EE401 (Semester 1) Jitkomut Songsiri

11. Wide-sense stationary processes

e definition

e properties of correlation function

e power spectral density (Wiener — Khinchin theorem)
e cross-correlation

® Cross spectrum

e linear system with random inputs

e designing optimal linear filters
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Definition
the second-order joint cdf of an RP X () is

E'x (1), x (1) (21, 22)
(joint cdf of two different times)
we say X (t) is wide-sense (or second-order) stationary if
FX(tl),X(tQ)(iUla 552) — FX(t1+7),X(t2+r)(iU17 552)

the second-order joint cdf do not change for all £1,¢5 and for all 7

results:

e E|X (¢)] = m (mean is constant)

e R(t1,t2) = R(t2 — t1) (correlation depends only on the time gap)
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Properties of correlation function

let X (¢) be a wide-sense scalar real-valued RP with correlation function
R(tla t2)

e since R(t1,t2) depends only on t; — t5, we usually write R(7) where
T = t1 — to Instead

e R(0) = E[X(t)?] for all ¢

e R(7) is an even function of 7

R(T)2EX(t+1X®)]=EX®)X({t+7)] = R(—7)

e |R(7)| < R(0) (correlation is maximum at lag zero)

E[(X(t+7)-X(1))?] > 0 = 2E[X (t+7)X (t)] < E[X (t+7)*]|+E[X ()]
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e the autocorrelation is a measure of rate of change of a WSS

P(|X(t+71)—X(t)| >¢)

(X)X (O 5 ) < EIX(E+T) = XWP) _ 2(R(0) — Rir)

e for complex-valued RP, R(7) = R*(—71)

R(t) & E[X(t+71)X*(t)
= E[X{t)X*(t—1)
= E[X(t—T1)X*()
t R(-7)

o if R(0) = R(T) for some T then R(7) is periodic with period T" and
X (t) is mean square periodic, i.e.,

E[(Xt+T)-X(t)* =0
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R(T) is periodic because

(R(T+T) — R(1))*

={E[(X +t+7+T)— X(t+7)X@)]}
E[(X(t+7+T)— X(t+7))E[X?()] (Cauchy-Schwarz ineq)
2[R(0) — R(T)|R(0) =0

| VA

X (t) is mean square periodic because

E[(X(t +T) — X(t))*] = 2(R(0) — R(T)) = 0

o let X(t) =m + Y (t) where Y () is a zero-mean process

Ry(1) = m® + Ry(7)
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examples:

sinusoid with random phase random telegraph signal

ol | 08}
S 5
© = 0.6t
20 ©
O p -
§ § 0.4t
3 5
© -2

o2t
4 0
-5 0 5 5 0 5
T T

e sinusoide with random phase: R(7) = A;cos(w’r)

e random telegraph signal: R(7) = e2¢I7l
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Nonnegativity of correlation function

let X (t) be a real-valued WSS and let Z = (X (¢1), X (t2),..., X(tn))

the correlation matrix of Z, which is always nonnegative, takes the form

R(0) R(t; — t2) e R(t; — tn)

Rtz B f) R(O) (symmetric)

R(tN:_ t1) - R(tn -_.-tN—l) R(0)

since by assumption,

e X (t) can be either CT or DT random process
e N (the number of time samples) can be any number

e the choice of ¢;'s are arbitrary

we then conclude that R = 0 holds for all sizesof R (N =1,2,...)
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the nonnegativity of R can also be checked from the definition:
alRa >0, forall a= (a1,a9,...,an)

which follows from

DD aiR(ti—tj)a; = D> Blal X(1)X(t))"aj
= E (Zﬁxug) > ()

important note: the value of R(t) at some fixed ¢ can be negative !

Wide-sense stationary processes 11-8



example: R(7) = e~ I"l/2 and let t = (t1,t2,...,15)

t = abs(randn(k,1)); t =

R(i,j) = exp(-0.5*%abs(t(i)-t(j)));

k=5;

R = zeros(k);

for i=1:k
for j=1:k
end

end

R =
1.0000 0.6021
0.6021 1.0000
0.4952 0.8224
0.4823 0.8011

eig(R) =

0.0252 0.2093

0.4952
0.8224
1.0000
0.9740

0.6416

showing that R > 0 (try with any k)

Wide-sense stationary processes

sort(t); % t = (t1,...

0.4823
0.8011
0.9740
1.0000

3.1238
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Block toeplitz structure of correlation matrix

CT process: if X(t) are sampled as Z = (X (t1), X(t2),..., X(tn)) where
tiz1—t;=constant=s ,1=1,...,N —1

(times have constant spacing, s > 0 and no need to be an integer)

we see that R = E[ZZ”] has a symmetric block toeplitz structure

R(0) R(=s) - R(=(N —1)s)
R _ R(S) R(O) | | R(—S) (symmetric)
R((N—-1)s) - R(s) R(0) ]

if X (t) is WSS then R = 0 for any integer N and any s > 0
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example: R(7) = e~I71/2

>> t=0:0.5:2; R = exp(-0.5*%abs(t)); T =

1.0000 0.

1.0000
0.7788
0.6065
0.4724
0.3679

O O O~ O

eig(T) =

0.1366 0.

Wide-sense stationary processes

7788

. (738
.0000
. 7788
.6065
L4724

1839

0.

O O O O

6065

.6065
. 7788
.0000
. 7788
.6065

. 3225

O O O O

L4724

L4724
.6065
. 7788
.0000
. 7788

.8416

0.

_ O O O O

toeplitz(R)

3679

.3679
L4724
.6065
. 7788
.0000

.5154
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DT process: time indices are integers, so Z = (X (1), X(2),...

times also have constant spacing

R = E[ZZ"] also has a symmetric block toeplitz structure

R(0)  R(-1) --- R(1—N)
R(1)  R(O) - ;
. R(-1)
R(N - 1) R(1)  R(0)

if X(t) is WSS then R > 0 for any positive integer N

Wide-sense stationary processes

, X (V)
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example: R(7) = cos(T)

>> t=0:2; R = cos(t); T = toeplitz(R)

R =
1.0000 0.5403
T =
1.0000 0.5403
0.5403 1.0000
-0.4161 0.5403
eig(T) =
0.0000
1.4161
1.5839

-0.4161

-0.4161
0.5403
1.0000

R(7) at some 7 can be negative !

Wide-sense stationary processes
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Power spectral density

Wiener-Khinchin Theorem: if a process is wide-sense stationary, the
autocorrelation function and the power spectral density form a Fourier
transform pair:

S(w) = / e “WTR(T)dT continuous-time FT
S(w) = Z R(k)e Wk discrete-time FT
k=—o0
L[~ . .
R(T) = 2—/ e TS (w)dw continuous-time IFT
Q0 — o0
L [" . .
R(T) = 2—/ e TS (w)dw discrete-time IFT
Q0 — 7T

S(w) indicates a density function for average power versus frequency
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examples: sinusoid with random phase and random telegraph

REQ= ATCry (w,) 8 G5 SPANEE)

»

Ann. |
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w,,/%—'
AKX

$C£)e (2¢)2 (2TF)*

N

N

o (left) X(t) = Asin(wot + ¢) and ¢ ~ U(—7, )

e (right) X (%) is random telegraph signal

Wide-sense stationary processes
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examples: white noise process

.07, =" PsCrefefimz
SR P 5ts)
©
—00 00— 000 —
C _lz 1z F
o) §(¢) A SCF)  etiauwons—fime
= 9

white nole ¢vocess

e (left) DT white noise process has a spectrum as a rectangular window

e (right) CT white noise process has a flat spectrum

Wide-sense stationary processes 11-16



Spectrum of a moving average process

let X(n) be a DT white noise process with variance o>

Y(n)=X(n)+aX(n—-1), a€R
then Y (n) is an RP with autocorrelation function

(14 a?0?), 7=0,
Ry (r) = { ao? =1

0, otherwise

\

the spectrum of DT process (is periodic in f € [—1/2,1/2]) is given by

(= Y Ry(k)e 2

k=—o0
_ (1 —|—0420'2) _|_a0_2(6z'27rf _|_6—z'27rf)
= 0%(1 4 o + 2accos(27 f))
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examples: moving average process with 02 =2 and o = 0.8

R( ) S(f)
3 . . .
e\ /\ /
Q
2
Q Q 4
1 L
2 L
Qo—eo —— \/ \/
0
-1 . . . .
-2 0 2 -1 0 1
T f

spectrum is periodic in f € [—1/2,1/2]
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Band-limited white noise

given a (white) process whose spectrum is flat in the range —B < f < B

s( R()

3

1.5

25+

1.5+

0.5
0.5 |-

-0.5 -

I I _ I I I
-2 -1 0 1 2 -4 -2 0 2 4
f

the magnitude of the spectrum is N/2

what will the (continuous-valued) process look like 7
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autocorrelation function is obtained from IFT

B

R(T) = (N/Q)/ e 2™ IT df

—B
12rBt _ _—127w BT
N e e

2 12T
_ Nsin(2rBT)
B 20T

= N Bsinc(2nBT)

e X(t) and X (¢t + 7) are uncorrelated at 7 = +k/2B for k=1,2, ...

e if B — o0, the band-limited white noise becomes a white noise

S() =5, Vf B(r)="0(r)
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Properties of power spectral density
consider real-valued RPs, so R(7) is real-valued

e S(w) is real-valued and even function (".- R(7) is real and even)

e R(0) indicates the average power

R(0) = B[X (1)?] = — / 7 S(w)dw

— 52;; .

e S(w) >0 for all w and for all wy > wy

1 [*2
S(w)dw

2 ),
is the average power in the frequency band (ws,w1)

(see proof in Chapter 9 of H. Stark)

Wide-sense stationary processes
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Power spectral density as a time average

let X[0], X[1],...,X[N — 1] be N observations from DT WSS process

discrete Fourier transform of the time-domain sequence is

N-1
X[k] = ZX[n]e_ZQTﬂkn, k=0,1,...,N —1
n=0

e X[k] is a complex-valued sequence describing DT Fourier transform
with only discrete frequency points

o X|[k] is a measure of energy at frequency 2rk/N

e an estimate of power at a frequency is then
S(k) = I X[HP
N
and is called periodogram estimate for the power spectral density
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example: X (t) = sin(407t) 4 0.5 sin(607t)
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e signal has frequency components at 20 and 30 Hz

e peaks at 20 and 30 Hz are clearly seen

e when signal is corrupted by noise, spectrum peaks can be less distinct

e the plots are done using pspectrum and periodogram in MATLAB

Wide-sense stationary processes
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Frequency analysis of solar irradiance

data are irradiance with sampling period of 7" = 30 min

®
=]
]

)
P @
o S
[S] [S]

irradiance (W/m 2
n
o
o
— X
—
=t

200 \ \ \ \ \ \
Jan 01 Jan 02 Jan 03 Jan 04 Jan 05 Jan 06 Jan 07

Jan 08
time 2017

; ACF of irradiance

0.5

Fr® e

5re
H-
Pe

3
e

% f

0 s ® nn 111 T
i 0 d

TT d :
il [ i T

05 \ \ \ \ \ \ \

o

Lag (day)

110 X: 11.94 spectrum of irradiance
Y:101.2 X:22.79
U\/ Y:96.11 |

o
]

©
S

®
S

~
o

Power/frequency (dB/Hz)

@
S

o
t=]

| | |
100 150 200 250
Frequency ( pHz)

o
o
=]

Wide-sense stationary processes 11-24



e ACF is a normalized autocorrelation function (by R(0)) and appears to
be periodic

e spectral density appears to have three peaks corresponding to
0,12, 24 pHz

e the frequencies of 12,24 puHz correspond to the periods of one day and
half day respectively

e ACF and spectral density are computed by autocorr and pwelch
commands in MATLAB

e more details on spectrum estimation methods can be further studied in
signal processing
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Cross correlation and cross spectrum

cross correlation between processes X (¢) and Y (¢) is defined as
Rxy () =E[X(t+ 7)Y (1)]

cross-power spectral density between X () and Y (¢) is defined as

Sxy(w) = / e_inny(T)dT

— 00

properties:

e Sxy(w) is complex-valued in general, even X (¢) and Y (¢) are real
e Ryx(7)=Rxvy(-T)

[ ) Syx(w) = Sxy(—w)

Wide-sense stationary processes 11-26



Examples from solar variables

solar power (P), solar irradiance (I), temperature (T), wind speed (WS)

Coherence of P and |

1 T T T
p . op Wy l 06 [ 1 L L L L ]
60 40 20 0 50 40 60 0 50 100 150 200 250
Cross-correlation of Pand T Frequency ( pHz)
1 T T i i : Coherenceof Pand T
T T
0.5 D 05
O 0 1 1 1 1 1
-60 -40 -20 0 20 40 60 0 50 100 150 200 250
Cross-correlation of P and WS Frequency ( pHz)
1 ! ! ! ! ] Coherence of P and WS
o | - MMMMM\JW\W\/M
0 0 1 il 1
-60 -40 -20 0 20 40 60 0 50 100 150 200 250
lag Frequency ( pHz)

e (normalized) cross correlations are computed by xcorr in MATLAB

e (normalized) coherence functions are computed by mscohere:

[ Say (f)]?
S2(f)Sy(f)

C:cy(f) —
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cross covariance function:

Cross-covariance of P and |

-5 -4 -3 -2 -1 0 1 2 3 4 5

lag (day)

e P and I are highly correlated while P and WS are least correlated

e cross covariance functions are almost periodic (daily cycle) with slightly
decaying envelopes
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Extended definitions

extension: let X (t) be a complex-valued vector random process

- , —T
e denote x Hermittian transpose, 7.e., X* = X

e correlation function: R(7) = E[X (t + 7) X (¢)*]
e covariance function: C(7) = R(7) — pu*

® Ryx(r)= Rxy(-T)

e Syx(w) = Sxy(-w)

e S(w) is self-adjoint, i.e., S(w) = S*(w) and S(w) = 0

(cross) correlation and (cross) spectral density functions are matrices
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Theorems on correlation function and spectrum

Theorem 1: a necessary and sufficient condition for R(7) to be a
correlation function of a WSS is that it is positive semidefinite

e proof of sufficiency part: if R(7) is positive semidefinite then there
exists a WSS whose correlaction function is R(7)

— if R(7) is psdf then its Fourier transform is positive semidefinite (a
proof is not obvious)

— let us call S(w) =F(R(1)) =0

— by spectral factorization theorem, there exists a stable filter H(w)
such that S(w) = H(w)H*(w) — more advanced topic

— the existence of a WSS is given by applying a white noise to the filter
H(w) — the topic we will learn next on page 11-38

e proof of necessity part: if a process is WSS then R(7) is positive
semidefinite — shown on page 11-7
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Theorem 2: let S(w) be a self-adjoint and nonnegative matrix and

/ (S (w))dw < oo

— 00

then its inverse Fourier transform:

R(t) ! /OO eIt S (w)dw

:% .

is nonnegative, i.e., Zj\;l Z]kvzl a;R(t; — tx)ag > 0

p— —* p— — p— —

al R(O) R(tl — tg) s R(tl — tN) al
an R(tg — tl) R(O) T : an
: : R(tN_l—tN) :
_CLN_ _R(tN — tl) T R(tN — tN—l) R(O) i _aN_
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proof: let us consider N = 3 case (can be extended easily)

*

R(0)
R(ty —t1)
R(ts —t1)

R(t; — to)
R(0)

)

R(t1 — t3)
R(t2 — tg)
R(0)

eiw(tl_tQ)S(W)
e’iw(tg—tg)s(w)

[Sl/Q(W) Sl/2(w) 51/2(0«))]

because the integrand is nonnegative definite for all w

(we have used the fact that S(w) >~ 0 and has a square root)

Wide-sense stationary processes
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Theorem 3: let R(t) be a continuous correlation matrix function such that

/ |Rw(t)‘dt < 00, V’L,]

— o0

then the spectral density matrix

is self-adjoint and positive semidefinite

e matrix case: proof by Balakrishnan, Introduction to Random Process in
Engineering, page 79

e scalar case: proof by Starks and Woods, page 607 (need to learn the
topic on page 11-38 first)
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simple proof (from Starks): let wy > w; , define a filter transfer function
Hw)=1, we€ (w,ws), H(w) =0, otherwise
let X (¢) and Y (¢) be input/output to this filter, then
Syy(w) = Sxx(w), w € (w1,ws), 0, else

since E[Y (¢)?] = R,(0) and it is nonnegative, it follows that

1 [*2

R,(0) = — Se(w)dw > 0

27 ),

this must holds for any wy > wq

hence, choosing wy ~ w1 we must have S, (w) > 0 — the power spectral
density must be nonnegative
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conclusion: a function R(7) is nonnegative if and only if

it has a nonnegative Fourier transform

e a valid spectral density function therefore can be checked by its

nonnegativity and it is easier than checking the nonnegativity condition
of R(7)

e analogy for probability density function

(xw{mﬁ-bzd)
,‘;E-F(K) ax=| F0) = (wvmlized)
?Vv\%u\'d'ﬁ F chraracterishc
oonsity ey ,
funche Arrchon
( mmw{)f\ﬁ\/e, -ﬁ,o—) 7,0) ( mmwjaﬁva)

A AN
¢ = 0
Speiha\ dbns 2l st
vafﬁ X de @ mg o
Grrnegrtive Siw) 20) C‘E(NWM6>
» 7o
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Linear system with random inputs

consider a linear system with input and output relationship through
y=Hzx

which represents many applications (filter, transformation of signals, etc.)

questions regarding this setting:

e if x is a random signal, how can we explain about randomness of 7
e if x is wide-sense stationary, how about y? under what condition on H?

e if y is also wide-sense, how about relations between correlation /power
spectral density of x and y?
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recall the definitions

e linear system:
H(x1+ axy) = Hry + aHxo

e time-invariant system: it commutes with shift operator
Hx(t—-T)=y(t—-1T)

(time shift in the input causes the same time shift in the output)

e response of linear time-invariant system: denote h the impulse response

ffo h(T)x(t — 7)dT continous-time

y(t) = h(t) xz(t) = { OZO:ZO:—OO h(t — k)x(k) discrete-time

e stable: poles of H are in stability region (LHP or inside unit circle)

e causal system: response of y at ¢t depends only on past values of x

impulse response h(t) =0, fort <0
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Properties of output from LTI system

let Y = HX where H is linear time-invariant system and stable

if X (¢) is wide-sense stationary then

o my(t) = H(0)mx(t)

e Y () is also wide-sense stationary
(in steady-state sense if X (¢) is applied when ¢ > 0)

e correlations and spectra are given by

time-domain frequency-domain

Ryx(T) = (7‘) * Rx(T) Syx(w) = H(w)SX(w)
ny(T) :Rx(T) *h*(—T) Sxy(w) = SX(w)H*(w)
Ry( ) = Ryx(’r) S h*(—T) Sy(w) = Syx(w)H*(w)
Ry( ) — h(T) * Rx(T) * h*(—T) Sy(w) = H(w)SX(w)H*(w)
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proof of mean of Y: my (t) = H(0)mx(t)

h(s)E[X(t — s)]ds

h(s)ds - my (since X (t) is WSS)

mean of Y is transformed by the DC gain of the system
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proof of WSS of Y

Ry(t+T1,t) = E[Y(t+7)Y ()]

(/_OO h(o) X (t+ 7 — J)ds> (/_O; h(s)X (t — s)ds) T]

— /_OO /_OO hWo)E[X(t+71—0)X(t—s)"h(s) dods

oo

= E

— /OO /OO h(0)Ry(T + 5 — o)h(s)dods (X is WSS)

we see that R, (t + 7,t) does not depend on ¢ anymore but only on 7

e we have shown that Y (¢) has a constant mean and the autocorrelation
function depends only on the time gap 7

e hence, Y (t) is also a wide-sense stationary process
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proofs of cross-correlation: using Y (¢) = ffooo h(a)X (t — a)da

® Ryx(T) = h(T) * Rx(T)
Ryx (1) =E[Y)X*(t—7)] = /_OO h(a)E[X(t — a)X™(t — 7)|da

_ /_O; h(a)Rx(r — a)da

o Ry(r) = Ryx(r)  H'(~7)

Ry(t)=E[Y@)Y"(t —7)] = / EY(t)X*(t— (7 + a))|h"(a)da

— OO

_ /_O; Ry x(T 4+ a)h*(a)da = /_O; Ry x(1 —o)h*(—o)do
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Power of output process

the relation Sy (w) = H(w)Sx(w)H*(w) reduces to
Sy (w) = |H (w)[*Sx (w)
for scalar processes X (t) and Y ()

e average power of the output depends on the input power at that
frequency multiplied by power gain at the same frequency

e we call |H(w)|? the power spectral density (psd) transfer function

this relation gives a procedure to estimate H(w) when signals X (¢) and
Y (t) can be observed
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example: a random telegraph signal with transition rate « is passed thru

an RC filter with i

H(s) = , 7T=1/RC

S+ T
question: find psd and autocorrelation of the output

B 4oy
- Ao+ 4An2 2

random telegraph signal has the spectrum: S, (f)

from Sy, (f) = [H(f)I*S2(f) and Ry(t) = F =[Sy (/)]

2 4
Sy(f) = (72 —|—T47T2f2) 4o + Z;'2f2

_ dar? 1 1
72— 402 402 +4m2f2 72 4 Ax2f?

1
R,(t) = =2 (726_20‘|t| — 20&7‘6_7_|t|)

(we have used Fle= %] = 2a/(a* + w?)) and w = 27 f
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example: spectral density of AR process
Y(n)=aY(n—1)+ X(n)
X (n) is i.i.d white noise with variance of o*

o H(z) = —2— or H(e™) = —1

l—az—1 1—aqe—tw

e spectral density is obtained by

0.2

Sy(w) = |H(w)[*Sz(w) =

(1 — ae=)(1

0.2

T 1+a2-2a cos(w)

Wide-sense stationary processes
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spectral density of AR process: a = 0.7 and 02 = 2

power spectral density

10 T
— 5 B
T
oa)
20 estimate .
analytical
-5 | | | |
0 0.1 0.2 0.3 0.4 0.5
Hz
20 T T T T
estimate
10 analytical | |
N
L
om
S ot
_10 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5
Hz
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Input and output spectra

in conclusion, when input is white noise, the spectrum is flat

(e Wi (0. S
o
V- H(z) T 7 Y [ { T 1
T — 5 | | .
/\'Sw(u) 87[00
c? )= o T(u-1)<Vin)
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when white noise is passed through a filter, the output spectrum is no
longer flat
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Response to linear system: state-space models

consider a discrete-time linear system via a state-space model
X(k+1)=AX(k)+ BU(k), Y(k)=HX(k)

where X ¢ R",)Y ¢ RP, U € R™

known results:

e two forms of solutions of state and output variables are

X(t)=A'X +tz:ATBU t—1-17), Y(t)=0CX(t)

— A5 X (s +2At '=sBU(7), Y(t)=CX(t)

T=S

e the autonomous system (when U = 0) is stable if |A\(A4)| < 1
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State-space models: autocovariance function

Theorem: let U be a i.i.d white noise sequence with covariance X, and if
i) A is stable and ii) X (0) is uncorrelated with U (k) for all £ > 0 then

o lim, .. E[X(n)] = 0

e C(n,n) — X as n — 0o where
> =AY A + By, BT

(X is a unique solution to the Lyapunov equation )

e X (t) is wide-sense stationary in steady-state sense, i.e.,

AFY, k>0
S(AT)IFL k<0

n—oo

lim C(n+k,n)=C(k) = {
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proof: the mean of X (¢) converges to zero

let m(n) = E[X(n)] and it's easy to see
m(n) = E[X(n)] = AE[X(n — 1)+ BE[U(n —1)] = Am(n — 1)
hence, m(n) propagates like a linear system:
m(n) = A"m(0)
and goes to zero as n — oo since A is stable O
zero-mean system: X (n) = X (n) — m(n)

X(n)=AX(n—-1)+BU(n—1)

mean-removed process also follow the same state-space equation
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proof: lim, .., C(n,n) =X and satisfies the Lyapunov equation

e X(n) is uncorrelated with U (k) for all k > n

X(t) IAtX(O)—I—z_:ATBU(t—l—T)

7=0

because X (0) is uncorrelated with U(¢t) for all t and X (¢) is only a
function of U(t — 1), U(t —2),...,U(0)

e since X(n — 1) is uncorrelated with U(n — 1), we obtain
C(n,n) = AC(n—1,n—1)A" + BY,B"

from the state equation: X (n) = AX(n—1)+ BU(n —1)
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e then we can write C(n,n) recursively

n—1
C(n,n) = A"C(0,0)(A")" +)  A*BY,BT(AT)
g0 to zero k=0 P

Ve

converges

and observe its asymptotic behaviour when n — oo

e if A is stable, there exists v s.t. ||A¥|| < ~* < 1 (requires a proof)
|A™C(0,0)(AT)"|| < [J[A[IPIC(0,0)[ < +*"[[C(0,0)[| =0, n — oo
o let ¥ =5 7" A"BY,BT(AT)* we can check that

> = AYA" + BY,, BT

e Y. is unique, otherwise, by contradiction

¥, = AN, AT + B, BY, X, =AY.AT + BY,,BY
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we can subtract one from another and see that
N1—3 = A(T1-39)AT = A%(Z,-55) (A1) = ... = A™(Z,-29) (41"
this goes to zero since A is stable (||A*|| — 0)

|21 = ol = A" (31 — B2)(A")"]| < [JAI*"[[E1 — Sl = 0

this completes the proof O
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proof: X (n) is wide-sense stationary in steady-state

e X(k) is uncorrelated with {U(k),U(k +1),...,U(n—1)}
e from the solution of X (n)

n—1
X(n)=A""*X (k) + Z A" YTBU(T), k<n
T=Kk

the two terms on RHS are uncorrelated

e the autocovariance function is obtained by (for n > k)

C(n, k) = E[X(n)X (k)"]
= A" PE[X (k)X (k)] + nz_: A" YT BE[U (1) X (E)T
7=k

= A" *C(k, k) +0

which converges to A" %Y as n, k — oo if A is stable 0
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State-space models: autocovariance of output

output equation:

~

Y(n)=HX(n), Y(n)=HX(Mn)

when X (n) is wide-sense stationary (in steady-state) then

when n, k — oo, we have
Cy(n,k) = HCy(n,k)H' = HA" *C,(k,k)H', n >k

and
lim Cy(n,n) = lim HCy(n,n)H' = HXH"

n—oo n—oo

where X is the solution to the Lyapunov equation: ¥ = AY A" + BY, B'
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example: AR process with a = 0.7 and U is i.i.d. white noise with 02 = 2
Y(n)=aY(n—1)+U(n—1)
1st-order AR process is already in state-space equation

e in steady-state, the covariance function at lag 0 converges to a where

2

2 2 g
o= ao” + o — o = 5
1—a

(we have solved the Lyapunov equation)

e in steady-state, the covariance function is given by

2q!71
Clr) = o‘a

1 —qa2
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