EE507 - Computational Techniques for EE Jitkomut Songsiri

2. Computer Arithmetic

e floating—point numbers

e floating—point representation

e floating—point error Analysis

e sources of error in numerical computation
e stable & unstable Computations

e conditioning of a problem

2-1

Floating—point numbers

computer users read numbers in decimal system

975 =9x 10+ 7x 107+ 5 x 1072

computer internally work with binary system

(1001.11)g =1 x 224+ 0x 22 +0x2' +1x 2" +1 x 27 41 x 272

example: change 1/10 to the binary system

1
0= (0.0001 1001 1001 1001 1001...),

Computer Arithmetic

2-2

Rounding up and Truncation

x is a positive decimal number with m digits to the right of the decimal point.

Rounding: round = up to n decimal places

o if (n+ 1)st digitis 0,1,2,3, or 4 then the nth digit is not changed
o if (n+ 1)st digitis 5,6,7,8, or 9 then the nth digit is increased by one

e the remaining digits are discarded.

examples: seven-digit numbers are rounded to four digits

0.1735499 — 0.1735
0.9999500 — 1.0000
0.4321609 — 0.4322

Computer Arithmetic 2-3

Fact: if = is the rounded-up n—digit approximation to x, then

1
‘Qj_i'|§§><].0_n

Truncation: truncate a number to n digits is to discard all digits beyond the
nth digit.

examples: seven-digit numbers are truncated to four digits

0.1735499 — 0.1735
0.9999500 — 0.9999
0.4321609 — 0.4321

Fact: if Z is the truncated (chopped) n—digit approximation of = then

lz—2] <107"

Computer Arithmetic

24

Normalized scientific notation

normalized scientific notation in decimal system:

e shift decimal point with appropriate powers of 10

e all digits are to the right of the decimal point and the first digit displayed is
not 0

example: 732.5051 = 0.7325051 x 10°

a nonzero real number x can be represented in form
xr = +r x 10"

where 1% <7 <1 and n is an integer

Computer Arithmetic

2-5

normalized scientific notation in binary system:
xr=+q x2™
1
where 5<q< 1,
e ¢ is called the mantissa,

e m is an integer and called the exponent

another version: leading binary digit 1 appears to the left of the binary point
r=4qgx2", qg=(1.f)

where 1 < ¢q < 2.

Computer Arithmetic

2-6

Floating—point representation

floating—point representation for a single-precision real number
x==+qx2™
in a 32-bit computer is divided into 3 fields.

e sign of real number x (s) 1 bit
e biased exponent (integer €) 8 bits

e mantissa part (real number f) 23 bits

sign of | biased exponent e | normalized mantissa f
mantissa
S

Computer Arithmetic

2-7

values of bit strings are decoded as normalized floating—point form
r=(—1)°¢x2" q=(1.f)2, m=e—127
note: the most significant digit in ¢ is 1 and is not stored

Fact:
1<g<2 0<e<2b5, —126<m <127

e = 0 and e = 255 are reserved for special cases such as +0, =00 and NaN

32 bit computer can handle numbers

e smallest number 27126 ~ 1.2 x 1073%

o largest number (2 — 2723)2127 &~ 3.4 x 1038

double precision or extended precision uses two computer words and slows down
calculation

Computer Arithmetic 2-8

Machine rounding

e round to nearest: the closer of two machine numbers of the real number is
selected

e round to even: in case of halfway between two machine numbers, even
machine number is chosen

e directed rounding such as round toward 0 (truncation)

Computer Arithmetic

2-9

Nearby machine numbers
what is the machine number closest to 7
r = (1.&1&2 ... a220230240925 . . .)2 x 2

e chopping
r_ = (1.61,1CL2 ce CL226L23)2 x 2™

e rounding up
Ty = ((1.&1&2 ce a22a23)2 + 2_23) x 2™

x can be represented better either by x_ or 1 (depending on the value of x)

r = (1.0011---0101)y x 2°
r_ = (1.0011---01); x2° = |z —o_|=(1-272%) x2°
r. = (1.0011---10)y x 2° = |zy—z|=[1-2722—(1-27% +1.272%)] x2?

Computer Arithmetic 2-10

first case: x is represented better by z_

1 1
2 — 2 | < S|lwy —a_| == x 2m28 = g2
2 2
relative error is bounded by
_ m—24
|£B ZC_‘ < 2 :1x2—24§2—24

x g Xx2m g

second case: z is closer to x than to z_

1

z — x| < 5\33+ —x_|=2m"

relative error is bounded by

‘5’3 — 5U+| < 9—24

X

Computer Arithmetic

2-11

Overflow vs Underflow

in a 32-bit computation, a number is produced of the form
+q x 2™

we call a computation is overflow if m is outside the range permitted
m > 127

and we call a computaton is underflow if m is too small,

m < —126

e |EEE standard uses a kind of extended floating point system to allow for
results Inf and NaN

e it includes rules such as x/Inf gives 0 or x/0 yields £Inf

Computer Arithmetic 2-12

Roundoff error

let £* be the machine number closest to x and § = (z* —) /x

‘5’3 - 55*‘ < 9—24
. =

fi(x) is used to denote x*, that is,

fi(z) = z* = 2(149), |9 <27

thus, 2724 is the unit roundoff error for 32-bit computers

Fact: number of bits of mantissa directly relates to unit roundoff error and
determines accuracy of calculation

Computer Arithmetic 2-13

for computer with base 5 and mantissa n places
fi(z) = 2(1+0), |0 <e
where

o ¢ = (1/2)B~" if we implement correct rounding
o ¢ = 817" if we implement chopping

€ is the unit roundoff error and is a charateristic of a computing machine

Computer Arithmetic 2.14

example: find the nearest machine number of z = 2/3

to find the binary representation of 2/3, we write
r=2/3=(0.a1a2a3 -)2
to find a1, multiply z by 2
2r =4/3 = (aj.a0a3a4--+)y =— a1 =1 (."4/3>1)
substracting 1 from both sides
1/3 = (0.azasaq - -)2
multiplying 2 on both sides

2/3 = (ag.azaqas---)2 =— ax=0 (.2/3<1)

Computer Arithmetic

2-15

repeat the previous steps, we obtain
r=2/3=(0.1010---)y = (1.010101---)y x 27+
the two nearby machine numbers are
r_ = (1.010101---010)2 x 27, 24 = (1.010101---011)y x 27+
and the absolute errors are

z—z_ = (0.1010---)y x 27* =2/3x 27>
-z = (zy-o)—(r-2)=2""-2/3x27"=1/3x 27"
hence, we set fl(x) = x4 (the nearest machine number)

the relative roundoff error is

)~ 1/3x2
o 23

Computer Arithmetic 2-16

Floating—point error analysis
for any real number x within the range of the 32-bit computer
fi(z) =z(14+9), [|§]<27*
if x,y are machine numbers, we have

fllzoy) =(@xoy)(1+6) |6 <27

where ® is one of the four arithmatic operations; + — X+

roundoff error must be expected in every arithmatic operation !

example: both 27! and 272° are machine numbers, but so is 271 +272° ?

Computer Arithmetic 2-17

if 2,y are machine numbers and assume arithmetic operations satisfy

fllzOy)=(xOy)(1+9), [0]<e

we often compute the roundoff error from a series of arithmetic operations

for example,

fi[z(y + 2)]

[f(y + 2)](1 4 01), |6y] <27

[2(y + 2)(1+ 82)](1 4 61), [6o] <27
r(y + 2)(1 + 01 + d2 + 0102)

z(y + 2)(1 + 01 + d2)

r(y 4+ 2)(1+83), |d3] <272

if x,y are not machine numbers, one should expect

fA(fi(x) © f(y)) = (z(1+01) ©y(1+2)) (1 +d3) 6] <27

Computer Arithmetic

2-18

Relative error in adding

given a machine with a unit roundoff error € and that
xo,T1,...,Ty, are positive machine numbers
then the relative roundoff error in computing the sum of n + 1 numbers,
o+ xr1+x2+ -+ Ty

is at most (1 + €)™ — 1 and should not exceed ne

Proof. define Sy (actual sum)
SkIZEO—I—ZEl—I——ka

the computer calculates S; (computed sum)

Computer Arithmetic 2-19

recursive formula for S}
So = To, Skt+1 = Sk + Tht1
recursive formula for .S
S0 = ®o, Spp1 = A(S; + zp41)

let |px| be relative error between actual Si and computed sum S}
(relative error after k steps)

let [0x| be relative error in computing S} + zx4+1

5 = —rtl - LSk + Th+1) (relative error at the (k 4 1)th step)
Sp + Tkt

Computer Arithmetic 2-20

It can be shown that

SZH _ Skz+1

Pk+1 =
Skt1

(S% + k1) (1 + k) — Skt
Sk+1
(Se(1 + pr) + 1) (1 + 0k) — Sk
Sk+1
(Sk+1 + Skpr) (1 + k) — Skt
Sk+1
Sk+10% + Skpr(1 + k)
Sk+1
= O + pr(Sk/Sk+1)(1 + k)

at each iteration, 0y is directly added up to pgi1

Computer Arithmetic 2-21

since Si/Sk+r1 < 1 and |0x| < €, we conclude

41| < €+ |pl(1+€)

or equivalently,
prr1] < e+ |pxld, 0=1+c¢
by successive inequalities and |pg| = 0, we have
(0" —1)

pn] < e+0e+ 0%+ +0" e = O = (1+¢" -1

by the Binomial theorem, we have

(1+€)n=1+(711>6+(g>e2+---+e”

by neglecting the higher order term in €*, k > 2

pn] < (14 €)™ — 1 = ne

Computer Arithmetic

2-22

Absolute and Relative Errors

let x* be approximated number of x

absolute error

r—x*

relative error *‘

x —x
]

e absolute error needs a knowledge about the magnitude of x

e relative error is often more significant and useful

Computer Arithmetic

2-23

Machine epsilon
the machine epsilon u is the largest point number x such that
l4+xz=1
i.e., * + 1 cannot be distinguished from 1 on the computer:
u=max {z|1+2x =1, incomputer arithmetic}
example: a three digit decimal computer that uses rounding

1 =100x10"% =142, =1.00+ 0.01 = 1.01 # 1.00
Ty =1.00 x 107° =1+ 25 = 1.00 + 0.001 = 1.001 — 1.00 = 1.00
r3 =5.00 x 107° = 1 + x5 = 1.00 + 0.005 = 1.005 — 1.01 # 1.00

x1 Is too large, x5 is too small, x5 is a bit large

u=4.99 x 107% = 1+ u = 1.00 + 0.00499 = 1.00499 — 1.00 = 1.00

Computer Arithmetic 2.24

Loss of significance

numerical analysis is to understand and control various kinds of errors

e roundoff error

e |loss of significance or precision, e.g., subtraction of nearly equal quantities,
evaluation of functions,

a remedy to loss of significance is to carefully write program

example: the assignment statement

y=+vVaz*+1-1

involves substractive calculation and loss of significance for small values of x. to
avoid the difficulty, this can be rewritten as

iCQ

x2+1+1

y:

Computer Arithmetic 2-25

Evaluation of Functions

Evaluating some f(x) for very large x can cause a drastic loss of significant digits

consider cosine function which has periodicity property
cos(x + 2nmw) = cos(x), n=12Z
and other properties
cos(—x) = cos(x) = — cos(m — x)

example:
c0s(33278.21) = cos(33278.21 — 52967) = cos(2.46)

there is a library subroutine called range reduction which exploits these properties

Computer Arithmetic

2-26

Theorem on loss of precision

if x and y are positive normalized floating-point binary machine numbers s.t.
x>y and 271 <1 — (y/z) <27°P

then at most ¢ and at least p significant bits are lost in x — y

Proof. suppose x and y are in the normalized form
x=rx2", y=sx2"
to prove the upperbound, shift the exponent of y such that

r—y=(r—sx2m") x2"

Computer Arithmetic 2-27

the mantissa of this number satisfies

2m
r—s><2m_”:r<1—8><):r(l—g)<2_p
T

to normalize the mantissa, at least a p-bit shift to the left is required

to prove the lower bound, shift the exponent of = such that
r—y=((rx2""™—g)x2™)

the mantissa of this number satisfies

2TL
7"'><2"7“_m—s:3(T>< —1):3<§—1)22_q
§ X 2™ Y

to normalize the mantissa, at most a ¢-bit shift to the left is required

Computer Arithmetic

2-28

for example, the mantissa of x — y satisfies
274 < (0.00011100 - - - 101)y < 277
the normalized form of the mantissa is

(1.1100 - - - 1010000)5

four spurious zeros (not significant bits) were added to the right end

Computer Arithmetic 2-29

Sources of error in numerical computation

example: evaluate a function f: R — R at a given x (e.g., f(x) = sinx)

sources of error in the result:
e x is not exactly known

— measurement errors
— errors In previous computations

— how sensitive is f(x) to errors in x?

e the algorithm for computing f(x) is not exact

— discretization (e.g., the algorithm uses a table to look up f(x))
— truncation (e.g., f is computed by truncating a Taylor series)
— rounding error during the computation

— how large is the error introduced by the algorithm?

Computer Arithmetic 2-30

The condition of a problem

sensitivity of the solution with respect to errors in the data

e a problem is well-conditioned if small errors in the data produce small errors
in the result

e a problem is ill-conditioned if small errors in the data may produce large
errors in the result

rigorous definition depends on what ‘large error’ means (absolute or relative
error, which norm is used, . . .)

Computer Arithmetic 2-31

example: function evaluation

y = f(x), y+ Ay = f(x + Ax)

e absolute error

[Ay| ~ |f'(z)|| Az

ill-conditioned with respect to absolute error if |f'(x)| is very large

e relative error

Ayl _ |f(@)]|]|Axl
ol T Tl Tl

ill-conditioned w.r.t relative error if | f'(x)||x|/|f(x)]| is very large

the factor |xf'(x)|/|f(x)| serves as a condition number for the problem

Computer Arithmetic

2-32

example: f(z) = arcsinx

a straightforward calculation shows that

zf'(x) T

f(x) V1 — x?arcsinx

hence, for x near 1, the condition number becomes infinite

small relative errors in x may lead to large relative errors in arcsinx near x = 1

Computer Arithmetic 2-33

Roots of a polynomial

p(x)=(x—1)(z—-2) - (z—10) + 5 -z

roots of p computed by Matlab for two values of ¢

6=10""° 6=10""°
3 ‘ ‘ ‘ ‘ 3 ‘ ‘ ‘ ‘
2 2
+ +
T T
a 1f a 1f
> >
| - |-
@© Or @ 0
c =
& &
_17 _1,
= =
-2 -2
_3 1 1 I I _3 | | | |
0 2 4 6 8 10 12 0 2 4 6 8 10 12
real part real part

roots are very sensitive to errors in the coefficients

Computer Arithmetic 2-34

Stable & Unstable computations

example 1: z,,.1 = (13/3)x,, — (4/3)x—1
case 1: g = 1,21 = 4 and the exact solution is x,, = 4"

case 2: xo = 1,77 = 1/3 and the exact solution is z,, = (1/3)"

18000 ‘ ‘ ‘ ‘ ‘ ‘ 1

16000 0.8

14000

12000

10000

I~
& sooof

6000

4000

_0.2 |
2000

0 -0.4

0 Z;. é :; 4; g é 7 0 é» lb £5 210 215 30
n - n L]
(Left.) case 1: accurate (Right.) case 2: inaccurate

Computer Arithmetic 2-35

a numerical process is stable when

e small absolute errors made at one stage are magnified in subsequent stages

e but the relative errors are NOT seriously degraded
a numerical process is unstable when

e small absolute errors made at one stage are magnified in subsequent stages

e and the relative errors are seriously degraded

Computer Arithmetic 2-36

example 2: y,, = fOl z"e” dx

we apply integration by parts to the integral defining y,, 11, thus

400

350
300
250
200

Ynt1=€e— N+ 1)y,, yo=e—1

150

Yn

100

errors influence the correct values of vy,

50

0

thus, the numerical solution is wrong

_50 |

-100
0

1 2 3 4
n
the correct solution is that y,, tends to zero as n — o©

lim v, =0, lim (n+1)y,=c¢

n—oo n—oo

Computer Arithmetic 2-37

Summary

the conditioning of a mathematical problem

e sensitivity of the solution with respect to perturbations in the data

e ill-conditioned problems are ‘almost unsolvable’ in practice (i.e., in the
presence of data uncertainty): even if we solve the problem exactly, the
solution may be meaningless

e a property of a problem, independent of the solution method

stability of an algorithm

e accuracy of the result in the presence of rounding error

e a property of a numerical algorithm

Computer Arithmetic

2-38

precision of a computer

e a machine property (usually IEEE double precision, i.e., about 15 significant
decimal digits)

e a bound on the rounding error introduced when representing numbers in
finite precision

accuracy of a numerical result

e determined by: machine precision, accuracy of the data, stability of the
algorithm, . . .

e usually much smaller than 16 significant digits

Computer Arithmetic 2-39

References

Chapter 2 in

D. Kincaid and W. Cheney, Numerical Analysis: Mathematics of Scientific
Computing, 3rd edition, Brooks/Cole, 2002.

Section 1.3 in

J. F. Epperson, An Introduction to Numerical Methods and Analysis, Johy Wiley
& Sons, Inc., 2007.

| ecture notes on

Problem condition and numerical stability, EE103, L. Vandenberhge, UCLA

Computer Arithmetic 2-40

