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Large sparse linear systems

consider solving Az = b when A is sparse and the dimension of A is huge

nz =107 nz =135

factorization methods are sometimes not a good technique because

e the number of non-zero entries in the factors is increased due to fill-in

e storing the factors L and U will require much more storage
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Application on solving PDE

large sparse matrices arise in the numerical solution of PDE/ODE

ODE
—u'(z) = f(x), 0<z<l, where u(0) and u(1) are given
if we discretize the spatial variable by
xo=0, x1=h, x9=2h,..., x;=1h,..., z,=nh=1
and apply a good approximation of u'(x) as

— f(2;) = u"(x3) ~ u(Ti—1) — 2u§sz) + u(Tit1)

then by denoting u; = u(x;) we can try to solve the above approximation exactly

—Ui—1 + 2U; — Uj41 :h2f(xi)7 1=1,...,n—-1
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this is actually a system of n — 1 equations with n — 1 unknowns w1, ..., u,_1

Au=1>
2 -1 ] [ h2f(x1) +u(0) |
-1 2 -1 h? f(z2)
A= o b= thE(‘/E?’)
1 2 -1 W f(2,—2)
i -1 2 12 f(2n—1) 4+ u(1))

e we obtain an approximate ODE solution to by solving linear equations

e by making A small, the solution is more accurate, but # of variables increases
e we can show that A is nonsingular (and pdf), hence the solution is unique

e A is tri-diagonal (extremely sparse)

e in fact, we can solve by Cholesky's method; no need to use iterative methods
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PDE: Poisson's equation with variables (z,y) € [0, 1] x [0, 1]

°u  Pu
or2  Oy?

f,  with some boundary condition

use the approximations

o ¢+ %(x“ )~ w(Ti—1,Yi) — 2u(9]f;z'2, yj) + u(xir1, yj)

2 L 2 . 2 L 2 a:‘

| &( ) w(zi, yj—1) — 2u(x;, y;) + w(Tit1, Yjt1)
T 8y2 Li, Yi ~ h2

(zi,y;5) = (¢h, jh)
i i=0,1,2,....m

let u; ; = u(z;,y;); we treat the above approximations as equations

—Ui—1,5 +2U 5 — Uip1,5 | —Ui -1+ 2U 5 — U4 541 A
) ) y + ’ ) ) — fz .2 f(x y)
] iy Yi

h? h?
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with some arrangment
2 ..
—ui,j_l — ui_l,j —+ 4u7;,j — ’LLZ'_|_17j — ui,j_|_1 — h fi,j? 1,] = 1, 2, NN (1 1

we can order u; ; by sweeping by rows and define the vector

u = [ ul,l,...,um_l,l,ul,g,...,um_l,g,...,um_l,m_l ]T
we can now write the equations as Au = b
T -1 | 4 —1 |
-1 T -1 -1 4 -1
-1 T - -1 4
A= U = R |
1 2 =1 1 4 -1
I —I T | I -1 4

A has dimension n x n where n = (m — 1)?
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e for PDE, the problem dimension is much higher (n = (m — 1)?)
e A has block-tridiagonal structure and the semi-band width is m
e A is symmetric, nonsingular and even positive definite

e if solved by Cholesky, it's known that the cost of solving a banded system is
ns?/2 where s is the semi-band width

so the cost is about ~ (1/2)m?
e the Cholesky factor is not nearly so sparse, and requires storage of ns ~ m?

e every we halve h, m is doubled, the cost and storage are increased by a factor
of 16 and 8§, respectively

when n is fairly large, the iterative methods can require less cost and storage
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Splitting methods

R?’LX’)’L

we solve the system Ax = b where A € and A is nonsingular

we split A into a difference
A=M—N

where M is such that solving Mz = f is easy; then we have
(M—-N)zx=b =— Mzx=Nz+b =— zx=M 'Nx+M"'b
this suggests the following iteration
B = MINR) 4 At

until the sequence converges
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Convergence of splitting methods

we can write the iteration matrix as
T=M'N=M'M-A=I-M"1A
idea: T should be less than one in some sense (even better if M ~ A)
Theorem: the iteration
2D = T 4 Aty
converges for all (9 if and only if
spectral radius of T' £ p(T) £ max |\(T)| < 1

i.e., the largest magnitude of all eigenvalues of T’ is less than 1
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Proof sketch.

e we can show that for any T', p(T') = inf || T’|| (not obvious)

where the infimum is taken over all induced matrix norm || - ||
e if p(T) < 1 then there exists an induced norm such that ||7|| < 1

e the iteration z(¥*1) = T'2(¥) 4 ¢ has the closed-form formula:
k—1
®) = kg0 4 Zch
j=0
e the term T%z(®) must go to 0 as k — oo if p(T) < 1

| TR ) < 1Tl < 17|l — 0

¢ > “oT’c=(I—T) 'c (Neumann series)
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Jacobi iteration

split the diagonal part of A, denoted by D
A=D—(D—-A)
the Jacobi’s iteration is
gF D) = (I = D' A)2™ + D~
or equivalently
e F Y = ) _ D=L (A4z®)) 4 D71p = 2®) 4 D=1 (R)

where 7(5) = b — Az(k) is the residual after k iterations

note: we should exploit the sparsity structure of A in the implementation
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Gauss-Seidel iteration

split the lower triangular part of A, denoted by L
A=L—-(L—-A)
the Gauss-Seidel iteration is
c* ) = (1 — L7t A)z®™ + L1
or equivalently
e = 20 =Y AxM)) 4 L7 = o) 4 L1

where 7(5) = b — Az(k) is the residual after k iterations
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Convergence

Jacobi adn Gauss-Seidel convergence theorem:

1. if A is diagonally dominant, i.e.,

agi] > Y lail, (1<i<n)

J#i
then both Jacobi and Gauss-Seidel iteration converge

moreover, Gauss-Seidel converges faster in the sense that

p(Tas) < p(Ty)
where T g and T’y are the iteration matrices for Gauss-Seidel and Jacobi

2. if A is positive semidefinite then both Jacobi and Gauss-Seidel will converge
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Successive Over-Relaxation (SOR)

let D, L and U be diagonal, strictly lower and strictly upper triangular parts of A

we split A as follows

= o) (2)o)

the SOR iteration is

x(k—l—l) _ ZIZ(k> . Q_le(k> 4+ Q—lb

where () is lower triangular and depends on w € R:

Q = (%D + L) =w YD+ wl)
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remarks:

e we are averaging the result of a Gauss-Seidel step with the previous iterate
e w is the weighting parameter in the average

e when w =1, SOR reduces to Gauss-Seidel iteration

e for most problems, the optimal w is not known

e the best performance of SOR often occurs when w € [1, 2]
convergence theorem:

1. if A is positive semidefinite then for any value w € (0,2), the SOR iteration
will converge to the exact solution of Ax = b

2. if w < 0 orw > 2 then the iteration will not converge
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Numerical example

we solve the system Ax = b where A has a triband structure

Ae RlOOOOXlOOOO

(

4, =
aij =4 -1, |i—jl=1

L0, otherwise

e 1; = £1, generated randomly

e b is obtained by multiplying A with x

solve the system by Jacobi, Gauss-Seidel, and SOR methods
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SOR method
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e vary w € (0,2); the convergence depends heavily on the choice of w

e asw — 2 or w — 0, SOR is slow to converge

e we found that in this example, using w = 1.05 gives the best performance
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comparison of the three methods
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e Gauss-Seidel is converging faster than Jacobi method

e SOR with w = 1.05 is converging slightly faster than Gauss-Seidel
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Summary

method Splitting matrix (M)
Jacobi D
Gauss-Seidel D + L
1
SOR —D + L
W
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