
EE401 (Semester 1) Jitkomut Songsiri

11. Wide-sense stationary processes

• definition

• properties of correlation function

• power spectral density (Wiener – Khinchin theorem)

• cross-correlation

• cross spectrum

• linear system with random inputs

• designing optimal linear filters
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Definition

the second-order joint cdf of an RP X(t) is

FX(t1),X(t2)(x1, x2)

(joint cdf of two different times)

we say X(t) is wide-sense (or second-order) stationary if

FX(t1),X(t2)(x1, x2) = FX(t1+τ),X(t2+τ)(x1, x2)

the second-order joint cdf do not change for all t1, t2 and for all τ

results:

• E[X(t)] = m (mean is constant)

• R(t1, t2) = R(t2 − t1) (correlation depends only on the time gap)
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Properties of correlation function

let X(t) be a wide-sense scalar real-valued RP with correlation function
R(t1, t2)

• since R(t1, t2) depends only on t1 − t2, we usually write R(τ) where
τ = t1 − t2 instead

• R(0) = E[X(t)2] for all t

• R(τ) is an even function of τ

R(τ) , E[X(t+ τ)X(t)] = E[X(t)X(t+ τ)] , R(−τ)

• |R(τ)| ≤ R(0) (correlation is maximum at lag zero)

E[(X(t+τ)−X(t))2] ≥ 0 =⇒ 2E[X(t+τ)X(t)] ≤ E[X(t+τ)2]+E[X(t)2]
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• the autocorrelation is a measure of rate of change of a WSS

P (|X(t+ τ)−X(t)| > ǫ)

= P (|X(t+τ)−X(t)|2 > ǫ2) ≤
E[|X(t+ τ)−X(t)|2]

ǫ2
=

2(R(0)−R(τ))

ǫ2

• for complex-valued RP, R(τ) = R∗(−τ)

R(τ) , E[X(t+ τ)X∗(t)]

= E[X(t)X∗(t− τ)]

= E[X(t− τ)X∗(t)]

, R∗(−τ)

• if R(0) = R(T ) for some T then R(τ) is periodic with period T and
X(t) is mean square periodic, i.e.,

E[(X(t+ T )−X(t))2] = 0
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R(τ) is periodic because

(R(τ + T )−R(τ))2

= {E[(X + t+ τ + T )−X(t+ τ))X(t)]}2

≤ E[(X(t+ τ + T )−X(t+ τ))2]E[X2(t)] (Cauchy-Schwarz ineq)

= 2[R(0)− R(T )]R(0) = 0

X(t) is mean square periodic because

E[(X(t+ T )−X(t))2] = 2(R(0)−R(T )) = 0

• let X(t) = m+ Y (t) where Y (t) is a zero-mean process

Rx(τ) = m2 +Ry(τ)
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examples:
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random telegraph signal

• sinusoide with random phase: R(τ) = A2

2 cos(ωτ)

• random telegraph signal: R(τ) = e−2α|τ |
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Nonnegativity of correlation function

let X(t) be a real-valued WSS and let Z = (X(t1),X(t2), . . . , X(tN))

the correlation matrix of Z, which is always nonnegative, takes the form

R =







R(0) R(t1 − t2) · · · R(t1 − tN)
R(t2 − t1) R(0) . . . ...

... . . . . . . R(tN−1 − tN)
R(tN − t1) · · · R(tN − tN−1) R(0)







(symmetric)

since by assumption,

• X(t) can be either CT or DT random process

• N (the number of time samples) can be any number

• the choice of tk’s are arbitrary

we then conclude that R � 0 holds for all sizes of R (N = 1, 2, . . .)
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the nonnegativity of R can also be checked from the definition:

aTRa ≥ 0, for all a = (a1, a2, . . . , aN)

which follows from

N∑

i=1

N∑

j=1

aTi R(ti − tj)aj =
N∑

i

N∑

j

E[aTi X(ti)X(tj)
Taj]

= E





(
N∑

i=1

aTi X(ti)

)2


 ≥ 0

important note: the value of R(t) at some fixed t can be negative !
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example: R(τ) = e−|τ |/2 and let t = (t1, t2, . . . , t5)

k=5; t = abs(randn(k,1)); t = sort(t); % t = (t1,...,tk)

R = zeros(k);

for i=1:k

for j=1:k

R(i,j) = exp(-0.5*abs(t(i)-t(j)));

end

end

R =

1.0000 0.6021 0.4952 0.4823

0.6021 1.0000 0.8224 0.8011

0.4952 0.8224 1.0000 0.9740

0.4823 0.8011 0.9740 1.0000

eig(R) =

0.0252 0.2093 0.6416 3.1238

showing that R � 0 (try with any k)

Wide-sense stationary processes 11-9



Block toeplitz structure of correlation matrix

CT process: if X(t) are sampled as Z = (X(t1),X(t2), . . . , X(tN)) where

ti+1 − ti = constant = s , i = 1, . . . , N − 1

(times have constant spacing, s > 0 and no need to be an integer)

we see that R = E[ZZT ] has a symmetric block toeplitz structure

R =







R(0) R(−s) · · · R(−(N − 1)s)
R(s) R(0) . . . ...
... . . . . . . R(−s)

R((N − 1)s) · · · R(s) R(0)







(symmetric)

if X(t) is WSS then R � 0 for any integer N and any s > 0
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example: R(τ) = e−|τ |/2

>> t=0:0.5:2; R = exp(-0.5*abs(t)); T = toeplitz(R)

R =

1.0000 0.7788 0.6065 0.4724 0.3679

T =

1.0000 0.7788 0.6065 0.4724 0.3679

0.7788 1.0000 0.7788 0.6065 0.4724

0.6065 0.7788 1.0000 0.7788 0.6065

0.4724 0.6065 0.7788 1.0000 0.7788

0.3679 0.4724 0.6065 0.7788 1.0000

eig(T) =

0.1366 0.1839 0.3225 0.8416 3.5154
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DT process: time indices are integers, so Z = (X(1),X(2), . . . ,X(N))

times also have constant spacing

R = E[ZZT ] also has a symmetric block toeplitz structure







R(0) R(−1) · · · R(1−N)
R(1) R(0) . . . ...
... . . . . . . R(−1)

R(N − 1) · · · R(1) R(0)







if X(t) is WSS then R � 0 for any positive integer N
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example: R(τ) = cos(τ)

>> t=0:2; R = cos(t); T = toeplitz(R)

R =

1.0000 0.5403 -0.4161

T =

1.0000 0.5403 -0.4161

0.5403 1.0000 0.5403

-0.4161 0.5403 1.0000

eig(T) =

0.0000

1.4161

1.5839

R(τ) at some τ can be negative !

Wide-sense stationary processes 11-13



Power spectral density

Wiener-Khinchin Theorem: if a process is wide-sense stationary, the
autocorrelation function and the power spectral density form a Fourier
transform pair:

S(ω) =

∫ ∞

−∞

e−iωτR(τ)dτ continuous-time FT

S(ω) =
∞∑

k=−∞

R(k)e−iωk discrete-time FT

R(τ) =
1

2π

∫ ∞

−∞

eiωτS(ω)dω continuous-time IFT

R(τ) =
1

2π

∫ π

−π

eiωτS(ω)dω discrete-time IFT

S(ω) indicates a density function for average power versus frequency
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examples: sinusoid with random phase and random telegraph

• (left) X(t) = A sin(ω0t+ φ) and φ ∼ U(−π, π)

• (right) X(t) is random telegraph signal
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examples: white noise process

• (left) DT white noise process has a spectrum as a rectangular window

• (right) CT white noise process has a flat spectrum
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Spectrum of a moving average process

let X(n) be a DT white noise process with variance σ2

Y (n) = X(n) + αX(n− 1), α ∈ R

then Y (n) is an RP with autocorrelation function

RY (τ) =







(1 + α2σ2), τ = 0,

ασ2, |τ | = 1,

0, otherwise

the spectrum of DT process (is periodic in f ∈ [−1/2, 1/2]) is given by

S(f) =

∞∑

k=−∞

RY (k)e
−i2πfk

= (1 + α2σ2) + ασ2(ei2πf + e−i2πf)

= σ2(1 + α2 + 2α cos(2πf))
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examples: moving average process with σ2 = 2 and α = 0.8
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spectrum is periodic in f ∈ [−1/2, 1/2]
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Band-limited white noise

given a (white) process whose spectrum is flat in the range −B ≤ f ≤ B
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the magnitude of the spectrum is N/2

what will the (continuous-valued) process look like ?
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autocorrelation function is obtained from IFT

R(τ) = (N/2)

∫ B

−B

ei2πfτdf

=
N

2
·
ei2πBτ − e−i2πBτ

i2πτ

=
N sin(2πBτ)

2πτ
= NBsinc(2πBτ)

• X(t) and X(t+ τ) are uncorrelated at τ = ±k/2B for k = 1, 2, . . .

• if B → ∞, the band-limited white noise becomes a white noise

S(f) =
N

2
, ∀f, R(τ) =

N

2
δ(τ)
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Properties of power spectral density

consider real-valued RPs, so R(τ) is real-valued

• S(ω) is real-valued and even function (∵ R(τ) is real and even)

• R(0) indicates the average power

R(0) = E[X(t)2] =
1

2π

∫ ∞

−∞

S(ω)dω

• S(ω) ≥ 0 for all ω and for all ω2 ≥ ω1

1

2π

∫ ω2

ω1

S(ω)dω

is the average power in the frequency band (ω2, ω1)

(see proof in Chapter 9 of H. Stark)
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Power spectral density as a time average

let X [0],X [1], . . . ,X [N − 1] be N observations from DT WSS process

discrete Fourier transform of the time-domain sequence is

X̃[k] =
N−1∑

n=0

X [n]e−
i2π
N kn, k = 0, 1, . . . , N − 1

• X̃[k] is a complex-valued sequence describing DT Fourier transform
with only discrete frequency points

• X̃[k] is a measure of energy at frequency 2πk/N

• an estimate of power at a frequency is then

S̃(k) =
1

N
|X̃[k]|2

and is called periodogram estimate for the power spectral density
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example: X(t) = sin(40πt) + 0.5 sin(60πt)
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Periodogram Power Spectral Density Estimate

noiseless signal

corrupted signal

• signal has frequency components at 20 and 30 Hz

• peaks at 20 and 30 Hz are clearly seen

• when signal is corrupted by noise, spectrum peaks can be less distinct

• the plots are done using pspectrum and periodogram in MATLAB
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Frequency analysis of solar irradiance

data are irradiance with sampling period of T = 30 min
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• ACF is a normalized autocorrelation function (by R(0)) and appears to
be periodic

• spectral density appears to have three peaks corresponding to
0, 12, 24 µHz

• the frequencies of 12, 24 µHz correspond to the periods of one day and
half day respectively

• ACF and spectral density are computed by autocorr and pwelch

commands in MATLAB

• more details on spectrum estimation methods can be further studied in
signal processing
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Cross correlation and cross spectrum

cross correlation between processes X(t) and Y (t) is defined as

RXY (τ) = E[X(t+ τ)Y (t)]

cross-power spectral density between X(t) and Y (t) is defined as

SXY (ω) =

∫ ∞

−∞

e−iωτRXY (τ)dτ

properties:

• SXY (ω) is complex-valued in general, even X(t) and Y (t) are real

• RY X(τ) = RXY (−τ)

• SY X(ω) = SXY (−ω)
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Examples from solar variables

solar power (P ), solar irradiance (I), temperature (T), wind speed (WS)
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• (normalized) cross correlations are computed by xcorr in MATLAB

• (normalized) coherence functions are computed by mscohere:

Cxy(f) =
|Sxy(f)|

2

Sx(f)Sy(f)
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cross covariance function:
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• P and I are highly correlated while P and WS are least correlated

• cross covariance functions are almost periodic (daily cycle) with slightly
decaying envelopes
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Extended definitions

extension: let X(t) be a complex-valued vector random process

• denote ∗ Hermittian transpose, i.e., X∗ = X
T

• correlation function: R(τ) = E[X(t+ τ)X(t)∗]

• covariance function: C(τ) = R(τ)− µµ∗

• RY X(τ) = R∗
XY (−τ)

• SY X(ω) = S∗
XY (−ω)

• S(ω) is self-adjoint, i.e., S(ω) = S∗(ω) and S(ω) � 0

(cross) correlation and (cross) spectral density functions are matrices
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Theorems on correlation function and spectrum

Theorem 1: a necessary and sufficient condition for R(τ) to be a
correlation function of a WSS is that it is positive semidefinite

• proof of sufficiency part: if R(τ) is positive semidefinite then there
exists a WSS whose correlaction function is R(τ)

– if R(τ) is psdf then its Fourier transform is positive semidefinite (a
proof is not obvious)

– let us call S(ω) = F(R(τ)) � 0
– by spectral factorization theorem, there exists a stable filter H(ω)

such that S(ω) = H(ω)H∗(ω) – more advanced topic
– the existence of a WSS is given by applying a white noise to the filter

H(ω) – the topic we will learn next on page 11-38

• proof of necessity part: if a process is WSS then R(τ) is positive
semidefinite – shown on page 11-7
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Theorem 2: let S(ω) be a self-adjoint and nonnegative matrix and

∫ ∞

−∞

tr(S(ω))dω < ∞

then its inverse Fourier transform:

R(t) =
1

2π

∫ ∞

−∞

ejωtS(ω)dω

is nonnegative, i.e.,
∑N

j=1

∑N
k=1 a

∗
jR(tj − tk)ak ≥ 0







a1
a2
...
aN







∗





R(0) R(t1 − t2) · · · R(t1 − tN)
R(t2 − t1) R(0) . . . ...

... . . . . . . R(tN−1 − tN)
R(tN − t1) · · · R(tN − tN−1) R(0)













a1
a2
...
aN






� 0
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proof: let us consider N = 3 case (can be extended easily)

A =





a1
a2
a3





∗



R(0) R(t1 − t2) R(t1 − t3)
R(t2 − t1) R(0) R(t2 − t3)
R(t3 − t1) R(t3 − t2) R(0)









a1
a2
a3





=

∫ ∞

−∞





a1
a2
a3





∗



eiω(t1−t1)S(ω) eiω(t1−t2)S(ω) eiω(t1−t3)S(ω)
eiω(t2−t1)S(ω) eiω(t2−t2)S(ω) eiω(t2−t3)S(ω)
eiω(t3−t1)S(ω) eiω(t3−t2)S(ω) eiω(t3−t3)S(ω)









a1
a2
a3



 dω

=

∫ ∞

−∞





e−iωt1a1
e−iωt2a2
e−iωt3a3





∗



S1/2(ω)
S1/2(ω)
S1/2(ω)




[
S1/2(ω) S1/2(ω) S1/2(ω)

]





e−iωt1a1
e−iωt2a2
e−iωt3a3



 dω

,

∫ ∞

−∞

Y ∗(ω)Y (ω)dω � 0

because the integrand is nonnegative definite for all ω

(we have used the fact that S(ω) � 0 and has a square root)
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Theorem 3: let R(t) be a continuous correlation matrix function such that

∫ ∞

−∞

|Rij(t)|dt < ∞, ∀i, j

then the spectral density matrix

S(ω) =

∫ ∞

−∞

eiωtR(t)dt

is self-adjoint and positive semidefinite

• matrix case: proof by Balakrishnan, Introduction to Random Process in
Engineering, page 79

• scalar case: proof by Starks and Woods, page 607 (need to learn the
topic on page 11-38 first)
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simple proof (from Starks): let ω2 > ω1 , define a filter transfer function

H(ω) = 1, ω ∈ (ω1, ω2), H(ω) = 0, otherwise

let X(t) and Y (t) be input/output to this filter, then

SY Y (ω) = SXX(ω), ω ∈ (ω1, ω2), 0, else

since E[Y (t)2] = Ry(0) and it is nonnegative, it follows that

Ry(0) =
1

2π

∫ ω2

ω1

Sx(ω)dω ≥ 0

this must holds for any ω2 > ω1

hence, choosing ω2 ≈ ω1 we must have Sx(ω) ≥ 0 — the power spectral
density must be nonnegative
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conclusion: a function R(τ) is nonnegative if and only if

it has a nonnegative Fourier transform

• a valid spectral density function therefore can be checked by its
nonnegativity and it is easier than checking the nonnegativity condition
of R(τ)

• analogy for probability density function
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Linear system with random inputs

consider a linear system with input and output relationship through

y = Hx

which represents many applications (filter, transformation of signals, etc.)

questions regarding this setting:

• if x is a random signal, how can we explain about randomness of y?

• if x is wide-sense stationary, how about y? under what condition on H?

• if y is also wide-sense, how about relations between correlation/power
spectral density of x and y?
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recall the definitions

• linear system:
H(x1 + αx2) = Hx1 + αHx2

• time-invariant system: it commutes with shift operator

Hx(t− T ) = y(t− T )

(time shift in the input causes the same time shift in the output)

• response of linear time-invariant system: denote h the impulse response

y(t) = h(t) ∗ x(t) =

{∫∞

−∞
h(τ)x(t− τ)dτ continous-time

=
∑∞

k=−∞ h(t− k)x(k) discrete-time

• stable: poles of H are in stability region (LHP or inside unit circle)

• causal system: response of y at t depends only on past values of x

impulse response h(t) = 0, for t < 0
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Properties of output from LTI system

let Y = HX where H is linear time-invariant system and stable

if X(t) is wide-sense stationary then

• mY (t) = H(0)mX(t)

• Y (t) is also wide-sense stationary
(in steady-state sense if X(t) is applied when t ≥ 0)

• correlations and spectra are given by

time-domain frequency-domain
RY X(τ) = h(τ) ∗RX(τ) SY X(ω) = H(ω)SX(ω)
RXY (τ) = RX(τ) ∗ h∗(−τ) SXY (ω) = SX(ω)H∗(ω)
RY (τ) = RY X(τ) ∗ h∗(−τ) SY (ω) = SY X(ω)H∗(ω)
RY (τ) = h(τ) ∗RX(τ) ∗ h∗(−τ) SY (ω) = H(ω)SX(ω)H∗(ω)

using F(f(t) ∗ g(t)) = F (ω)G(ω) and F(f∗(−t)) = F ∗(ω)
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proof of mean of Y : mY (t) = H(0)mX(t)

Y (t) =

∫ ∞

−∞

h(s)X(t− s)ds

E[Y (t)] =

∫ ∞

−∞

h(s)E[X(t− s)]ds

=

∫ ∞

−∞

h(s)ds ·mx (since X(t) is WSS)

= H(0)mx

mean of Y is transformed by the DC gain of the system
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proof of WSS of Y

Ry(t+ τ, t) = E[Y (t+ τ)Y (t)T ]

= E

[(∫ ∞

−∞

h(σ)X(t+ τ − σ)ds

)(∫ ∞

−∞

h(s)X(t− s)ds

)T
]

=

∫ ∞

−∞

∫ ∞

−∞

h(σ)E[X(t+ τ − σ)X(t− s)T ]h(s)Tdσds

=

∫ ∞

−∞

∫ ∞

−∞

h(σ)Rx(τ + s− σ)h(s)Tdσds (X is WSS)

we see that Ry(t+ τ, t) does not depend on t anymore but only on τ

• we have shown that Y (t) has a constant mean and the autocorrelation
function depends only on the time gap τ

• hence, Y (t) is also a wide-sense stationary process
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proofs of cross-correlation: using Y (t) =
∫∞

−∞
h(α)X(t− α)dα

• RY X(τ) = h(τ) ∗RX(τ)

RY X(τ) = E[Y (t)X∗(t− τ)] =

∫ ∞

−∞

h(α)E[X(t− α)X∗(t− τ)]dα

=

∫ ∞

−∞

h(α)RX(τ − α)dα

• RY (τ) = RY X(τ) ∗H∗(−τ)

RY (τ) = E[Y (t)Y ∗(t− τ)] =

∫ ∞

−∞

E[Y (t)X∗(t− (τ + α))]h∗(α)dα

=

∫ ∞

−∞

RY X(τ + α)h∗(α)dα =

∫ ∞

−∞

RY X(τ − σ)h∗(−σ)dσ
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Power of output process

the relation SY (ω) = H(ω)SX(ω)H∗(ω) reduces to

SY (ω) = |H(ω)|2SX(ω)

for scalar processes X(t) and Y (t)

• average power of the output depends on the input power at that
frequency multiplied by power gain at the same frequency

• we call |H(ω)|2 the power spectral density (psd) transfer function

this relation gives a procedure to estimate H(ω) when signals X(t) and
Y (t) can be observed
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example: a random telegraph signal with transition rate α is passed thru
an RC filter with

H(s) =
τ

s+ τ
, τ = 1/RC

question: find psd and autocorrelation of the output

random telegraph signal has the spectrum: Sx(f) =
4α

4α+ 4π2f2

from Sy(f) = |H(f)|2Sx(f) and Ry(t) = F−1[Sy(f)]

Sy(f) =

(
τ2

τ2 + 4π2f2

)
4α

4α+ 4π2f2

=
4ατ2

τ2 − 4α2

{
1

4α2 + 4π2f2
−

1

τ2 + 4π2f2

}

Ry(t) =
1

τ2 − 4α2

(

τ2e−2α|t| − 2ατe−τ |t|
)

(we have used F [e−at] = 2a/(a2 + ω2)) and ω = 2πf
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example: spectral density of AR process

Y (n) = aY (n− 1) +X(n)

X(n) is i.i.d white noise with variance of σ2

• H(z) = 1
1−az−1 or H(eiω) = 1

1−ae−iω

• spectral density is obtained by

Sy(ω) = |H(ω)|2Sx(ω) =
σ2

(1− ae−iω)(1− aeiω)

=
σ2

1 + a2 − 2a cos(ω)
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spectral density of AR process: a = 0.7 and σ2 = 2
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Input and output spectra

in conclusion, when input is white noise, the spectrum is flat

when white noise is passed through a filter, the output spectrum is no
longer flat
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Response to linear system: state-space models

consider a discrete-time linear system via a state-space model

X(k + 1) = AX(k) +BU(k), Y (k) = HX(k)

where X ∈ Rn, Y ∈ Rp, U ∈ Rm

known results:

• two forms of solutions of state and output variables are

X(t) = AtX(0) +
t−1∑

τ=0

AτBU(t− 1− τ), Y (t) = CX(t)

= At−sX(s) +
t−1∑

τ=s

At−1−sBU(τ), Y (t) = CX(t)

• the autonomous system (when U = 0) is stable if |λ(A)| < 1
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State-space models: autocovariance function

Theorem: let U be a i.i.d white noise sequence with covariance Σu and if
i) A is stable and ii) X(0) is uncorrelated with U(k) for all k ≥ 0 then

• limn→∞E[X(n)] = 0

• C(n, n) → Σ as n → ∞ where

Σ = AΣAT +BΣuB
T

(Σ is a unique solution to the Lyapunov equation )

• X(t) is wide-sense stationary in steady-state sense, i.e.,

lim
n→∞

C(n+ k, n) = C(k) =

{

AkΣ, k ≥ 0

Σ(AT )|k|, k < 0
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proof: the mean of X(t) converges to zero

let m(n) = E[X(n)] and it’s easy to see

m(n) = E[X(n)] = AE[X(n− 1)] + BE[U(n− 1)] = Am(n− 1)

hence, m(n) propagates like a linear system:

m(n) = Anm(0)

and goes to zero as n → ∞ since A is stable

zero-mean system: X̃(n) = X(n)−m(n)

X̃(n) = AX̃(n− 1) + BU(n− 1)

mean-removed process also follow the same state-space equation
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proof: limn→∞C(n, n) = Σ and satisfies the Lyapunov equation

• X̃(n) is uncorrelated with U(k) for all k ≥ n

X̃(t) = AtX̃(0) +
t−1∑

τ=0

AτBU(t− 1− τ)

because X̃(0) is uncorrelated with U(t) for all t and X̃(t) is only a
function of U(t− 1), U(t− 2), . . . , U(0)

• since X̃(n− 1) is uncorrelated with U(n− 1), we obtain

C(n, n) = AC(n− 1, n− 1)AT +BΣuB
T

from the state equation: X̃(n) = AX̃(n− 1) +BU(n− 1)
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• then we can write C(n, n) recursively

C(n, n) = AnC(0, 0)(AT )n
︸ ︷︷ ︸

go to zero

+
n−1∑

k=0

AkBΣuB
T (AT )k

︸ ︷︷ ︸
converges

and observe its asymptotic behaviour when n → ∞

• if A is stable, there exists γ s.t. ‖Ak‖ ≤ γk < 1 (requires a proof)

‖AnC(0, 0)(AT )n‖ ≤ ‖A‖2n‖C(0, 0)‖ ≤ γ2n‖C(0, 0)‖ → 0, n → ∞

• let Σ =
∑∞

k=0A
kBΣuB

T (AT )k, we can check that

Σ = AΣAT +BΣuB
T

• Σ is unique, otherwise, by contradiction

Σ1 = AΣ1A
T +BΣuB

T , Σ2 = AΣ2A
T +BΣuB

T
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we can subtract one from another and see that

Σ1−Σ2 = A(Σ1−Σ2)A
T = A2(Σ1−Σ2)(A

T )2 = · · · = An(Σ1−Σ2)(A
T )n

this goes to zero since A is stable (‖Ak‖ → 0)

‖Σ1 − Σ2‖ = ‖An(Σ1 − Σ2)(A
T )n‖ ≤ ‖A‖2n‖Σ1 − Σ2‖ → 0

this completes the proof
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proof: X̃(n) is wide-sense stationary in steady-state

• X̃(k) is uncorrelated with {U(k), U(k + 1), . . . , U(n− 1)}

• from the solution of X̃(n)

X̃(n) = An−kX̃(k) +
n−1∑

τ=k

An−1−τBU(τ), k < n

the two terms on RHS are uncorrelated

• the autocovariance function is obtained by (for n > k)

C(n, k) = E[X̃(n)X̃(k)T ]

= An−k
E[X̃(k)X̃(k)T ] +

n−1∑

τ=k

An−1−τBE[U(τ)X̃(k)T ]

= An−kC(k, k) + 0

which converges to An−kΣ as n, k → ∞ if A is stable
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State-space models: autocovariance of output

output equation:

Y (n) = HX(n), Ỹ (n) = HX̃(n)

when X(n) is wide-sense stationary (in steady-state) then

when n, k → ∞, we have

Cy(n, k) = HCx(n, k)H
T = HAn−kCx(k, k)H

T , n ≥ k

and
lim
n→∞

Cy(n, n) = lim
n→∞

HCx(n, n)H
T = HΣHT

where Σ is the solution to the Lyapunov equation: Σ = AΣAT +BΣuB
T
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example: AR process with a = 0.7 and U is i.i.d. white noise with σ2 = 2

Y (n) = aY (n− 1) + U(n− 1)

1st-order AR process is already in state-space equation

• in steady-state, the covariance function at lag 0 converges to α where

α = aα2 + σ2 =⇒ α =
σ2

1− a2

(we have solved the Lyapunov equation)

• in steady-state, the covariance function is given by

C(τ) =
σ2a|τ |

1− a2
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