EE507 - Computational Techniques for EE Jitkomut Songsiri

8. Problem condition and numerical stability

e vector and matrix norms
e the conditioning of a problem
e the numerical stability of an algorithm

e cancellation
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Vector norms

a vector norm on R™ is a mapping || - || : R™ — [0, 00) that satisfies
L. ||az| = |a|||z|| for any a € R (homogeneity)
2. |l +y| < ||zl + ||y (triangle inequality)
3. |lz|| =0if and only if z =0 (definiteness)
2-norm

|z]]2 = ZC%Jr:C%Jr---JrZC,,%: xlx
I-norm

[zlli = |z1] + 22| + - + |2
ooO-norm
H'CCHOO :m]?X{‘ZCﬂale‘a“'alxn‘}
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Matrix norms

matrix norm of A € R™*" is defined as

A
|All = max Azl _ | Az|]
lzllz0 ||zl lel=1

also often called operator norm or inducded norm

properties:

1. for any z, [[Az|| < [|A]/||<]]
2. ||aA]l = [al|| Al

3. [A+ B < [[All + B

4. ||All =0 if and only if A =0

5. [[AB| < |A[[l| B

Problem condition and numerical stability

(scaling)
(triangle inequality)

(definiteness)
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2-norm or spectral norm

[Al2 2 max [[Azllz =/ Amax(ATA)

|z]|2=1
1-norm
m
|A[l1 & max |[Az|, = ;Inax > aijl
|z]|1=1 NN
co-norm
mn
|Alloo £ max [[Azllee = max ) lag]
2][oo=1 i=1,.eesm £

other definitions of matrix norm also exist

Frobenius norm:

1/2

JAllr = Jor(a72) = [ 323 Jay

=1 7=1
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Sources of error in numerical computation

example: evaluate a function f: R — R at a given x (e.g., f(x) = sinx)

sources of error in the result:
e x is not exactly known

— measurement errors
— errors In previous computations

— how sensitive is f(x) to errors in x7

e the algorithm for computing f(x) is not exact

— discretization (e.g., the algorithm uses a table to look up f(x))
— truncation (e.g., f is computed by truncating a Taylor series)
— rounding error during the computation

— how large is the error introduced by the algorithm?
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The condition of a problem

sensitivity of the solution with respect to errors in the data

e a problem is well-conditioned if small errors in the data produce small
errors in the result

e a problem is ill-conditioned if small errors in the data may produce
large errors in the result

rigorous definition depends on what ‘large error' means (absolute or
relative error, which norm is used, . . .)
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example: function evaluation
y=f(z), y+Ay=f(z+ Az

e absolute error

[Ay| ~ | f'(z)]| Az

ill-conditioned with respect to absolute error if |f'(x)| is very large

e relative error

Ayl _ |f(@)]|]|Axl
ol T Tl Tl

ill-conditioned w.r.t relative error if | f'(x)||x|/|f(x)]| is very large

Problem condition and numerical stability
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Roots of a polynomial

p(x)=(x—1)(z—2) - (x—10) + 5 -z

roots of p computed by Matlab for two values of ¢
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roots are very sensitive to errors in the coefficients
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Condition of a set of linear equations

assume A is nonsingular and Az = b

if we change b to b + Ab, the new solution is = + Ax with
A(x + Ax) = b+ Ab

the change in x is
Az =A"1Ab

‘condition’ of the equations: a technical term used to describe how
sensitive the solution is to changes in the righthand side

e the equations are well-conditioned if small Ab results in small Ax

e the equations are ill-conditioned if small Ab can result in large Ax
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Example of ill-conditioned equations

1 1 1 . 1—10"
A=5 141010 1—10—10]’ A _[1+1010

e solution for b= (1,1) is z = (1,1)

e change in x if we change b to b+ Ab:

A — A-1Ap — [ Ab; — 1019(Ab; — Aby) ]

Aby + 101(Aby — Aby)
small Ab can lead to extremely large Ax

Problem condition and numerical stability
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Bound on absolute error
suppose A is nonsingular and Az = A71Ab

upper bound on || Az
|Az]| < [[ATH] ]| Ab]

(follows from property 1 on page 8-3)

e small ||[A~!|| means that ||Az|| is small when ||Ab|| is small

e large ||A™Y|| means that ||Az|| can be large, even when ||Ab|| is small

e for any A, there exists Ab such that ||Az|| = ||[A71|||Ab|| (no proof)
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Bound on relative error

suppose A is nonsingular, Az = b with b # 0, and Az = A71Ab

upper bound on ||Azx||/|z||:

1Az| _
lzll —

(follows from [|Az|| < [[A7*[[[|Ab]| and [|b]| < [[A]l[l2])

1AD]
1]

< [ANA e

k(A) = ||A|||]A71|| is called the condition number of A

e small K(A) means ||Ax||/||z| is small when ||Ab]|/]|b]| is small
e large K(A) means ||Az||/||x|| can be large, even when ||Ab||/||b]| is small

e for any A, there exist b, Ab such that ||Az||/||z|| = «(A)| Ab||/||b||
(no proof)
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Condition number

k(A) = [ A[A™
e defined for nonsingular A

e k(A)>1forall A

e A is a well-conditioned matrix if x(A) is small (close to 1):

the relative error in x is not much larger than the relative error in b

e A is badly conditioned or ill-conditioned if k(A) is large:

the relative error in x can be much larger than the relative error in b
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Iterative refinement

consider the linear system Ax = b with a nonsingular A

e 1. is a computed solution to Ax = b with the residual »r = b — Ax,

e 1 Is the true solution

it follows that the solution error ¢ = x — x, satisfies Ae = r

e 1. is deviated from x due to roundoff errors when A is ill-conditioned

e r = x.+ e suggests us to improve the accuracy by an iterative algorithm
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Iterative refinement:

given initial o, required tolerance € > 0
repeat

1. Computer = b — Ax.

2. Solve Ae = r using the existing LU factorization of A.
3. if |le|] < ¢, return z.

4. Compute x := x + e.

until maximum number of iterations is exceeded

remarks:

e use the original matrix A (not LU) to compute the residual

e compute the residual in a higher precision to avoid the loss of
significance
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Analysis of iterative refinement

the refinement iteration can be written as
gkt — (k) B(b— A:C(k)), k>0

where B is an approximate inverse of A

it can be shown (by induction) that the iteration produces the sequence

2™ =BY (I-AB)*b, n>0
k=0

under some condition, this sequence converges to x = A~ 1D
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Neumann series

if M is a square matrix such that | M|| < 1 then I — M is invertible and
(I-M)"'=) M*
k=0

Proof. it suffices to show that (I — M) ,}_ M* — T as n — oo

e write the left-hand side as

(I o M) ZMIC _ Z(Mk: L Mk—l-l) _ MO o M’rL—I—l . M(n—|—1)
k=0 k=0

e asn — 0o, M"™*! goes to 0 because ||[M]| < 1 which makes

HM”HH < ||]\4||”Jrl — 0 as n — oo
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Convergence of iterative refinement

quantify the loose term " B is an approximate inverse of A" as
|l — AB|| < 1

If the above condition holds, from the Neumann series we have
o0
BY (I-AB)f=A""
k=0
which means the sequence x{") converges to x = A~'b as n — oo

lim 2™ = BZ(I —ABY'b=A"1b =2

n— 00
k=0
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alternative proof: one can write

"t — g = 2™ — x4 B(Az — Az(™)
= (I —BA)(z"™ —2)

apply an upper bound of the norm on both sides
|2 — x| < || - BA||[|2'™ — «|
and iterate the equality so that

|20 — || < |1 - BA|"[|«"” — 2|

since ||I — BA| < 1, the error ||z(®*1) — z|| goes to 0
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example: solving Ax = b where

1 1/2 1/3] 3
A= (1/2 1/3 1/4| b= [23/12
1/3 1/4 1/5] 143/30 |

the exact solution is = (1,2,3) and an LU factorization is

1 0 0 1 1/2  1/3 ]
L=|1/2 1 0|, U=]0 1/12 1/12
1/3 1 1 0 0 1/180]

assume there is an roundoff error in computing L and U
L.= L(1+56), U.=U(1+49), 0=1

the initial solution is 2(®) = (0.25,0.5,0.75) and we use L., U, in the
Iterative refinement
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the norm of error versus the iteration
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e foro =1, ||I — BA|| =0.75
e for ) =0.1, [l — BA| =0.1736
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Summary

the conditioning of a mathematical problem

e sensitivity of the solution with respect to perturbations in the data

e ill-conditioned problems are ‘almost unsolvable' in practice (i.e., in the
presence of data uncertainty): even if we solve the problem exactly, the
solution may be meaningless

e a property of a problem, independent of the solution method

stability of an algorithm

e accuracy of the result in the presence of rounding error

e a property of a numerical algorithm
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precision of a computer

e a machine property (usually IEEE double precision, i.e., about 15
significant decimal digits)

e a bound on the rounding error introduced when representing numbers
in finite precision

accuracy of a numerical result

e determined by: machine precision, accuracy of the data, stability of the
algorithm, . . .

e usually much smaller than 16 significant digits
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