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2. Computer Arithmetic

• floating–point numbers

• floating–point representation

• floating–point error Analysis

• sources of error in numerical computation

• stable & unstable Computations

• conditioning of a problem
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Floating–point numbers

computer users read numbers in decimal system

9.75 = 9× 100 + 7× 10−1 + 5× 10−2

computer internally work with binary system

(1001.11)2 = 1× 23 + 0× 22 + 0× 21 + 1× 20 + 1× 2−1 + 1× 2−2

example: change 1/10 to the binary system

1

10
= (0.0001 1001 1001 1001 1001 . . .)2
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Rounding up and Truncation

x is a positive decimal number with m digits to the right of the decimal point.

Rounding: round x up to n decimal places

• if (n+ 1)st digit is 0, 1, 2, 3, or 4 then the nth digit is not changed

• if (n+ 1)st digit is 5, 6, 7, 8, or 9 then the nth digit is increased by one

• the remaining digits are discarded.

examples: seven-digit numbers are rounded to four digits

0.1735499 → 0.1735

0.9999500 → 1.0000

0.4321609 → 0.4322
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Fact: if x̃ is the rounded-up n–digit approximation to x, then

|x− x̃| ≤ 1

2
× 10−n

Truncation: truncate a number to n digits is to discard all digits beyond the
nth digit.

examples: seven-digit numbers are truncated to four digits

0.1735499 → 0.1735

0.9999500 → 0.9999

0.4321609 → 0.4321

Fact: if x̂ is the truncated (chopped) n–digit approximation of x then

|x− x̂| ≤ 10−n
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Normalized scientific notation

normalized scientific notation in decimal system:

• shift decimal point with appropriate powers of 10

• all digits are to the right of the decimal point and the first digit displayed is
not 0

example: 732.5051 = 0.7325051× 103

a nonzero real number x can be represented in form

x = ±r × 10n

where 1

10
≤ r < 1 and n is an integer
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normalized scientific notation in binary system:

x = ±q × 2m

where 1

2
≤ q < 1,

• q is called the mantissa,

• m is an integer and called the exponent

another version: leading binary digit 1 appears to the left of the binary point

x = ±q × 2m, q = (1.f)2

where 1 ≤ q < 2.
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Floating–point representation

floating–point representation for a single-precision real number

x = ±q × 2m

in a 32-bit computer is divided into 3 fields.

• sign of real number x (s) 1 bit

• biased exponent (integer e) 8 bits

• mantissa part (real number f) 23 bits

sign of
mantissa
s

biased exponent e normalized mantissa f
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values of bit strings are decoded as normalized floating–point form

x = (−1)sq × 2m, q = (1.f)2, m = e− 127

note: the most significant digit in q is 1 and is not stored

Fact:

1 ≤ q < 2, 0 < e < 255, − 126 ≤ m ≤ 127

e = 0 and e = 255 are reserved for special cases such as ±0,±∞ and NaN

32 bit computer can handle numbers

• smallest number 2−126 ≈ 1.2× 10−38

• largest number (2− 2−23)2127 ≈ 3.4× 1038

double precision or extended precision uses two computer words and slows down
calculation
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Machine rounding

• round to nearest: the closer of two machine numbers of the real number is
selected

• round to even: in case of halfway between two machine numbers, even
machine number is chosen

• directed rounding such as round toward 0 (truncation)
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Nearby machine numbers

what is the machine number closest to x?

x = (1.a1a2 . . . a22a23a24a25 . . .)2 × 2m

• chopping
x− = (1.a1a2 . . . a22a23)2 × 2m

• rounding up
x+ =

(

(1.a1a2 . . . a22a23)2 + 2−23
)

× 2m

x can be represented better either by x− or x+ (depending on the value of x)

x = (1.0011 · · · 0101)2 × 23

x− = (1.0011 · · · 01)2 × 23 =⇒ |x− x−| = (1 · 2−24)× 23

x+ = (1.0011 · · · 10)2 × 23 =⇒ |x+ − x| = [1 · 2−22 − (1 · 2−23 + 1 · 2−24)]× 23
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first case: x is represented better by x−

|x− x−| ≤
1

2
|x+ − x−| =

1

2
× 2m−23 = 2m−24

relative error is bounded by

|x− x−|
x

≤ 2m−24

q × 2m
=

1

q
× 2−24 ≤ 2−24

second case: x is closer to x+ than to x−

|x− x+| ≤
1

2
|x+ − x−| = 2m−24

relative error is bounded by

|x− x+|
x

≤ 2−24
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Overflow vs Underflow

in a 32-bit computation, a number is produced of the form

±q × 2m

we call a computation is overflow if m is outside the range permitted

m > 127

and we call a computaton is underflow if m is too small,

m < −126

• IEEE standard uses a kind of extended floating point system to allow for
results Inf and NaN

• it includes rules such as x/Inf gives 0 or x/0 yields ±Inf
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Roundoff error

let x∗ be the machine number closest to x and δ = (x∗ − x)/x

|x− x∗|
x

≤ 2−24

fl(x) is used to denote x∗, that is,

fl(x) = x∗ = x(1 + δ), |δ| ≤ 2−24

thus, 2−24 is the unit roundoff error for 32-bit computers

Fact: number of bits of mantissa directly relates to unit roundoff error and
determines accuracy of calculation
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for computer with base β and mantissa n places

fl(x) = x(1 + δ), |δ| ≤ ǫ

where

• ǫ = (1/2)β1−n if we implement correct rounding

• ǫ = β1−n if we implement chopping

ǫ is the unit roundoff error and is a charateristic of a computing machine
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example: find the nearest machine number of x = 2/3

to find the binary representation of 2/3, we write

x = 2/3 = (0.a1a2a3 · · · )2

to find a1, multiply x by 2

2x = 4/3 = (a1.a2a3a4 · · · )2 =⇒ a1 = 1 (∵ 4/3 > 1)

substracting 1 from both sides

1/3 = (0.a2a3a4 · · · )2

multiplying 2 on both sides

2/3 = (a2.a3a4a5 · · · )2 =⇒ a2 = 0 (∵ 2/3 < 1)
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repeat the previous steps, we obtain

x = 2/3 = (0.1010 · · · )2 = (1.010101 · · · )2 × 2−1

the two nearby machine numbers are

x− = (1.010101 · · · 010)2 × 2−1, x+ = (1.010101 · · · 011)2 × 2−1

and the absolute errors are

x− x− = (0.1010 · · · )2 × 2−24 = 2/3× 2−24

x+ − x = (x+ − x−)− (x− x−) = 2−24 − 2/3× 2−24 = 1/3× 2−24

hence, we set fl(x) = x+ (the nearest machine number)

the relative roundoff error is

|fl(x)− x|
|x| =

1/3× 2−24

2/3
= 2−25
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Floating–point error analysis

for any real number x within the range of the 32-bit computer

fl(x) = x(1 + δ), |δ| ≤ 2−24

if x, y are machine numbers, we have

fl(x⊙ y) = (x⊙ y)(1 + δ) |δ| ≤ 2−24

where ⊙ is one of the four arithmatic operations; +−×÷

roundoff error must be expected in every arithmatic operation !

example: both 2−1 and 2−25 are machine numbers, but so is 2−1 + 2−25 ?
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if x, y are machine numbers and assume arithmetic operations satisfy

fl(x⊙ y) = (x⊙ y)(1 + δ), |δ| ≤ ǫ

we often compute the roundoff error from a series of arithmetic operations

for example,

fl[x(y + z)] = [xfl(y + z)](1 + δ1), |δ1| ≤ 2−24

= [x(y + z)(1 + δ2)](1 + δ1), |δ2| ≤ 2−24

= x(y + z)(1 + δ1 + δ2 + δ1δ2)

≈ x(y + z)(1 + δ1 + δ2)

= x(y + z)(1 + δ3), |δ3| ≤ 2−23

if x, y are not machine numbers, one should expect

fl(fl(x)⊙ fl(y)) = (x(1 + δ1)⊙ y(1 + δ2))(1 + δ3) |δi| ≤ 2−24
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Relative error in adding

given a machine with a unit roundoff error ǫ and that

x0, x1, . . . , xn are positive machine numbers

then the relative roundoff error in computing the sum of n+ 1 numbers,

x0 + x1 + x2 + · · ·+ xn

is at most (1 + ǫ)n − 1 and should not exceed nǫ

Proof. define Sk (actual sum)

Sk = x0 + x1 + . . .+ xk

the computer calculates S∗

k (computed sum)
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recursive formula for Sk

S0 = x0, Sk+1 = Sk + xk+1

recursive formula for S∗

k

S∗

0 = x0, S∗

k+1 = fl(S∗

k + xk+1)

let |ρk| be relative error between actual Sk and computed sum S∗

k

ρk =
S∗

k − Sk

Sk

(relative error after k steps)

let |δk| be relative error in computing S∗

k + xk+1

δk =
S∗

k+1
− (S∗

k + xk+1)

S∗

k + xk+1

(relative error at the (k + 1)th step)
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it can be shown that

ρk+1 =
S∗

k+1
− Sk+1

Sk+1

=
(S∗

k + xk+1)(1 + δk)− Sk+1

Sk+1

=
(Sk(1 + ρk) + xk+1)(1 + δk)− Sk+1

Sk+1

=
(Sk+1 + Skρk)(1 + δk)− Sk+1

Sk+1

=
Sk+1δk + Skρk(1 + δk)

Sk+1

= δk + ρk(Sk/Sk+1)(1 + δk)

at each iteration, δk is directly added up to ρk+1
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since Sk/Sk+1 < 1 and |δk| ≤ ǫ, we conclude

|ρk+1| ≤ ǫ+ |ρk|(1 + ǫ)

or equivalently,
|ρk+1| ≤ ǫ+ |ρk|θ, θ = 1 + ǫ

by successive inequalities and |ρ0| = 0, we have

|ρn| ≤ ǫ+ θǫ+ θ2ǫ+ · · ·+ θn−1ǫ = ǫ
(θn − 1)

(θ − 1)
= (1 + ǫ)n − 1

by the Binomial theorem, we have

(1 + ǫ)n = 1 +

(

n
1

)

ǫ+

(

n
2

)

ǫ2 + · · ·+ ǫn

by neglecting the higher order term in ǫk, k ≥ 2

|ρn| ≤ (1 + ǫ)n − 1 ≈ nǫ
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Absolute and Relative Errors

let x∗ be approximated number of x

absolute error

|x− x∗|

relative error
|x− x∗|

|x|

• absolute error needs a knowledge about the magnitude of x

• relative error is often more significant and useful
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Machine epsilon

the machine epsilon u is the largest point number x such that

1 + x = 1

i.e., x+ 1 cannot be distinguished from 1 on the computer:

u = max {x | 1 + x = 1, in computer arithmetic}

example: a three digit decimal computer that uses rounding

x1 = 1.00× 10−2 =⇒ 1 + x1 = 1.00 + 0.01 = 1.01 6= 1.00

x2 = 1.00× 10−3 =⇒ 1 + x2 = 1.00 + 0.001 = 1.001 → 1.00 = 1.00

x3 = 5.00× 10−3 =⇒ 1 + x3 = 1.00 + 0.005 = 1.005 → 1.01 6= 1.00

x1 is too large, x2 is too small, x3 is a bit large

u = 4.99× 10−3 =⇒ 1 + u = 1.00 + 0.00499 = 1.00499 → 1.00 = 1.00

Computer Arithmetic 2-24



Loss of significance

numerical analysis is to understand and control various kinds of errors

• roundoff error

• loss of significance or precision, e.g., subtraction of nearly equal quantities,
evaluation of functions,

a remedy to loss of significance is to carefully write program

example: the assignment statement

y =
√

x2 + 1− 1

involves substractive calculation and loss of significance for small values of x. to
avoid the difficulty, this can be rewritten as

y =
x2

√
x2 + 1 + 1
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Evaluation of Functions

Evaluating some f(x) for very large x can cause a drastic loss of significant digits

consider cosine function which has periodicity property

cos(x+ 2nπ) = cos(x), n = Z

and other properties

cos(−x) = cos(x) = − cos(π − x)

example:
cos(33278.21) = cos(33278.21− 5296π) = cos(2.46)

there is a library subroutine called range reduction which exploits these properties
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Theorem on loss of precision

if x and y are positive normalized floating-point binary machine numbers s.t.

x > y and 2−q ≤ 1− (y/x) ≤ 2−p

then at most q and at least p significant bits are lost in x− y

Proof. suppose x and y are in the normalized form

x = r × 2n, y = s× 2m

to prove the upperbound, shift the exponent of y such that

x− y = (r − s× 2m−n)× 2n
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the mantissa of this number satisfies

r − s× 2m−n = r

(

1− s× 2m

r × 2n

)

= r
(

1− y

x

)

< 2−p

to normalize the mantissa, at least a p-bit shift to the left is required

to prove the lower bound, shift the exponent of x such that

x− y = ((r × 2n−m − s)× 2m)

the mantissa of this number satisfies

r × 2n−m − s = s

(

r × 2n

s× 2m
− 1

)

= s

(

x

y
− 1

)

≥ 2−q

to normalize the mantissa, at most a q-bit shift to the left is required
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for example, the mantissa of x− y satisfies

2−4 ≤ (0.00011100 · · · 101)2 ≤ 2−3

the normalized form of the mantissa is

(1.1100 · · · 1010000)2

four spurious zeros (not significant bits) were added to the right end
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Sources of error in numerical computation

example: evaluate a function f : R → R at a given x (e.g., f(x) = sinx)

sources of error in the result:

• x is not exactly known

– measurement errors
– errors in previous computations

−→ how sensitive is f(x) to errors in x?

• the algorithm for computing f(x) is not exact

– discretization (e.g., the algorithm uses a table to look up f(x))
– truncation (e.g., f is computed by truncating a Taylor series)
– rounding error during the computation

−→ how large is the error introduced by the algorithm?
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The condition of a problem

sensitivity of the solution with respect to errors in the data

• a problem is well-conditioned if small errors in the data produce small errors
in the result

• a problem is ill-conditioned if small errors in the data may produce large
errors in the result

rigorous definition depends on what ‘large error’ means (absolute or relative
error, which norm is used, . . . )
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example: function evaluation

y = f(x), y +∆y = f(x+∆x)

• absolute error
|∆y| ≈ |f ′(x)||∆x|

ill-conditioned with respect to absolute error if |f ′(x)| is very large

• relative error
|∆y|
|y| ≈ |f ′(x)||x|

|f(x)|
|∆x|
|x|

ill-conditioned w.r.t relative error if |f ′(x)||x|/|f(x)| is very large

the factor |xf ′(x)|/|f(x)| serves as a condition number for the problem
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example: f(x) = arcsinx

a straightforward calculation shows that

xf ′(x)

f(x)
=

x√
1− x2 arcsinx

hence, for x near 1, the condition number becomes infinite

small relative errors in x may lead to large relative errors in arcsinx near x = 1
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Roots of a polynomial

p(x) = (x− 1)(x− 2) · · · (x− 10) + δ · x10

roots of p computed by Matlab for two values of δ
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roots are very sensitive to errors in the coefficients
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Stable & Unstable computations

example 1: xn+1 = (13/3)xn − (4/3)xn−1

case 1: x0 = 1, x1 = 4 and the exact solution is xn = 4n

case 2: x0 = 1, x1 = 1/3 and the exact solution is xn = (1/3)
n
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a numerical process is stable when

• small absolute errors made at one stage are magnified in subsequent stages

• but the relative errors are NOT seriously degraded

a numerical process is unstable when

• small absolute errors made at one stage are magnified in subsequent stages

• and the relative errors are seriously degraded
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example 2: yn =
∫ 1

0
xnex dx

we apply integration by parts to the integral defining yn+1, thus
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n

yn+1 = e− (n+ 1)yn, y0 = e− 1

errors influence the correct values of yn

thus, the numerical solution is wrong

the correct solution is that yn tends to zero as n → ∞

lim
n→∞

yn = 0, lim
n→∞

(n+ 1)yn = e
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Summary

the conditioning of a mathematical problem

• sensitivity of the solution with respect to perturbations in the data

• ill-conditioned problems are ‘almost unsolvable’ in practice (i.e., in the
presence of data uncertainty): even if we solve the problem exactly, the
solution may be meaningless

• a property of a problem, independent of the solution method

stability of an algorithm

• accuracy of the result in the presence of rounding error

• a property of a numerical algorithm

Computer Arithmetic 2-38



precision of a computer

• a machine property (usually IEEE double precision, i.e., about 15 significant
decimal digits)

• a bound on the rounding error introduced when representing numbers in
finite precision

accuracy of a numerical result

• determined by: machine precision, accuracy of the data, stability of the
algorithm, . . .

• usually much smaller than 16 significant digits

Computer Arithmetic 2-39



References

Chapter 2 in

D. Kincaid and W. Cheney, Numerical Analysis: Mathematics of Scientific
Computing, 3rd edition, Brooks/Cole, 2002.

Section 1.3 in

J. F. Epperson, An Introduction to Numerical Methods and Analysis, Johy Wiley
& Sons, Inc., 2007.

Lecture notes on

Problem condition and numerical stability, EE103, L. Vandenberhge, UCLA

Computer Arithmetic 2-40


