
EE507 - Computational Techniques for EE Jitkomut Songsiri

8. Problem condition and numerical stability

• vector and matrix norms

• the conditioning of a problem

• the numerical stability of an algorithm

• cancellation
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Vector norms

a vector norm on Rn is a mapping ‖ · ‖ : Rn → [0,∞) that satisfies

1. ‖αx‖ = |α|‖x‖ for any α ∈ R (homogeneity)

2. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality)

3. ‖x‖ = 0 if and only if x = 0 (definiteness)

2-norm

‖x‖2 =
√

x2
1 + x2

2 + · · ·+ x2
n =

√
xTx

1-norm
‖x‖1 = |x1|+ |x2|+ · · ·+ |xn|

∞-norm

‖x‖∞ = max
k

{|x1|, |x2|, . . . , |xn|}
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Matrix norms

matrix norm of A ∈ R
m×n is defined as

‖A‖ = max
‖x‖6=0

‖Ax‖
‖x‖ = max

‖x‖=1
‖Ax‖

also often called operator norm or inducded norm

properties:

1. for any x, ‖Ax‖ ≤ ‖A‖‖x‖

2. ‖aA‖ = |a|‖A‖ (scaling)

3. ‖A+B‖ ≤ ‖A‖+ ‖B‖ (triangle inequality)

4. ‖A‖ = 0 if and only if A = 0 (definiteness)

5. ‖AB‖ ≤ ‖A‖‖B‖
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2-norm or spectral norm

‖A‖2 , max
‖x‖2=1

‖Ax‖2 =
√

λmax(ATA)

1-norm

‖A‖1 , max
‖x‖1=1

‖Ax‖1 = max
j=1,...,n

m
∑

i=1

|aij|

∞-norm

‖A‖∞ , max
‖x‖∞=1

‖Ax‖∞ = max
i=1,...,m

n
∑

j=1

|aij|

other definitions of matrix norm also exist

Frobenius norm:

‖A‖F =
√

tr(ATA) =





m
∑

i=1

n
∑

j=1

|aij|2




1/2
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Sources of error in numerical computation

example: evaluate a function f : R → R at a given x (e.g., f(x) = sinx)

sources of error in the result:

• x is not exactly known

– measurement errors
– errors in previous computations

−→ how sensitive is f(x) to errors in x?

• the algorithm for computing f(x) is not exact

– discretization (e.g., the algorithm uses a table to look up f(x))
– truncation (e.g., f is computed by truncating a Taylor series)
– rounding error during the computation

−→ how large is the error introduced by the algorithm?
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The condition of a problem

sensitivity of the solution with respect to errors in the data

• a problem is well-conditioned if small errors in the data produce small
errors in the result

• a problem is ill-conditioned if small errors in the data may produce
large errors in the result

rigorous definition depends on what ‘large error’ means (absolute or
relative error, which norm is used, . . . )
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example: function evaluation

y = f(x), y +∆y = f(x+∆x)

• absolute error
|∆y| ≈ |f ′(x)||∆x|

ill-conditioned with respect to absolute error if |f ′(x)| is very large

• relative error
|∆y|
|y| ≈ |f ′(x)||x|

|f(x)|
|∆x|
|x|

ill-conditioned w.r.t relative error if |f ′(x)||x|/|f(x)| is very large
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Roots of a polynomial

p(x) = (x− 1)(x− 2) · · · (x− 10) + δ · x10

roots of p computed by Matlab for two values of δ
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roots are very sensitive to errors in the coefficients

Problem condition and numerical stability 8-8



Condition of a set of linear equations

assume A is nonsingular and Ax = b

if we change b to b+∆b, the new solution is x+∆x with

A(x+∆x) = b+∆b

the change in x is
∆x = A−1∆b

‘condition’ of the equations: a technical term used to describe how
sensitive the solution is to changes in the righthand side

• the equations are well-conditioned if small ∆b results in small ∆x

• the equations are ill-conditioned if small ∆b can result in large ∆x
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Example of ill-conditioned equations

A =
1

2

[

1 1
1 + 10−10 1− 10−10

]

, A−1 =

[

1− 1010 1010

1 + 1010 −1010

]

• solution for b = (1, 1) is x = (1, 1)

• change in x if we change b to b+∆b:

∆x = A−1∆b =

[

∆b1 − 1010(∆b1 −∆b2)
∆b1 + 1010(∆b1 −∆b2)

]

small ∆b can lead to extremely large ∆x

Problem condition and numerical stability 8-10



Bound on absolute error

suppose A is nonsingular and ∆x = A−1∆b

upper bound on ‖∆x‖

‖∆x‖ ≤ ‖A−1‖‖∆b‖

(follows from property 1 on page 8-3)

• small ‖A−1‖ means that ‖∆x‖ is small when ‖∆b‖ is small

• large ‖A−1‖ means that ‖∆x‖ can be large, even when ‖∆b‖ is small

• for any A, there exists ∆b such that ‖∆x‖ = ‖A−1‖‖∆b‖ (no proof)
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Bound on relative error

suppose A is nonsingular, Ax = b with b 6= 0, and ∆x = A−1∆b

upper bound on ‖∆x‖/‖x‖:

‖∆x‖
‖x‖ ≤ ‖A‖‖A−1‖‖∆b‖

‖b‖

(follows from ‖∆x‖ ≤ ‖A−1‖‖∆b‖ and ‖b‖ ≤ ‖A‖‖x‖)

κ(A) = ‖A‖‖A−1‖ is called the condition number of A

• small κ(A) means ‖∆x‖/‖x‖ is small when ‖∆b‖/‖b‖ is small

• large κ(A) means ‖∆x‖/‖x‖ can be large, even when ‖∆b‖/‖b‖ is small

• for any A, there exist b, ∆b such that ‖∆x‖/‖x‖ = κ(A)‖∆b‖/‖b‖
(no proof)
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Condition number

κ(A) = ‖A‖‖A−1‖

• defined for nonsingular A

• κ(A) ≥ 1 for all A

• A is a well-conditioned matrix if κ(A) is small (close to 1):

the relative error in x is not much larger than the relative error in b

• A is badly conditioned or ill-conditioned if κ(A) is large:

the relative error in x can be much larger than the relative error in b

Problem condition and numerical stability 8-13



Iterative refinement

consider the linear system Ax = b with a nonsingular A

• xc is a computed solution to Ax = b with the residual r = b− Axc

• x is the true solution

it follows that the solution error e = x− xc satisfies Ae = r

• xc is deviated from x due to roundoff errors when A is ill-conditioned

• x = xc+ e suggests us to improve the accuracy by an iterative algorithm
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Iterative refinement:

given initial x, required tolerance ǫ > 0

repeat

1. Compute r = b − Ax.

2. Solve Ae = r using the existing LU factorization of A.

3. if ‖e‖ ≤ ǫ, return x.

4. Compute x := x + e.

until maximum number of iterations is exceeded

remarks:

• use the original matrix A (not LU) to compute the residual

• compute the residual in a higher precision to avoid the loss of
significance
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Analysis of iterative refinement

the refinement iteration can be written as

x(k+1) = x(k) +B(b− Ax(k)), k ≥ 0

where B is an approximate inverse of A

it can be shown (by induction) that the iteration produces the sequence

x(n) = B
n
∑

k=0

(I −AB)kb, n ≥ 0

under some condition, this sequence converges to x = A−1b
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Neumann series

if M is a square matrix such that ‖M‖ < 1 then I −M is invertible and

(I −M)−1 =
∞
∑

k=0

Mk

Proof. it suffices to show that (I −M)
∑n

k=0M
k → I as n → ∞

• write the left-hand side as

(I −M)
n
∑

k=0

Mk =
n
∑

k=0

(Mk −Mk+1) = M0 −Mn+1 = I −M (n+1)

• as n → ∞, Mn+1 goes to 0 because ‖M‖ < 1 which makes

‖Mn+1‖ ≤ ‖M‖n+1 → 0 as n → ∞
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Convergence of iterative refinement

quantify the loose term ”B is an approximate inverse of A” as

‖I −AB‖ < 1

if the above condition holds, from the Neumann series we have

B
∞
∑

k=0

(I −AB)k = A−1

which means the sequence x(n) converges to x = A−1b as n → ∞

lim
n→∞

x(n) = B

∞
∑

k=0

(I − AB)kb = A−1b = x
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alternative proof: one can write

x(n+1) − x = x(n) − x+ B(Ax−Ax(n))

= (I −BA)(x(n) − x)

apply an upper bound of the norm on both sides

‖x(n+1) − x‖ ≤ ‖I −BA‖‖x(n) − x‖

and iterate the equality so that

‖x(n+1) − x‖ ≤ ‖I −BA‖n‖x(0) − x‖

since ‖I −BA‖ < 1, the error ‖x(n+1) − x‖ goes to 0
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example: solving Ax = b where

A =





1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5



 b =





3
23/12
43/30





the exact solution is x = (1, 2, 3) and an LU factorization is

L =





1 0 0
1/2 1 0
1/3 1 1



 , U =





1 1/2 1/3
0 1/12 1/12
0 0 1/180





assume there is an roundoff error in computing L and U

Lc = L(1 + δ), Uc = U(1 + δ), δ = 1

the initial solution is x(0) = (0.25, 0.5, 0.75) and we use Lc, Uc in the
iterative refinement
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the norm of error versus the iteration
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• for δ = 1, ‖I −BA‖ = 0.75

• for δ = 0.1, ‖I −BA‖ = 0.1736
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Summary

the conditioning of a mathematical problem

• sensitivity of the solution with respect to perturbations in the data

• ill-conditioned problems are ‘almost unsolvable’ in practice (i.e., in the
presence of data uncertainty): even if we solve the problem exactly, the
solution may be meaningless

• a property of a problem, independent of the solution method

stability of an algorithm

• accuracy of the result in the presence of rounding error

• a property of a numerical algorithm
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precision of a computer

• a machine property (usually IEEE double precision, i.e., about 15
significant decimal digits)

• a bound on the rounding error introduced when representing numbers
in finite precision

accuracy of a numerical result

• determined by: machine precision, accuracy of the data, stability of the
algorithm, . . .

• usually much smaller than 16 significant digits
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