11. Wide-sense stationary processes

- definition
- properties of correlation function
- power spectral density (Wiener Khinchin theorem)
- cross-correlation
- cross spectrum
- linear system with random inputs
- designing optimal linear filters

Definition

the second-order joint cdf of an RP $X(t)$ is

 $F_{X(t_1),X(t_2)}(x_1, x_2)$

(joint cdf of two different times)

we say $X(t)$ is wide-sense (or second-order) stationary if

$$
F_{X(t_1),X(t_2)}(x_1,x_2) = F_{X(t_1+\tau),X(t_2+\tau)}(x_1,x_2)
$$

the second-order joint cdf do not change for all t_1, t_2 and for all τ results:

- $\bullet \; {\bf E}[X(t)] = m \; \text{(mean is constant)}$
- $R(t_1,t_2) = R(t_2-t_1)$ (correlation depends only on the time gap)

Properties of correlation function

let $X(t)$ be a wide-sense scalar real-valued RP with correlation function $R(t_1,t_2)$

- \bullet since $R(t_1,t_2)$ depends only on t_1-t_2 , we usually write $R(\tau)$ where $\tau=t_1-t_2$ instead
- $R(0) = \mathbf{E}[X(t)]^2$]
] \vert for all t
- \bullet $R(\tau)$ is an even function of τ

$$
R(\tau) \triangleq \mathbf{E}[X(t+\tau)X(t)] = \mathbf{E}[X(t)X(t+\tau)] \triangleq R(-\tau)
$$

 $\bullet \ \vert R(\tau) \vert \leq R(0)$ (correlation is maximum at lag zero)

$$
\mathbf{E}[(X(t+\tau)-X(t))^2] \ge 0 \Longrightarrow 2\mathbf{E}[X(t+\tau)X(t)] \le \mathbf{E}[X(t+\tau)^2] + \mathbf{E}[X(t)^2]
$$

• the autocorrelation is a measure of rate of change of a WSS

$$
P(|X(t + \tau) - X(t)| > \epsilon)
$$

= $P(|X(t + \tau) - X(t)|^2 > \epsilon^2) \le \frac{\mathbf{E}[|X(t + \tau) - X(t)|^2]}{\epsilon^2} = \frac{2(R(0) - R(\tau))}{\epsilon^2}$

• for complex-valued RP, $R(\tau) = R^*(-\tau)$

$$
R(\tau) \triangleq \mathbf{E}[X(t+\tau)X^*(t)]
$$

=
$$
\mathbf{E}[X(t)X^*(t-\tau)]
$$

=
$$
\mathbf{E}[X(t-\tau)X^*(t)]
$$

$$
\triangleq R^*(-\tau)
$$

• if $R(0) = R(T)$ for some T then $R(\tau)$ is **periodic** with period T and $K(t)$ is means approximation is an $X(t)$ is mean square periodic, $\it{i.e.},$

$$
\mathbf{E}[(X(t+T) - X(t))^2] = 0
$$

 $R(\tau)$ is periodic because

$$
(R(\tau + T) - R(\tau))^2
$$

= {**E**[(X + t + \tau + T) - X(t + \tau))X(t)]}²
\$\leq**E**[(X(t + \tau + T) - X(t + \tau))^2] **E**[X²(t)] (Cauchy-Schwarz ineq)
= 2[R(0) - R(T)]R(0) = 0

 $X(t)$ is mean square periodic because

$$
\mathbf{E}[(X(t+T) - X(t))^2] = 2(R(0) - R(T)) = 0
$$

• let $X(t) = m + Y(t)$ where $Y(t)$ is a zero-mean process

$$
R_x(\tau) = m^2 + R_y(\tau)
$$

examples:

- sinusoide with random phase: $R(\tau) = \frac{A^2}{2} \cos(\omega \tau)$
- random telegraph signal: $R(\tau) = e^{-2\alpha|\tau|}$

Nonnegativity of correlation function

let $X(t)$ be a real-valued WSS and let $Z=(X(t_1),X(t_2),\ldots,X(t_N))$ the correlation matrix of Z , which is always nonnegative, takes the form

$$
\mathbf{R} = \begin{bmatrix} R(0) & R(t_1 - t_2) & \cdots & R(t_1 - t_N) \\ R(t_2 - t_1) & R(0) & \cdots & R(t_{N-1} - t_N) \\ \vdots & \cdots & R(t_N - t_{N-1}) & R(0) \end{bmatrix}
$$
 (symmetric)

since by assumption,

- $\bullet\,\,X(t)$ can be either CT or DT random process
- $\bullet\;N$ (the number of time samples) can be any number
- $\bullet\,$ the choice of t_k 's are arbitrary

we then conclude that $\mathbf{R} \succeq 0$ holds for all sizes of \mathbf{R} $(N = 1, 2, ...)$

the nonnegativity of ${\bf R}$ can also be checked from the definition:

$$
a^T \mathbf{R} a \ge 0, \quad \text{for all} \quad a = (a_1, a_2, \dots, a_N)
$$

which follows from

$$
\sum_{i=1}^{N} \sum_{j=1}^{N} a_i^T R(t_i - t_j) a_j = \sum_{i}^{N} \sum_{j}^{N} \mathbf{E} [a_i^T X(t_i) X(t_j)^T a_j]
$$

$$
= \mathbf{E} \left[\left(\sum_{i=1}^{N} a_i^T X(t_i) \right)^2 \right] \ge 0
$$

 ${\sf importance:}$ the value of $R(t)$ at some fixed t can be negative !

```
example: R(\tau) = e^{-|\tau|/2} and let t = (t_1, t_2, \ldots, t_5)k=5; t = abs(randn(k,1)); t = sort(t); % t = (t1,...,tk)
R = zeros(k);
for i=1:k
    for j=1:kR(i, j) = exp(-0.5 * abs(t(i)-t(j)));
    endendR =1.0000 0.6021 0.4952 0.4823
    0.6021 1.0000 0.8224 0.8011
    0.4952 0.8224 1.0000 0.9740
    0.4823 0.8011 0.9740 1.0000
eig(R) =0.0252 0.2093 0.6416 3.1238
showing that \mathbf{R} \succeq 0 (try with any k)
```
Block toeplitz structure of correlation matrix

 $\textsf{\textbf{CT}}$ process: if $X(t)$ are sampled as $Z = (X(t_1), X(t_2), \ldots, X(t_N))$ where

$$
t_{i+1} - t_i = \text{constant} = s \quad, i = 1, \dots, N-1
$$

(times have $\mathop{\mathrm{constant}}$ spacing, $s>0$ and no need to be an integer)

we see that $\mathbf{R}=\mathbf{E}[ZZ^T]$ $\mathcal{F}[\mathcal{F}]$ has a symmetric **block toeplitz structure**]
]

$$
\mathbf{R} = \begin{bmatrix} R(0) & R(-s) & \cdots & R(-(N-1)s) \\ R(s) & R(0) & \cdots & \vdots \\ \vdots & \ddots & \ddots & R(-s) \\ R((N-1)s) & \cdots & R(s) & R(0) \end{bmatrix}
$$
 (symmetric)

if $X(t)$ is WSS then $\mathbf{R}\succeq0$ for any integer N and any $s>0$

DT process: time indices are integers, so $Z = (X(1), X(2), \ldots, X(N))$

times also have constant spacing

 $\mathbf{R} = \mathbf{E}[ZZ^T]$ also has a symmetric **block toeplitz structure**

$$
\begin{bmatrix}\nR(0) & R(-1) & \cdots & R(1-N) \\
R(1) & R(0) & \ddots & \vdots \\
\vdots & \ddots & \ddots & R(-1) \\
R(N-1) & \cdots & R(1) & R(0)\n\end{bmatrix}
$$

if $X(t)$ is WSS then $\mathbf{R} \succeq 0$ for any positive integer N

Power spectral density

Wiener-Khinchin Theorem: if a process is wide-sense stationary, the autocorrelation function and the power spectral density form ^a Fourier transform pair:

$$
S(\omega) = \int_{-\infty}^{\infty} e^{-i\omega\tau} R(\tau) d\tau
$$
 continuous-time FT
\n
$$
S(\omega) = \sum_{k=-\infty}^{\infty} R(k)e^{-i\omega k}
$$
 discrete-time FT
\n
$$
R(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\omega\tau} S(\omega) d\omega
$$
 continuous-time IFT
\n
$$
R(\tau) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i\omega\tau} S(\omega) d\omega
$$
 discrete-time IFT

 $S(\omega)$ indicates a density function for average power versus frequency

examples: sinusoid with random phase and random telegraph

• (left) $X(t) = A \sin(\omega_0 t + \phi)$ and $\phi \sim \mathcal{U}(-\pi, \pi)$

 \bullet (right) $X(t)$ is random telegraph signal

examples: white noise process

- (left) DT white noise process has ^a spectrum as ^a rectangular window
- (right) CT white noise process has ^a flat spectrum

Spectrum of ^a moving average process

let $X(n)$ be a DT white noise process with variance σ^2

$$
Y(n) = X(n) + \alpha X(n-1), \quad \alpha \in \mathbf{R}
$$

then $Y(n)$ is an RP with autocorrelation function

$$
R_Y(\tau) = \begin{cases} (1 + \alpha^2 \sigma^2), & \tau = 0, \\ \alpha \sigma^2, & |\tau| = 1, \\ 0, & \text{otherwise} \end{cases}
$$

the spectrum of DT process (is periodic in $f\in [-1/2, 1/2])$ is given by

$$
S(f) = \sum_{k=-\infty}^{\infty} R_Y(k)e^{-i2\pi fk}
$$

= $(1 + \alpha^2 \sigma^2) + \alpha \sigma^2(e^{i2\pi f} + e^{-i2\pi f})$
= $\sigma^2(1 + \alpha^2 + 2\alpha \cos(2\pi f))$

examples: moving average process with $\sigma^2 = 2$ and $\alpha = 0.8$

spectrum is periodic in $f\in[-1/2, 1/2]$

Band-limited white noise

the magnitude of the spectrum is $N\!/2$

what will the (continuous-valued) process look like ?

autocorrelation function is obtained from IFT

$$
R(\tau) = (N/2) \int_{-B}^{B} e^{i2\pi f \tau} df
$$

=
$$
\frac{N}{2} \cdot \frac{e^{i2\pi B\tau} - e^{-i2\pi B\tau}}{i2\pi\tau}
$$

=
$$
\frac{N \sin(2\pi B\tau)}{2\pi\tau} = N B \text{sinc}(2\pi B\tau)
$$

- $\bullet\,\,X(t)$ and $X(t+\tau)$ are uncorrelated at $\tau=\pm k/2B$ for $k=1,2,\ldots$
- \bullet if $B\to\infty$, the band-limited white noise becomes a white noise

$$
S(f) = \frac{N}{2}, \quad \forall f, \quad R(\tau) = \frac{N}{2}\delta(\tau)
$$

Properties of power spectral density

consider real-valued RPs, so $R(\tau)$ is real-valued

- $\bullet \ \ S(\omega)$ is real-valued and even function $(\because R(\tau)$ is real and even)
- \bullet $R(0)$ indicates the average power

$$
R(0) = \mathbf{E}[X(t)^{2}] = \frac{1}{2\pi} \int_{-\infty}^{\infty} S(\omega) d\omega
$$

•
$$
S(\omega) \ge 0
$$
 for all ω and for all $\omega_2 \ge \omega_1$

$$
\frac{1}{2\pi} \int_{\omega_1}^{\omega_2} S(\omega) d\omega
$$

is the average power in the frequency band (ω_2, ω_1)

(see proof in Chapter ⁹ of H. Stark)

Power spectral density as ^a time average

let $X[0], X[1], \ldots, X[N]$ − -1] be N observations from DT WSS process **discrete Fourier transform** of the time-domain sequence is

$$
\tilde{X}[k] = \sum_{n=0}^{N-1} X[n]e^{-\frac{i2\pi}{N}kn}, \quad k = 0, 1, \dots, N-1
$$

- $\bullet\,\; \tilde{X}[k]$ is a complex-valued sequence describing DT Fourier transform with only discrete frequency points
- $\bullet~~\tilde{X}[k]$ is a measure of *energy* at frequency $2\pi k/N$
- an estimate of *power* at a frequency is then

$$
\tilde{S}(k)=\frac{1}{N}|\tilde{X}[k]|^2
$$

and is called **periodogram estimate** for the power spectral density

example: $X(t) = \sin(40\pi t) + 0.5\sin(60\pi t)$

- $\bullet\,$ signal has frequency components at 20 and $30\,$ Hz
- \bullet \bullet peaks at 20 and 30 Hz are clearly seen
- when signal is corrupted by noise, spectrum peaks can be less distinct
- the plots are done using pspectrum and periodogram in MATLAB

Frequency analysis of solar irradiance

data are irradiance with sampling period of $T=30\,$ min

- $\bullet\,$ ACF is a normalized autocorrelation function (by $R(0))$ and appears to be periodic
- spectral density appears to have three peaks corresponding to $0, 12, 24$ μ Hz
- $\bullet\,$ the frequencies of $12,24\ \mu$ Hz correspond to the periods of one day and half day respectively
- ACF and spectral density are computed by autocorr and pwelch commands in MATLAB
- more details on spectrum estimation methods can be further studied insignal processing

Cross correlation and cross spectrum

 ${\rm\bf cross}$ correlation between processes $X(t)$ and $Y(t)$ is defined as

$$
R_{XY}(\tau) = \mathbf{E}[X(t+\tau)Y(t)]
$$

cross-power spectral density between $X(t)$ and $Y(t)$ is defined as

$$
S_{XY}(\omega) = \int_{-\infty}^{\infty} e^{-i\omega\tau} R_{XY}(\tau) d\tau
$$

properties:

- $\bullet \ \ S_{XY}(\omega)$ is complex-valued in general, even $X(t)$ and $Y(t)$ are real
- $R_{YX}(\tau) = R_{XY}(\tau)$ $-\tau)$
- $S_{YX}(\omega) = S_{XY}(\omega)$ $-\omega)$

Examples from solar variables

solar power (P) , solar irradiance (I) , temperature (T) , wind speed (WS)

- (normalized) cross correlations are computed by xcorr in MATLAB
- (normalized) coherence functions are computed by mscohere:

$$
C_{xy}(f) = \frac{|S_{xy}(f)|^2}{S_x(f)S_y(f)}
$$

cross covariance function:

- \bullet $\,P$ and I are highly correlated while P and $\rm WS$ are least correlated
- \bullet cross covariance functions are almost periodic (daily cycle) with slightly decaying envelopes

Extended definitions

extension: let $X(t)$ be a complex-valued vector random process

- \bullet denote $*$ Hermittian transpose, $\it{i.e.}$, $X^* = \overline{X}^T$
- correlation function: $R(\tau) = \mathbf{E}[X(t+\tau)X(t)^*]$
- covariance function: $C(\tau) = R(\tau) \mu \mu^*$
- $R_{YX}(\tau) = R_{XY}^*(-\tau)$
- $S_{YX}(\omega) = S_{XY}^*(-\omega)$
- $\bullet \ \ S(\omega)$ is self-adjoint, $i.e., \ S(\omega) = S^*(\omega)$ and $S(\omega) \succeq 0$

(cross) correlation and (cross) spectral density functions are matrices

Theorems on correlation function and spectrum

Theorem 1: a necessary and sufficient condition for $R(\tau)$ to be a correlation function of ^a WSS is that it is positive semidefinite

- $\bullet\,$ proof of sufficiency part: if $R(\tau)$ is positive semidefinite then there exists a WSS whose correlaction function is $R(\tau)$
	- $-$ if $R(\tau)$ is psdf then its Fourier transform is positive semidefinite (a proof is not obvious)
	- $-$ let us call $S(\omega) = \mathcal{F}(R(\tau)) \succeq 0$
	- ويروم والقرامي والقوم والمتوقف وكالرا $-$ by spectral factorization theorem, there exists a stable filter $H(\omega)$ such that $S(\omega) = H(\omega) H^*$ $^*(\omega)$ – more advanced topic
	- $-$ the evictonce of a WSS is given $-$ the existence of a WSS is given by applying a white noise to the filter $H(\omega)$ — the topic we will learn next on page 11-38
- $\bullet\,$ proof of necessity part: if a process is WSS then $R(\tau)$ is positive semidefinite – shown on page 11-7

Theorem 2: let $S(\omega)$ be a self-adjoint and nonnegative matrix and

$$
\int_{-\infty}^{\infty} \mathbf{tr}(S(\omega))d\omega < \infty
$$

then its inverse Fourier transform:

$$
R(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{j\omega t} S(\omega) d\omega
$$

is nonnegative, $i.e.,$ $\sum_{j=1}^{N}\sum_{k=1}^{N}a_{j}^{\ast}R(t_{j}-t_{k})a_{k}\geq0$

$$
\begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_N \end{bmatrix}^* \begin{bmatrix} R(0) & R(t_1 - t_2) & \cdots & R(t_1 - t_N) \\ R(t_2 - t_1) & R(0) & \cdots & R(t_{N-1} - t_N) \\ \vdots & \ddots & \ddots & R(t_N - t_{N-1}) \\ R(t_N - t_1) & \cdots & R(t_N - t_{N-1}) & R(0) \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_N \end{bmatrix} \succeq 0
$$

proof: let us consider $N=3$ case (can be extended easily)

$$
A = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}^* \begin{bmatrix} R(0) & R(t_1 - t_2) & R(t_1 - t_3) \\ R(t_2 - t_1) & R(0) & R(t_2 - t_3) \\ R(t_3 - t_1) & R(t_3 - t_2) & R(0) \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}
$$

\n
$$
= \int_{-\infty}^{\infty} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}^* \begin{bmatrix} e^{i\omega(t_1 - t_1)}S(\omega) & e^{i\omega(t_1 - t_2)}S(\omega) & e^{i\omega(t_1 - t_3)}S(\omega) \\ e^{i\omega(t_2 - t_1)}S(\omega) & e^{i\omega(t_2 - t_2)}S(\omega) & e^{i\omega(t_2 - t_3)}S(\omega) \\ e^{i\omega(t_3 - t_1)}S(\omega) & e^{i\omega(t_3 - t_2)}S(\omega) & e^{i\omega(t_3 - t_3)}S(\omega) \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} d\omega
$$

\n
$$
= \int_{-\infty}^{\infty} \begin{bmatrix} e^{-i\omega t_1}a_1 \\ e^{-i\omega t_2}a_2 \\ e^{-i\omega t_3}a_3 \end{bmatrix}^* \begin{bmatrix} S^{1/2}(\omega) \\ S^{1/2}(\omega) \end{bmatrix} [S^{1/2}(\omega) - S^{1/2}(\omega) - S^{1/2}(\omega)] \begin{bmatrix} e^{-i\omega t_1}a_1 \\ e^{-i\omega t_2}a_2 \\ e^{-i\omega t_3}a_3 \end{bmatrix} d\omega
$$

\n
$$
\triangleq \int_{-\infty}^{\infty} Y^*(\omega)Y(\omega) d\omega \geq 0
$$

because the integrand is nonnegative definite for all ω

(we have used the fact that $S(\omega)\succeq 0$ and has a square root)

Theorem 3: let $R(t)$ be a continuous correlation matrix function such that

$$
\int_{-\infty}^{\infty} |R_{ij}(t)| dt < \infty, \quad \forall i, j
$$

then the spectral density matrix

$$
S(\omega) = \int_{-\infty}^{\infty} e^{i\omega t} R(t) dt
$$

is self-adjoint and positive semidefinite

- matrix case: proof by Balakrishnan, Introduction to Random Process in Engineering, page ⁷⁹
- scalar case: proof by Starks and Woods, page ⁶⁰⁷ (need to learn the topic on page 11-38 first)

simple proof (from Starks): let $\omega_2 > \omega_1$, define a filter transfer function

$$
H(\omega) = 1
$$
, $\omega \in (\omega_1, \omega_2)$, $H(\omega) = 0$, otherwise

let $X(t)$ and $Y(t)$ be input/output to this filter, then

$$
S_{YY}(\omega) = S_{XX}(\omega), \quad \omega \in (\omega_1, \omega_2), \qquad 0, \quad \text{else}
$$

since $\mathbf{E}[Y(t)^2]=R_y(0)$ and it is nonnegative, it follows that

$$
R_y(0) = \frac{1}{2\pi} \int_{\omega_1}^{\omega_2} S_x(\omega) d\omega \ge 0
$$

this must holds for any $\omega_2 > \omega_1$

hence, choosing $\omega_2 \approx \omega_1$ we must have $S_x(\omega) \geq 0$ — the power spectral density must be nonnegative

conclusion: a function $R(\tau)$ is nonnegative if and only if

it has ^a nonnegative Fourier transform

- ^a valid spectral density function therefore can be checked by its nonnegativity and it is easier than checking the nonnegativity conditionof $R(\tau)$
- analogy for probability density function

Conmutized)

\n**Stiv)**
$$
dx = 1
$$

\nProbability

\nUniversity

\nfunction

\n(nonnegative fiv) x

\nfunction

\n(nonnegative fiv) x

\nfunction

\n(nonnegative fiv) x

\nSpatial density

\nfunction

\

Linear system with random inputs

consider ^a linear system with input and output relationship through

$$
y = Hx
$$

which represents many applications (filter, transformation of signals, etc.)

questions regarding this setting:

- \bullet if x is a random signal, how can we explain about randomness of y ?
- \bullet if x is wide-sense stationary, how about y ? under what condition on H ?
- $\bullet\,$ if y is also wide-sense, how about relations between correlation/power spectral density of x and y ?

recall the definitions

• linear system:

$$
H(x_1 + \alpha x_2) = Hx_1 + \alpha Hx_2
$$

• time-invariant system: it commutes with shift operator

$$
Hx(t-T) = y(t-T)
$$

(time shift in the input causes the same time shift in the output)

 $\bullet\,$ response of linear time-invariant system: denote h the impulse response

$$
y(t) = h(t) * x(t) = \begin{cases} \int_{-\infty}^{\infty} h(\tau)x(t-\tau)d\tau & \text{continuous-time} \\ = \sum_{k=-\infty}^{\infty} h(t-k)x(k) & \text{discrete-time} \end{cases}
$$

- \bullet stable: poles of H are in stability region (LHP or inside unit circle)
- $\bullet\,$ causal system: response of y at t depends only on ${\it past}$ values of x

impulse response $h(t) = 0$, for $t < 0$

Properties of output from LTI system

let $Y = HX$ where H is linear time-invariant system and **stable** if $X(t)$ is wide-sense stationary then

• $m_Y(t) = H(0)m_X(t)$

- $\bullet\;Y(t)$ is also wide-sense stationary (in steady-state sense if $X(t)$ is applied when $t\geq0)$
- correlations and spectra are ^given by

using $\mathcal{F}(f(t)*g(t)) = F(\omega)G(\omega)$ and $\mathcal{F}(f^*)$ \ast ($(t)) = F^*$ $^{\ast}(\omega)$ proof of mean of Y : $m_Y(t) = H(0)m_X(t)$

$$
Y(t) = \int_{-\infty}^{\infty} h(s)X(t-s)ds
$$

$$
\mathbf{E}[Y(t)] = \int_{-\infty}^{\infty} h(s)\mathbf{E}[X(t-s)]ds
$$

$$
= \int_{-\infty}^{\infty} h(s)ds \cdot m_x \qquad \text{(since } X(t) \text{ is WSS)}
$$

$$
= H(0)m_x
$$

mean of Y is transformed by the DC gain of the system

$$
R_y(t + \tau, t) = \mathbf{E}[Y(t + \tau)Y(t)^T]
$$

\n
$$
= \mathbf{E}\left[\left(\int_{-\infty}^{\infty} h(\sigma)X(t + \tau - \sigma)ds\right)\left(\int_{-\infty}^{\infty} h(s)X(t - s)ds\right)^T\right]
$$

\n
$$
= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(\sigma)\mathbf{E}[X(t + \tau - \sigma)X(t - s)^T]h(s)^T d\sigma ds
$$

\n
$$
= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(\sigma)R_x(\tau + s - \sigma)h(s)^T d\sigma ds \quad (X \text{ is WSS})
$$

we see that $R_{y}(t+\tau, t)$ does not depend on t anymore but only on τ

- $\bullet\,$ we have shown that $Y(t)$ has a constant mean and the autocorrelation function depends only on the time gap τ
- $\bullet\,$ hence, $Y(t)$ is also a wide-sense stationary process

proofs of cross-correlation: using $Y(t) = \int_{-\infty}^{\infty} h(\alpha)X(t-\alpha)d\alpha$

•
$$
R_{YX}(\tau) = h(\tau) * R_X(\tau)
$$

$$
R_{YX}(\tau) = \mathbf{E}[Y(t)X^*(t-\tau)] = \int_{-\infty}^{\infty} h(\alpha)\mathbf{E}[X(t-\alpha)X^*(t-\tau)]d\alpha
$$

$$
= \int_{-\infty}^{\infty} h(\alpha)R_X(\tau-\alpha)d\alpha
$$

•
$$
R_Y(\tau) = R_{YX}(\tau) * H^*(-\tau)
$$

$$
R_Y(\tau) = \mathbf{E}[Y(t)Y^*(t-\tau)] = \int_{-\infty}^{\infty} \mathbf{E}[Y(t)X^*(t-(\tau+\alpha))]h^*(\alpha)d\alpha
$$

$$
= \int_{-\infty}^{\infty} R_{YX}(\tau+\alpha)h^*(\alpha)d\alpha = \int_{-\infty}^{\infty} R_{YX}(\tau-\sigma)h^*(-\sigma)d\sigma
$$

Power of output process

the relation $S_Y(\omega) = H(\omega)S_X(\omega)H^*$ $^*(\omega)$ reduces to

> $S_Y(\omega) = |H(\omega)|^2$ $^2S_X(\omega)$

for *scalar* processes $X(t)$ and $Y(t)$

- average power of the output depends on the input power at that frequency multiplied by power gain at the same frequency
- $\bullet\,$ we call $|H(\omega)|^2$ the power spectral density (psd) transfer function

this relation gives a procedure to estimate $H(\omega)$ when signals $X(t)$ and $Y(t)$ can be observed

 $\boldsymbol{\mathsf{example:}}\;$ a random telegraph signal with transition rate α is passed thru an RC filter with

$$
H(s) = \frac{\tau}{s + \tau}, \quad \tau = 1/RC
$$

question: find psd and autocorrelation of the output

random telegraph signal has the spectrum: $\quad S_x(f) = \dfrac{4\alpha}{4\alpha + 4\alpha}$ $\alpha + 4\pi^2 f^2$

from $S_y(f) = |H(f)|^2 S_x(f)$ and $R_y(t) = \mathcal{F}^{-1}[S_y(f)]$

$$
S_y(f) = \left(\frac{\tau^2}{\tau^2 + 4\pi^2 f^2}\right) \frac{4\alpha}{4\alpha + 4\pi^2 f^2}
$$

$$
= \frac{4\alpha \tau^2}{\tau^2 - 4\alpha^2} \left\{ \frac{1}{4\alpha^2 + 4\pi^2 f^2} - \frac{1}{\tau^2 + 4\pi^2 f^2} \right\}
$$

$$
R_y(t) = \frac{1}{\tau^2 - 4\alpha^2} \left(\tau^2 e^{-2\alpha|t|} - 2\alpha \tau e^{-\tau|t|}\right)
$$

(we have used $\mathcal{F}[e^{-at}]=2a/(a^2+\omega^2))$ and $\omega=2\pi f$

example: spectral density of AR process

$$
Y(n) = aY(n-1) + X(n)
$$

 $X(n)$ is i.i.d white noise with variance of σ^2

•
$$
H(z) = \frac{1}{1 - az^{-1}}
$$
 or
$$
H(e^{i\omega}) = \frac{1}{1 - ae^{-i\omega}}
$$

• spectral density is obtained by

$$
S_y(\omega) = |H(\omega)|^2 S_x(\omega) = \frac{\sigma^2}{(1 - ae^{-i\omega})(1 - ae^{i\omega})}
$$

$$
= \frac{\sigma^2}{1 + a^2 - 2a\cos(\omega)}
$$

spectral density of AR process: $a=0.7$ and $\sigma^2=2$

Input and output spectra

in conclusion, when input is white noise, the spectrum is flat

when white noise is passed through ^a filter, the output spectrum is no longer flat

Response to linear system: state-space models

consider ^a discrete-time linear system via ^a state-space model

$$
X(k + 1) = AX(k) + BU(k), \quad Y(k) = HX(k)
$$

where $X\in{\bf R}^n, Y\in{\bf R}^p, U\in{\bf R}^m$

known results:

• two forms of solutions of state and output variables are

$$
X(t) = At X(0) + \sum_{\tau=0}^{t-1} A^{\tau} B U(t - 1 - \tau), \quad Y(t) = C X(t)
$$

$$
= At-s X(s) + \sum_{\tau=s}^{t-1} A^{t-1-s} B U(\tau), \quad Y(t) = C X(t)
$$

 $\bullet\,$ the autonomous system (when $U=0)$ is stable if $|\lambda(A)|< 1$

State-space models: autocovariance function

Theorem: let U be a i.i.d white noise sequence with covariance Σ_u i) A is stable and ii) $X(0)$ is uncorrelated with $U(k)$ for all $k \geq 0$ then u and if

- $\lim_{n\to\infty} \mathbf{E}[X(n)] = 0$
- $\bullet \: C(n,n) \to \Sigma$ as $n \to \infty$ where

$$
\Sigma = A\Sigma A^T + B\Sigma_u B^T
$$

 $(\Sigma$ is a *unique* solution to the Lyapunov equation)

 $\bullet\,\,X(t)$ is wide-sense stationary in $\,$ steady-state sense, $\,i.e.,\,$

$$
\lim_{n \to \infty} C(n+k, n) = C(k) = \begin{cases} A^k \Sigma, & k \ge 0 \\ \Sigma(A^T)^{|k|}, & k < 0 \end{cases}
$$

proof: the mean of $X(t)$ converges to zero

let $m(n) = \mathbf{E}[X(n)]$ and it's easy to see

$$
m(n) = \mathbf{E}[X(n)] = A\mathbf{E}[X(n-1)] + B\mathbf{E}[U(n-1)] = Am(n-1)
$$

hence, $m(n)$ propagates like a linear system:

 $m(n) = A^n m(0)$

and goes to zero as $n\to\infty$ since A is stable

zero-mean system: $\tilde{X}(n) = X(n) - m(n)$

$$
\tilde{X}(n) = A\tilde{X}(n-1) + BU(n-1)
$$

mean-removed process also follow the same state-space equation

The Second Second

 $\textbf{proof:}~~\lim_{n\rightarrow\infty}C(n,n)=\Sigma$ and satisfies the Lyapunov equation

• \bullet $\tilde{X}(n)$ is uncorrelated with $U(k)$ for all $k \geq n$

$$
\tilde{X}(t) = A^t \tilde{X}(0) + \sum_{\tau=0}^{t-1} A^{\tau} B U(t - 1 - \tau)
$$

because $\tilde{X}(0)$ is uncorrelated with $U(t)$ for all t and $\tilde{X}(t)$ is only a function of $U(t-1), U(t-2), \ldots, U(0)$

•• since $\tilde{X}(n-1)$ is uncorrelated with $U(n-1)$, we obtain

$$
C(n, n) = AC(n - 1, n - 1)AT + B\SigmauBT
$$

from the state equation: $\tilde{X}(n) = A\tilde{X}(n-1) + BU(n-1)$

 $\bullet\,$ then we can write $C(n,n)$ recursively

$$
C(n,n) = \underbrace{A^n C(0,0) (A^T)^n}_{\text{go to zero}} + \underbrace{\sum_{k=0}^{n-1} A^k B \Sigma_u B^T (A^T)^k}_{\text{converges}}
$$

and observe its asymptotic behaviour when $n\to\infty$

 \bullet if A is stable, there exists γ s.t. $\|A^k\|\leq \gamma^k< 1$ (requires a proof)

 $||AⁿC(0, 0)(A^T)ⁿ|| \le ||A||²ⁿ||C(0, 0)|| \le \gamma²ⁿ||C(0, 0)|| \to 0, \quad n \to \infty$

• let $\Sigma = \sum_{k=0}^\infty A^k B \Sigma_u B^T (A^T)^k$, we can check that

$$
\Sigma = A\Sigma A^T + B\Sigma_u B^T
$$

 \bullet Σ is unique, otherwise, by contradiction

$$
\Sigma_1 = A\Sigma_1 A^T + B\Sigma_u B^T, \quad \Sigma_2 = A\Sigma_2 A^T + B\Sigma_u B^T
$$

we can subtract one from another and see that

$$
\Sigma_1 - \Sigma_2 = A(\Sigma_1 - \Sigma_2)A^T = A^2(\Sigma_1 - \Sigma_2)(A^T)^2 = \dots = A^n(\Sigma_1 - \Sigma_2)(A^T)^n
$$

this goes to zero since A is stable $(\|A^k\|\rightarrow 0)$

$$
\|\Sigma_1 - \Sigma_2\| = \|A^n(\Sigma_1 - \Sigma_2)(A^T)^n\| \le \|A\|^{2n} \|\Sigma_1 - \Sigma_2\| \to 0
$$

this completes the proof

 \Box

proof: $\tilde{X}(n)$ is wide-sense stationary in steady-state

- •• $\tilde{X}(k)$ is uncorrelated with $\{U(k), U(k+1), \ldots, U(n-1)\}$
- • $\bullet\,$ from the solution of $\tilde{X}(n)$

$$
\tilde{X}(n) = A^{n-k}\tilde{X}(k) + \sum_{\tau=k}^{n-1} A^{n-1-\tau}BU(\tau), \quad k < n
$$

the two terms on RHS are uncorrelated

 $\bullet\,$ the autocovariance function is obtained by (for $n>k)$

$$
C(n,k) = \mathbf{E}[\tilde{X}(n)\tilde{X}(k)^{T}]
$$

= $A^{n-k}\mathbf{E}[\tilde{X}(k)\tilde{X}(k)^{T}] + \sum_{\tau=k}^{n-1} A^{n-1-\tau}B\mathbf{E}[U(\tau)\tilde{X}(k)^{T}]$
= $A^{n-k}C(k,k) + 0$

which converges to $A^{n-k}\Sigma$ as $n,k\to\infty$ if A is stable

 $\overline{}$

State-space models: autocovariance of output

output equation:

$$
Y(n) = HX(n), \quad \tilde{Y}(n) = H\tilde{X}(n)
$$

when $X(n)$ is wide-sense stationary (in steady-state) then

when $n,k\to\infty$, we have

$$
C_y(n,k) = HC_x(n,k)H^T = HA^{n-k}C_x(k,k)H^T, \quad n \ge k
$$

and

$$
\lim_{n \to \infty} C_y(n, n) = \lim_{n \to \infty} HC_x(n, n)H^T = H\Sigma H^T
$$

where Σ is the solution to the Lyapunov equation: $\Sigma = A\Sigma A^T$ $T+ B\Sigma_u B^T$ example: AR process with $a=0.7$ and U is i.i.d. white noise with $\sigma^2=2$

$$
Y(n) = aY(n-1) + U(n-1)
$$

1st-order AR process is already in state-space equation

 $\bullet\,$ in steady-state, the covariance function at lag 0 converges to α where

$$
\alpha = a\alpha^2 + \sigma^2 \quad \Longrightarrow \quad \alpha = \frac{\sigma^2}{1 - a^2}
$$

(we have solved the Lyapunov equation)

• in steady-state, the covariance function is ^given by

$$
C(\tau) = \frac{\sigma^2 a^{|\tau|}}{1 - a^2}
$$

References

Chapter 9-10 in A. Leon-Garcia, Probability, Statistics, and Random Processes for Electrical Engineering, 3rd edition, Pearson Prentice Hall, ²⁰⁰⁹

Chapter ⁹ in

 H. Stark and J. W. Woods, Probability, Statistics, and Random Processes for Engineers, 4th edition, Pearson, ²⁰¹²