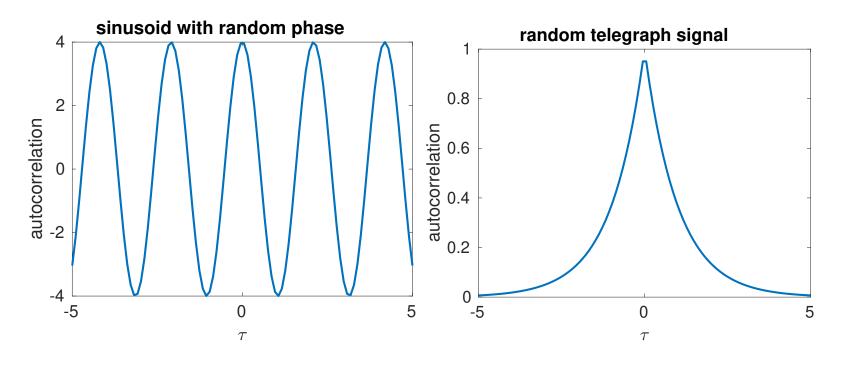
X(t) is mean square periodic because

$$\mathbf{E}[(X(t+T) - X(t))^2] = 2(R(0) - R(T)) = 0$$

• let X(t) = m + Y(t) where Y(t) is a zero-mean process

$$R_x(\tau) = m^2 + R_y(\tau)$$

examples:



- sinusoide with random phase: $R(\tau) = \frac{A^2}{2}\cos(\omega\tau)$
- random telegraph signal: $R(\tau) = e^{-2\alpha |\tau|}$

Nonnegativity of correlation function

let X(t) be a real-valued WSS and let $Z = (X(t_1), X(t_2), \dots, X(t_N))$ the correlation matrix of Z, which is always nonnegative, takes the form

$$\mathbf{R} = \begin{bmatrix} R(0) & R(t_1 - t_2) & \cdots & R(t_1 - t_N) \\ R(t_2 - t_1) & R(0) & \ddots & \vdots \\ \vdots & \ddots & \ddots & R(t_{N-1} - t_N) \\ R(t_N - t_1) & \cdots & R(t_N - t_{N-1}) & R(0) \end{bmatrix}$$
(symmetric)

since by assumption,

- X(t) can be either CT or DT random process
- N (the number of time samples) can be any number
- the choice of t_k 's are arbitrary

we then conclude that $\mathbf{R} \succeq 0$ holds for all sizes of \mathbf{R} (N = 1, 2, ...)

the nonnegativity of ${\bf R}$ can also be checked from the definition:

$$a^T \mathbf{R} a \ge 0$$
, for all $a = (a_1, a_2, \dots, a_N)$

which follows from

$$\sum_{i=1}^{N} \sum_{j=1}^{N} a_i^T R(t_i - t_j) a_j = \sum_{i=1}^{N} \sum_{j=1}^{N} \mathbf{E}[a_i^T X(t_i) X(t_j)^T a_j]$$
$$= \mathbf{E}\left[\left(\sum_{i=1}^{N} a_i^T X(t_i)\right)^2\right] \ge 0$$

important note: the value of R(t) at some fixed t can be negative !

example: $R(\tau) = e^{-|\tau|/2}$ and let $t = (t_1, t_2, ..., t_5)$ k=5; t = abs(randn(k,1)); t = sort(t); % t = (t1,...,tk) R = zeros(k);for i=1:k for j=1:k $R(i,j) = \exp(-0.5*abs(t(i)-t(j)));$ end end R. = 1.0000 0.6021 0.4952 0.4823 0.6021 1.0000 0.8224 0.8011 0.4952 0.8224 1.0000 0.9740 0.4823 0.8011 0.9740 1.0000 eig(R) =0.0252 0.2093 0.6416 3.1238 showing that $\mathbf{R} \succeq 0$ (try with any k)

Block toeplitz structure of correlation matrix

CT process: if X(t) are sampled as $Z = (X(t_1), X(t_2), \ldots, X(t_N))$ where

$$t_{i+1} - t_i = \text{constant} = s$$
, $i = 1, ..., N - 1$

(times have **constant spacing**, s > 0 and no need to be an integer)

we see that $\mathbf{R} = \mathbf{E}[ZZ^T]$ has a symmetric **block toeplitz structure**

$$\mathbf{R} = \begin{bmatrix} R(0) & R(-s) & \cdots & R(-(N-1)s) \\ R(s) & R(0) & \ddots & \vdots \\ \vdots & \ddots & \ddots & R(-s) \\ R((N-1)s) & \cdots & R(s) & R(0) \end{bmatrix}$$
(symmetric)

if X(t) is WSS then $\mathbf{R} \succeq 0$ for any integer N and any s > 0

example: $R(\tau) = e^{- \tau /2}$					
>> t=0:0.5: R =	2; R = exp(-0.5*abs(t)); T = to	eplitz(R)	
1.0000	0.7788	0.6065	0.4724	0.3679	
T =					
1.0000	0.7788	0.6065	0.4724	0.3679	
0.7788	1.0000	0.7788	0.6065	0.4724	
0.6065	0.7788	1.0000	0.7788	0.6065	
0.4724	0.6065	0.7788	1.0000	0.7788	
0.3679	0.4724	0.6065	0.7788	1.0000	
eig(T) =					
0.1366	0.1839	0.3225	0.8416	3.5154	

DT process: time indices are integers, so $Z = (X(1), X(2), \ldots, X(N))$

times also have constant spacing

 $\mathbf{R} = \mathbf{E}[ZZ^T]$ also has a symmetric **block toeplitz structure**

$$\begin{bmatrix} R(0) & R(-1) & \cdots & R(1-N) \\ R(1) & R(0) & \ddots & \vdots \\ \vdots & \ddots & \ddots & R(-1) \\ R(N-1) & \cdots & R(1) & R(0) \end{bmatrix}$$

if X(t) is WSS then $\mathbf{R} \succeq 0$ for any positive integer N

example: $R(\tau) = \cos(\tau)$				
>> t=0:2; R = co	os(t); T =	toeplitz(R)		
R = 1.0000 0	.5403 -0	.4161		
0.5403 1	.0000 0	.4161 .5403 .0000		
eig(T) =				
0.0000 1.4161 1.5839				
R(au) at some $ au$ can be negative !				

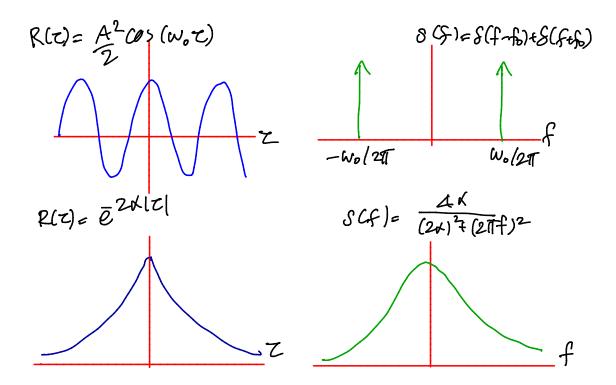
Power spectral density

Wiener-Khinchin Theorem: if a process is wide-sense stationary, the autocorrelation function and the power spectral density form a Fourier transform pair:

$$\begin{split} S(\omega) &= \int_{-\infty}^{\infty} e^{-\mathrm{i}\omega\tau} R(\tau) d\tau & \text{continuous-time FT} \\ S(\omega) &= \sum_{k=-\infty}^{\infty} R(k) e^{-\mathrm{i}\omega k} & \text{discrete-time FT} \\ R(\tau) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{\mathrm{i}\omega\tau} S(\omega) d\omega & \text{continuous-time IFT} \\ R(\tau) &= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{\mathrm{i}\omega\tau} S(\omega) d\omega & \text{discrete-time IFT} \end{split}$$

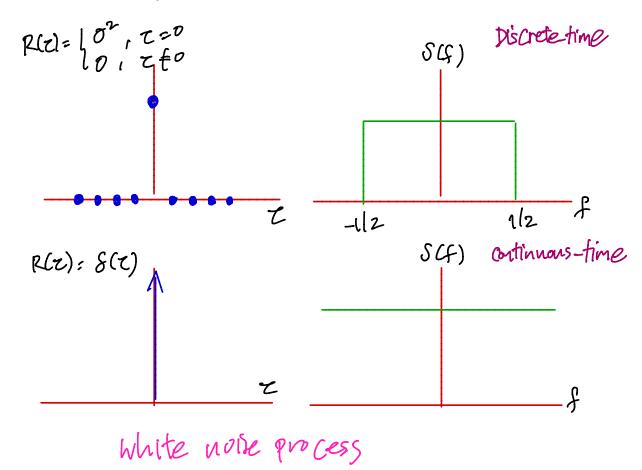
 $S(\omega)$ indicates a density function for average power versus frequency

examples: sinusoid with random phase and random telegraph



- (left) $X(t) = A\sin(\omega_0 t + \phi)$ and $\phi \sim \mathcal{U}(-\pi, \pi)$
- (right) X(t) is random telegraph signal

examples: white noise process



• (left) DT white noise process has a spectrum as a rectangular window

• (right) CT white noise process has a flat spectrum

Spectrum of a moving average process

let X(n) be a DT white noise process with variance σ^2

$$Y(n) = X(n) + \alpha X(n-1), \quad \alpha \in \mathbf{R}$$

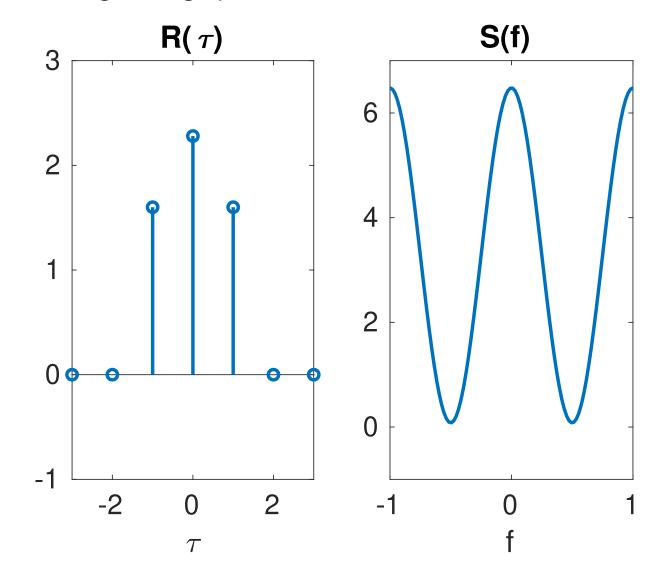
then Y(n) is an RP with autocorrelation function

$$R_Y(\tau) = \begin{cases} (1 + \alpha^2 \sigma^2), & \tau = 0, \\ \alpha \sigma^2, & |\tau| = 1, \\ 0, & \text{otherwise} \end{cases}$$

the spectrum of DT process (is periodic in $f \in [-1/2, 1/2]$) is given by

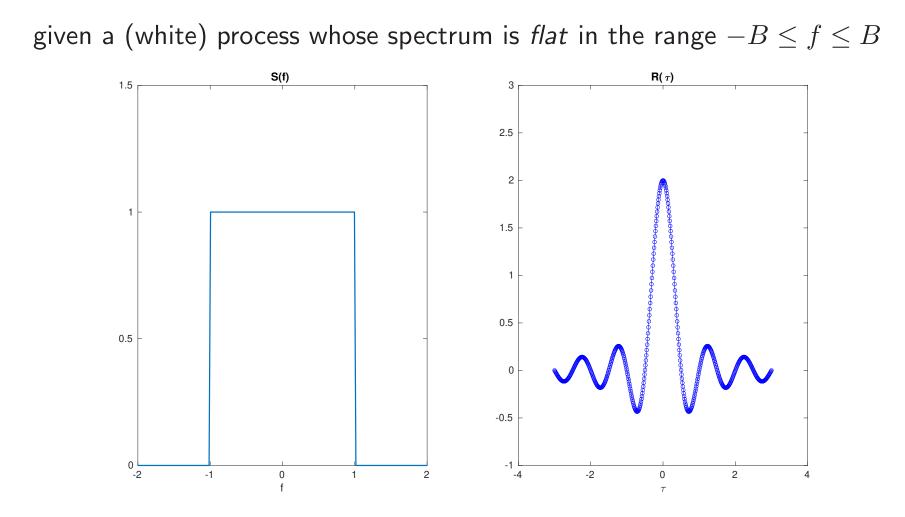
$$S(f) = \sum_{k=-\infty}^{\infty} R_Y(k) e^{-i2\pi fk}$$
$$= (1 + \alpha^2 \sigma^2) + \alpha \sigma^2 (e^{i2\pi f} + e^{-i2\pi f})$$
$$= \sigma^2 (1 + \alpha^2 + 2\alpha \cos(2\pi f))$$

examples: moving average process with $\sigma^2=2$ and $\alpha=0.8$



spectrum is periodic in $f \in [-1/2, 1/2]$

Band-limited white noise



the magnitude of the spectrum is N/2

what will the (continuous-valued) process look like ?

autocorrelation function is obtained from IFT

$$R(\tau) = (N/2) \int_{-B}^{B} e^{i2\pi f\tau} df$$
$$= \frac{N}{2} \cdot \frac{e^{i2\pi B\tau} - e^{-i2\pi B\tau}}{i2\pi\tau}$$
$$= \frac{N\sin(2\pi B\tau)}{2\pi\tau} = NB\operatorname{sinc}(2\pi B\tau)$$

- X(t) and $X(t+\tau)$ are uncorrelated at $\tau=\pm k/2B$ for $k=1,2,\ldots$
- if $B \to \infty$, the band-limited white noise becomes a white noise

$$S(f) = \frac{N}{2}, \quad \forall f, \quad R(\tau) = \frac{N}{2}\delta(\tau)$$

Properties of power spectral density

consider real-valued RPs, so $R(\tau)$ is real-valued

- $S(\omega)$ is real-valued and even function (: $R(\tau)$ is real and even)
- R(0) indicates the **average power**

$$R(0) = \mathbf{E}[X(t)^2] = \frac{1}{2\pi} \int_{-\infty}^{\infty} S(\omega) d\omega$$

•
$$S(\omega) \ge 0$$
 for all ω and for all $\omega_2 \ge \omega_1$

$$\frac{1}{2\pi} \int_{\omega_1}^{\omega_2} S(\omega) d\omega$$

is the average power in the frequency band (ω_2, ω_1)

(see proof in Chapter 9 of H. Stark)

Power spectral density as a time average

let $X[0], X[1], \ldots, X[N-1]$ be N observations from DT WSS process discrete Fourier transform of the time-domain sequence is

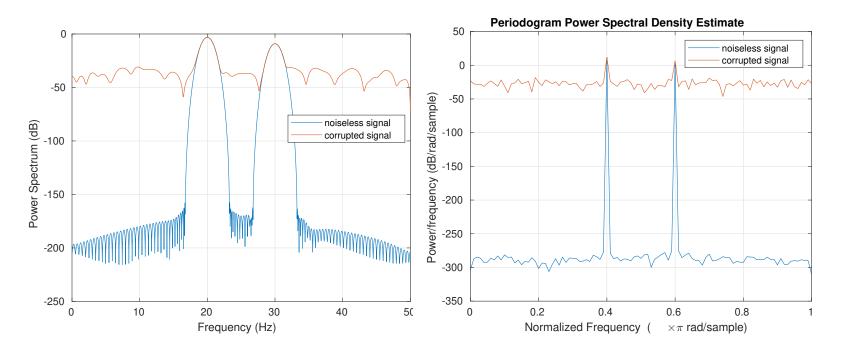
$$\tilde{X}[k] = \sum_{n=0}^{N-1} X[n] e^{-\frac{i2\pi}{N}kn}, \quad k = 0, 1, \dots, N-1$$

- $\tilde{X}[k]$ is a complex-valued sequence describing DT Fourier transform with only *discrete frequency points*
- $\tilde{X}[k]$ is a measure of *energy* at frequency $2\pi k/N$
- an estimate of *power* at a frequency is then

$$\tilde{S}(k) = \frac{1}{N} |\tilde{X}[k]|^2$$

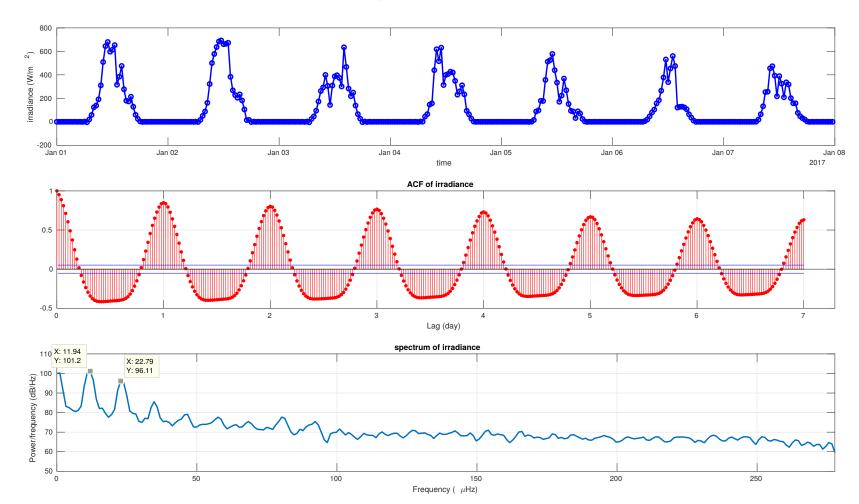
and is called **periodogram estimate** for the power spectral density

example: $X(t) = \sin(40\pi t) + 0.5\sin(60\pi t)$



- signal has frequency components at $20 \ {\rm and} \ 30 \ {\rm Hz}$
- peaks at $20 \ \mathrm{and} \ 30 \ \mathrm{Hz}$ are clearly seen
- when signal is corrupted by noise, spectrum peaks can be less distinct
- the plots are done using pspectrum and periodogram in MATLAB

Frequency analysis of solar irradiance



data are irradiance with sampling period of T = 30 min

- ACF is a normalized autocorrelation function (by R(0)) and appears to be periodic
- spectral density appears to have three peaks corresponding to $0, 12, 24~\mu{\rm Hz}$
- the frequencies of $12,24~\mu{\rm Hz}$ correspond to the periods of one day and half day respectively
- ACF and spectral density are computed by autocorr and pwelch commands in MATLAB
- more details on spectrum estimation methods can be further studied in signal processing

Cross correlation and cross spectrum

cross correlation between processes X(t) and Y(t) is defined as

```
R_{XY}(\tau) = \mathbf{E}[X(t+\tau)Y(t)]
```

cross-power spectral density between X(t) and Y(t) is defined as

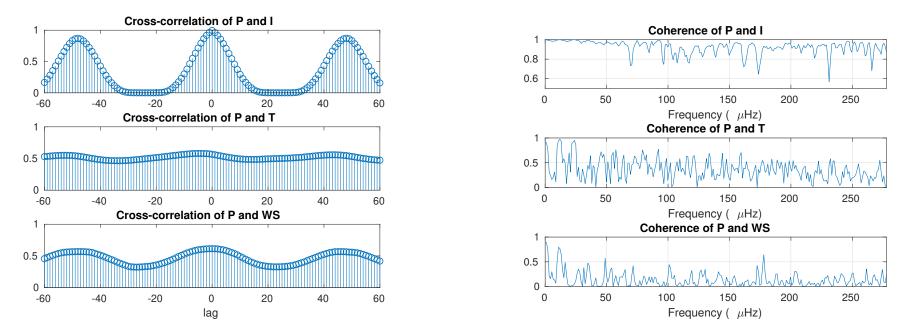
$$S_{XY}(\omega) = \int_{-\infty}^{\infty} e^{-i\omega\tau} R_{XY}(\tau) d\tau$$

properties:

- $S_{XY}(\omega)$ is complex-valued in general, even X(t) and Y(t) are real
- $R_{YX}(\tau) = R_{XY}(-\tau)$
- $S_{YX}(\omega) = S_{XY}(-\omega)$

Examples from solar variables

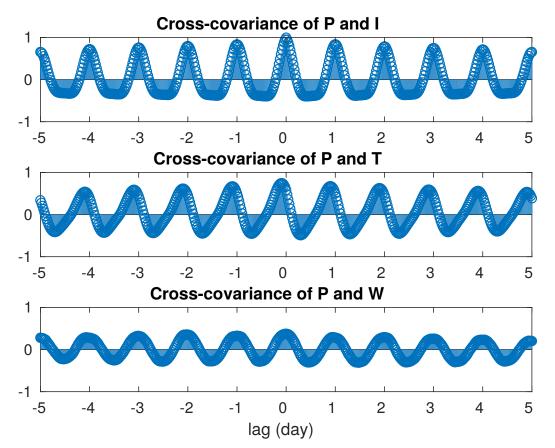
solar power (P), solar irradiance (I), temperature (T), wind speed (WS)



- (normalized) cross correlations are computed by xcorr in MATLAB
- (normalized) coherence functions are computed by mscohere:

$$C_{xy}(f) = \frac{|S_{xy}(f)|^2}{S_x(f)S_y(f)}$$

cross covariance function:



- P and I are highly correlated while P and WS are least correlated
- cross covariance functions are almost periodic (daily cycle) with slightly decaying envelopes

Extended definitions

extension: let X(t) be a *complex-valued vector* random process

- denote * Hermittian transpose, *i.e.*, $X^* = \overline{X}^T$
- correlation function: $R(\tau) = \mathbf{E}[X(t+\tau)X(t)^*]$
- covariance function: $C(\tau) = R(\tau) \mu \mu^*$
- $R_{YX}(\tau) = R^*_{XY}(-\tau)$
- $S_{YX}(\omega) = S_{XY}^*(-\omega)$
- $S(\omega)$ is self-adjoint, *i.e.*, $S(\omega) = S^*(\omega)$ and $S(\omega) \succeq 0$

(cross) correlation and (cross) spectral density functions are *matrices*

Theorems on correlation function and spectrum

Theorem 1: a necessary and sufficient condition for $R(\tau)$ to be a correlation function of a WSS is that it is positive semidefinite

- proof of sufficiency part: if $R(\tau)$ is positive semidefinite then there exists a WSS whose correlaction function is $R(\tau)$
 - if $R(\tau)$ is psdf then its Fourier transform is positive semidefinite (a proof is not obvious)
 - let us call $S(\omega) = \mathcal{F}(R(\tau)) \succeq 0$
 - by spectral factorization theorem, there exists a stable filter $H(\omega)$ such that $S(\omega) = H(\omega)H^*(\omega)$ more advanced topic
 - the existence of a WSS is given by applying a white noise to the filter $H(\omega)$ the topic we will learn next on page 11-38
- proof of necessity part: if a process is WSS then $R(\tau)$ is positive semidefinite shown on page 11-7

Theorem 2: let $S(\omega)$ be a self-adjoint and nonnegative matrix and

$$\int_{-\infty}^{\infty} \operatorname{tr}(S(\omega)) d\omega < \infty$$

then its inverse Fourier transform:

$$R(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{j\omega t} S(\omega) d\omega$$

is nonnegative, *i.e.*,
$$\sum_{j=1}^{N} \sum_{k=1}^{N} a_j^* R(t_j - t_k) a_k \ge 0$$

$$\begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_N \end{bmatrix}^* \begin{bmatrix} R(0) & R(t_1 - t_2) & \cdots & R(t_1 - t_N) \\ R(t_2 - t_1) & R(0) & \ddots & \vdots \\ \vdots & \ddots & \ddots & R(t_{N-1} - t_N) \\ R(t_N - t_1) & \cdots & R(t_N - t_{N-1}) & R(0) \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_N \end{bmatrix} \succeq 0$$

proof: let us consider N = 3 case (can be extended easily)

$$\begin{split} A &= \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}^* \begin{bmatrix} R(0) & R(t_1 - t_2) & R(t_1 - t_3) \\ R(t_2 - t_1) & R(0) & R(t_2 - t_3) \\ R(t_3 - t_1) & R(t_3 - t_2) & R(0) \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \\ &= \int_{-\infty}^{\infty} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}^* \begin{bmatrix} e^{i\omega(t_1 - t_1)}S(\omega) & e^{i\omega(t_1 - t_2)}S(\omega) & e^{i\omega(t_1 - t_3)}S(\omega) \\ e^{i\omega(t_2 - t_1)}S(\omega) & e^{i\omega(t_2 - t_2)}S(\omega) & e^{i\omega(t_2 - t_3)}S(\omega) \\ e^{i\omega(t_3 - t_1)}S(\omega) & e^{i\omega(t_3 - t_2)}S(\omega) & e^{i\omega(t_3 - t_3)}S(\omega) \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} d\omega \\ &= \int_{-\infty}^{\infty} \begin{bmatrix} e^{-i\omega t_1}a_1 \\ e^{-i\omega t_2}a_2 \\ e^{-i\omega t_3}a_3 \end{bmatrix}^* \begin{bmatrix} S^{1/2}(\omega) \\ S^{1/2}(\omega) \\ S^{1/2}(\omega) \end{bmatrix} \begin{bmatrix} S^{1/2}(\omega) & S^{1/2}(\omega) \\ S^{1/2}(\omega) \end{bmatrix} \begin{bmatrix} e^{-i\omega t_1}a_1 \\ e^{-i\omega t_2}a_2 \\ e^{-i\omega t_3}a_3 \end{bmatrix} d\omega \\ &\triangleq \int_{-\infty}^{\infty} Y^*(\omega)Y(\omega)d\omega \succeq 0 \end{split}$$

because the integrand is nonnegative definite for all ω

(we have used the fact that $S(\omega) \succeq 0$ and has a square root)

Theorem 3: let R(t) be a continuous correlation matrix function such that

$$\int_{-\infty}^{\infty} |R_{ij}(t)| dt < \infty, \quad \forall i, j$$

then the spectral density matrix

$$S(\omega) = \int_{-\infty}^{\infty} e^{i\omega t} R(t) dt$$

is self-adjoint and positive semidefinite

- matrix case: proof by Balakrishnan, Introduction to Random Process in Engineering, page 79
- scalar case: proof by Starks and Woods, page 607 (need to learn the topic on page 11-38 first)

simple proof (from Starks): let $\omega_2 > \omega_1$, define a filter transfer function

$$H(\omega) = 1, \quad \omega \in (\omega_1, \omega_2), \qquad H(\omega) = 0, \quad \text{otherwise}$$

let X(t) and Y(t) be input/output to this filter, then

$$S_{YY}(\omega) = S_{XX}(\omega), \quad \omega \in (\omega_1, \omega_2), \qquad 0, \quad \text{else}$$

since $\mathbf{E}[Y(t)^2] = R_y(0)$ and it is nonnegative, it follows that

$$R_y(0) = \frac{1}{2\pi} \int_{\omega_1}^{\omega_2} S_x(\omega) d\omega \ge 0$$

this must holds for any $\omega_2 > \omega_1$

hence, choosing $\omega_2 \approx \omega_1$ we must have $S_x(\omega) \ge 0$ — the power spectral density must be nonnegative

conclusion: a function $R(\tau)$ is nonnegative if and only if

it has a nonnegative Fourier transform

- a valid spectral density function therefore can be checked by its nonnegativity and it is easier than checking the nonnegativity condition of $R(\tau)$
- analogy for probability density function

Linear system with random inputs

consider a linear system with input and output relationship through

$$y = Hx$$

which represents many applications (filter, transformation of signals, etc.)

questions regarding this setting:

- if x is a random signal, how can we explain about randomness of y?
- if x is wide-sense stationary, how about y? under what condition on H?
- if y is also wide-sense, how about relations between correlation/power spectral density of x and y?

recall the definitions

• linear system:

$$H(x_1 + \alpha x_2) = Hx_1 + \alpha Hx_2$$

• time-invariant system: it commutes with shift operator

$$Hx(t-T) = y(t-T)$$

(time shift in the input causes the same time shift in the output)

• response of linear time-invariant system: denote h the impulse response

$$y(t) = h(t) * x(t) = \begin{cases} \int_{-\infty}^{\infty} h(\tau)x(t-\tau)d\tau & \text{continous-time} \\ = \sum_{k=-\infty}^{\infty} h(t-k)x(k) & \text{discrete-time} \end{cases}$$

- **stable:** poles of *H* are in stability region (LHP or inside unit circle)
- causal system: response of y at t depends only on *past* values of x

impulse response h(t) = 0, for t < 0

Properties of output from LTI system

let Y = HX where H is linear time-invariant system and **stable** if X(t) is wide-sense stationary then

• $m_Y(t) = H(0)m_X(t)$

- Y(t) is also wide-sense stationary (in steady-state sense if X(t) is applied when $t \ge 0$)
- correlations and spectra are given by

time-domain	frequency-domain
$R_{YX}(\tau) = h(\tau) * R_X(\tau)$	$S_{YX}(\omega) = H(\omega)S_X(\omega)$
$R_{XY}(\tau) = R_X(\tau) * h^*(-\tau)$	$S_{XY}(\omega) = S_X(\omega)H^*(\omega)$
$R_Y(\tau) = R_{YX}(\tau) * h^*(-\tau)$	$S_Y(\omega) = S_{YX}(\omega)H^*(\omega)$
$R_Y(\tau) = h(\tau) * R_X(\tau) * h^*(-\tau)$	$S_Y(\omega) = H(\omega)S_X(\omega)H^*(\omega)$

using $\mathcal{F}(f(t)\ast g(t))=F(\omega)G(\omega)$ and $\mathcal{F}(f^{\ast}(-t))=F^{\ast}(\omega)$

proof of mean of Y: $m_Y(t) = H(0)m_X(t)$

$$Y(t) = \int_{-\infty}^{\infty} h(s)X(t-s)ds$$
$$\mathbf{E}[Y(t)] = \int_{-\infty}^{\infty} h(s)\mathbf{E}[X(t-s)]ds$$
$$= \int_{-\infty}^{\infty} h(s)ds \cdot m_x \quad \text{(since } X(t) \text{ is WSS)}$$
$$= H(0)m_x$$

mean of Y is transformed by the DC gain of the system

proof of WSS of Y

$$\begin{aligned} R_y(t+\tau,t) &= \mathbf{E}[Y(t+\tau)Y(t)^T] \\ &= \mathbf{E}\left[\left(\int_{-\infty}^{\infty} h(\sigma)X(t+\tau-\sigma)ds\right)\left(\int_{-\infty}^{\infty} h(s)X(t-s)ds\right)^T\right] \\ &= \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} h(\sigma)\mathbf{E}[X(t+\tau-\sigma)X(t-s)^T]h(s)^Td\sigma ds \\ &= \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} h(\sigma)R_x(\tau+s-\sigma)h(s)^Td\sigma ds \quad (X \text{ is WSS}) \end{aligned}$$

we see that $R_y(t+\tau,t)$ does not depend on t anymore but only on τ

- we have shown that Y(t) has a constant mean and the autocorrelation function depends only on the time gap τ
- hence, Y(t) is also a wide-sense stationary process

proofs of cross-correlation: using $Y(t) = \int_{-\infty}^{\infty} h(\alpha) X(t-\alpha) d\alpha$

•
$$R_{YX}(\tau) = h(\tau) * R_X(\tau)$$

$$R_{YX}(\tau) = \mathbf{E}[Y(t)X^*(t-\tau)] = \int_{-\infty}^{\infty} h(\alpha)\mathbf{E}[X(t-\alpha)X^*(t-\tau)]d\alpha$$
$$= \int_{-\infty}^{\infty} h(\alpha)R_X(\tau-\alpha)d\alpha$$

•
$$R_Y(\tau) = R_{YX}(\tau) * H^*(-\tau)$$

$$R_{Y}(\tau) = \mathbf{E}[Y(t)Y^{*}(t-\tau)] = \int_{-\infty}^{\infty} \mathbf{E}[Y(t)X^{*}(t-(\tau+\alpha))]h^{*}(\alpha)d\alpha$$
$$= \int_{-\infty}^{\infty} R_{YX}(\tau+\alpha)h^{*}(\alpha)d\alpha = \int_{-\infty}^{\infty} R_{YX}(\tau-\sigma)h^{*}(-\sigma)d\sigma$$

Power of output process

the relation $S_Y(\omega) = H(\omega)S_X(\omega)H^*(\omega)$ reduces to

 $S_Y(\omega) = |H(\omega)|^2 S_X(\omega)$

for scalar processes X(t) and Y(t)

- average power of the output depends on the input power at that frequency multiplied by power gain at the same frequency
- we call $|H(\omega)|^2$ the power spectral density (psd) transfer function

this relation gives a procedure to estimate $H(\omega)$ when signals X(t) and Y(t) can be observed

example: a random telegraph signal with transition rate α is passed thru an RC filter with

$$H(s) = \frac{\tau}{s+\tau}, \quad \tau = 1/RC$$

question: find psd and autocorrelation of the output

random telegraph signal has the spectrum: $S_x(f) = \frac{4\alpha}{4\alpha + 4\pi^2 f^2}$

from $S_y(f) = |H(f)|^2 S_x(f)$ and $R_y(t) = \mathcal{F}^{-1}[S_y(f)]$

$$S_y(f) = \left(\frac{\tau^2}{\tau^2 + 4\pi^2 f^2}\right) \frac{4\alpha}{4\alpha + 4\pi^2 f^2}$$
$$= \frac{4\alpha\tau^2}{\tau^2 - 4\alpha^2} \left\{\frac{1}{4\alpha^2 + 4\pi^2 f^2} - \frac{1}{\tau^2 + 4\pi^2 f^2}\right\}$$
$$R_y(t) = \frac{1}{\tau^2 - 4\alpha^2} \left(\tau^2 e^{-2\alpha|t|} - 2\alpha\tau e^{-\tau|t|}\right)$$

(we have used $\mathcal{F}[e^{-at}]=2a/(a^2+\omega^2))$ and $\omega=2\pi f$

example: spectral density of AR process

$$Y(n) = aY(n-1) + X(n)$$

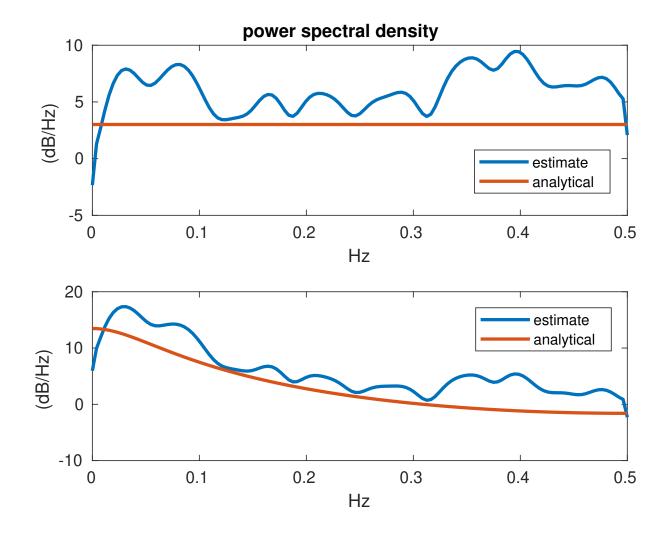
X(n) is i.i.d white noise with variance of σ^2

•
$$H(z) = \frac{1}{1-az^{-1}}$$
 or $H(e^{i\omega}) = \frac{1}{1-ae^{-i\omega}}$

• spectral density is obtained by

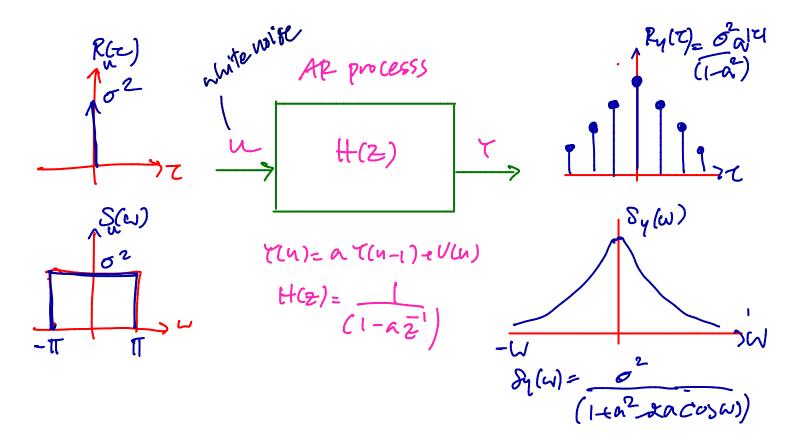
$$S_y(\omega) = |H(\omega)|^2 S_x(\omega) = \frac{\sigma^2}{(1 - ae^{-i\omega})(1 - ae^{i\omega})}$$
$$= \frac{\sigma^2}{1 + a^2 - 2a\cos(\omega)}$$

spectral density of AR process: a = 0.7 and $\sigma^2 = 2$

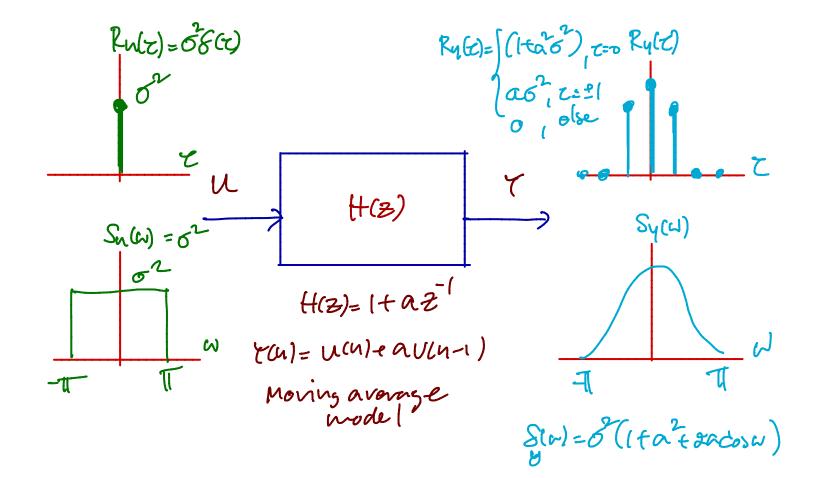


Input and output spectra

in conclusion, when input is white noise, the spectrum is flat



when white noise is passed through a filter, the output spectrum is no longer flat



Response to linear system: state-space models

consider a discrete-time linear system via a state-space model

$$X(k+1) = AX(k) + BU(k), \quad Y(k) = HX(k)$$

where $X \in \mathbf{R}^n, Y \in \mathbf{R}^p, U \in \mathbf{R}^m$

known results:

• two forms of solutions of state and output variables are

$$X(t) = A^{t}X(0) + \sum_{\tau=0}^{t-1} A^{\tau}BU(t-1-\tau), \quad Y(t) = CX(t)$$
$$= A^{t-s}X(s) + \sum_{\tau=s}^{t-1} A^{t-1-s}BU(\tau), \quad Y(t) = CX(t)$$

• the autonomous system (when U = 0) is stable if $|\lambda(A)| < 1$

State-space models: autocovariance function

Theorem: let U be a i.i.d white noise sequence with covariance Σ_u and if i) A is **stable** and ii) X(0) is uncorrelated with U(k) for all $k \ge 0$ then

- $\lim_{n\to\infty} \mathbf{E}[X(n)] = 0$
- $C(n,n) \to \Sigma$ as $n \to \infty$ where

$$\Sigma = A\Sigma A^T + B\Sigma_u B^T$$

(Σ is a *unique* solution to the Lyapunov equation)

• X(t) is wide-sense stationary in **steady-state** sense, *i.e.*,

$$\lim_{n \to \infty} C(n+k,n) = C(k) = \begin{cases} A^k \Sigma, & k \ge 0\\ \Sigma(A^T)^{|k|}, & k < 0 \end{cases}$$

proof: the mean of X(t) converges to zero

let $m(n) = \mathbf{E}[X(n)]$ and it's easy to see

$$m(n) = \mathbf{E}[X(n)] = A\mathbf{E}[X(n-1)] + B\mathbf{E}[U(n-1)] = Am(n-1)$$

hence, m(n) propagates like a linear system:

 $m(n) = A^n m(0)$

and goes to zero as $n \to \infty$ since A is stable

zero-mean system: $\tilde{X}(n) = X(n) - m(n)$

$$\tilde{X}(n) = A\tilde{X}(n-1) + BU(n-1)$$

mean-removed process also follow the same state-space equation

proof: $\lim_{n\to\infty} C(n,n) = \Sigma$ and satisfies the Lyapunov equation

• $\tilde{X}(n)$ is uncorrelated with U(k) for all $k \ge n$

$$\tilde{X}(t) = A^t \tilde{X}(0) + \sum_{\tau=0}^{t-1} A^\tau B U(t-1-\tau)$$

because $\tilde{X}(0)$ is uncorrelated with U(t) for all t and $\tilde{X}(t)$ is only a function of $U(t-1), U(t-2), \ldots, U(0)$

• since $\tilde{X}(n-1)$ is uncorrelated with U(n-1), we obtain

$$C(n,n) = AC(n-1,n-1)A^T + B\Sigma_u B^T$$

from the state equation: $\tilde{X}(n) = A\tilde{X}(n-1) + BU(n-1)$

• then we can write C(n, n) recursively

$$C(n,n) = \underbrace{A^n C(0,0) (A^T)^n}_{\text{go to zero}} + \underbrace{\sum_{k=0}^{n-1} A^k B \Sigma_u B^T (A^T)^k}_{\text{converges}}$$

and observe its asymptotic behaviour when $n \to \infty$

• if A is stable, there exists γ s.t. $||A^k|| \le \gamma^k < 1$ (requires a proof) $||A^n C(0,0)(A^T)^n|| \le ||A||^{2n} ||C(0,0)|| \le \gamma^{2n} ||C(0,0)|| \to 0, \quad n \to \infty$

• let
$$\Sigma = \sum_{k=0}^{\infty} A^k B \Sigma_u B^T (A^T)^k$$
, we can check that

$$\Sigma = A\Sigma A^T + B\Sigma_u B^T$$

• Σ is unique, otherwise, by contradiction

$$\Sigma_1 = A\Sigma_1 A^T + B\Sigma_u B^T, \quad \Sigma_2 = A\Sigma_2 A^T + B\Sigma_u B^T$$

we can subtract one from another and see that

$$\Sigma_1 - \Sigma_2 = A(\Sigma_1 - \Sigma_2)A^T = A^2(\Sigma_1 - \Sigma_2)(A^T)^2 = \dots = A^n(\Sigma_1 - \Sigma_2)(A^T)^n$$

this goes to zero since A is stable $(||A^k|| \rightarrow 0)$

$$\|\Sigma_1 - \Sigma_2\| = \|A^n (\Sigma_1 - \Sigma_2) (A^T)^n\| \le \|A\|^{2n} \|\Sigma_1 - \Sigma_2\| \to 0$$

this completes the proof

proof: $\tilde{X}(n)$ is wide-sense stationary in steady-state

- $\tilde{X}(k)$ is uncorrelated with $\{U(k), U(k+1), \dots, U(n-1)\}$
- from the solution of $\tilde{X}(n)$

$$\tilde{X}(n) = A^{n-k}\tilde{X}(k) + \sum_{\tau=k}^{n-1} A^{n-1-\tau}BU(\tau), \quad k < n$$

the two terms on RHS are uncorrelated

• the autocovariance function is obtained by (for n > k)

$$C(n,k) = \mathbf{E}[\tilde{X}(n)\tilde{X}(k)^{T}]$$

= $A^{n-k}\mathbf{E}[\tilde{X}(k)\tilde{X}(k)^{T}] + \sum_{\tau=k}^{n-1} A^{n-1-\tau}B\mathbf{E}[U(\tau)\tilde{X}(k)^{T}]$
= $A^{n-k}C(k,k) + 0$

which converges to $A^{n-k}\Sigma$ as $n, k \to \infty$ if A is stable

State-space models: autocovariance of output

output equation:

$$Y(n) = HX(n), \quad \tilde{Y}(n) = H\tilde{X}(n)$$

when X(n) is wide-sense stationary (in steady-state) then

when $n, k \to \infty$, we have

$$C_y(n,k) = HC_x(n,k)H^T = HA^{n-k}C_x(k,k)H^T, \quad n \ge k$$

and

$$\lim_{n \to \infty} C_y(n, n) = \lim_{n \to \infty} HC_x(n, n)H^T = H\Sigma H^T$$

where Σ is the solution to the Lyapunov equation: $\Sigma = A\Sigma A^T + B\Sigma_u B^T$

example: AR process with a = 0.7 and U is i.i.d. white noise with $\sigma^2 = 2$

$$Y(n) = aY(n-1) + U(n-1)$$

1st-order AR process is already in state-space equation

• in steady-state, the covariance function at lag 0 converges to α where

$$\alpha = a\alpha^2 + \sigma^2 \implies \alpha = \frac{\sigma^2}{1 - a^2}$$

(we have solved the Lyapunov equation)

• in steady-state, the covariance function is given by

$$C(\tau) = \frac{\sigma^2 a^{|\tau|}}{1 - a^2}$$

References

Chapter 9-10 in A. Leon-Garcia, *Probability, Statistics, and Random Processes for Electrical Engineering*, 3rd edition, Pearson Prentice Hall, 2009

Chapter 9 in

H. Stark and J. W. Woods, *Probability, Statistics, and Random Processes for Engineers*, 4th edition, Pearson, 2012