
EE507 - Computational Techniques for EE Jitkomut Songsiri

9. Iterative Methods for Large Linear Systems

• introduction

• splitting method

• Jacobi method

• Gauss-Seidel method

• successive overrelaxation (SOR)
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Large sparse linear systems

consider solving Ax = b when A is sparse and the dimension of A is huge

nz = 107 nz = 135 nz = 135

factorization methods are sometimes not a good technique because

• the number of non-zero entries in the factors is increased due to fill-in

• storing the factors L and U will require much more storage

Iterative Methods for Large Linear Systems 9-2



Application on solving PDE

large sparse matrices arise in the numerical solution of PDE/ODE

ODE

−u′′(x) = f(x), 0 < x < 1, where u(0) and u(1) are given

if we discretize the spatial variable by

x0 = 0, x1 = h, x2 = 2h, . . . , xi = ih, . . . , xn = nh = 1

and apply a good approximation of u′′(x) as

−f(xi) = u′′(xi) ≈
u(xi−1)− 2u(xi) + u(xi+1)

h

then by denoting ui = u(xi) we can try to solve the above approximation exactly

−ui−1 + 2ui − ui+1 = h2f(xi), i = 1, . . . , n− 1
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this is actually a system of n− 1 equations with n− 1 unknowns u1, . . . , un−1

Au = b

A =


2 −1
−1 2 −1

−1 2 . . .
. . . . . . −1

1 2 −1
−1 2

 , b =


h2f(x1) + u(0)

h2f(x2)
h2f(x3)

...
h2f(xn−2)

h2f(xn−1) + u(1)


• we obtain an approximate ODE solution to by solving linear equations

• by making h small, the solution is more accurate, but # of variables increases

• we can show that A is nonsingular (and pdf), hence the solution is unique

• A is tri-diagonal (extremely sparse)

• in fact, we can solve by Cholesky’s method; no need to use iterative methods
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PDE: Poisson’s equation with variables (x, y) ∈ [0, 1]× [0, 1]

−∂
2u

∂x2
− ∂

2u

∂y2
= f, with some boundary condition

use the approximations

∂2u

∂x2
(xi, yi) ≈

u(xi−1, yi)− 2u(xi, yj) + u(xi+1, yj)

h2

∂2u

∂y2
(xi, yi) ≈

u(xi, yj−1)− 2u(xi, yj) + u(xi+1, yj+1)

h2

let ui,j = u(xi, yj); we treat the above approximations as equations

−ui−1,j + 2ui,j − ui+1,j

h2
+
−ui,j−1 + 2ui,j − ui,j+1

h2
= fi,j , f(xi, yi)
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with some arrangment

−ui,j−1 − ui−1,j + 4ui,j − ui+1,j − ui,j+1 = h2fi,j, i, j = 1, 2, . . . ,m− 1

we can order ui,j by sweeping by rows and define the vector

u = [ u1,1, . . . , um−1,1, u1,2, . . . , um−1,2, . . . , um−1,m−1 ]T

we can now write the equations as Au = b

A =


T −I
−I T −I

−I T . . .
. . . . . . −I

1 2 −I
−I T

 , T =


4 −1
−1 4 −1

−1 4 . . .
. . . . . . −1

1 4 −1
−1 4


A has dimension n× n where n = (m− 1)2
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• for PDE, the problem dimension is much higher (n = (m− 1)2)

• A has block-tridiagonal structure and the semi-band width is m

• A is symmetric, nonsingular and even positive definite

• if solved by Cholesky, it’s known that the cost of solving a banded system is

ns2/2 where s is the semi-band width

so the cost is about ≈ (1/2)m4

• the Cholesky factor is not nearly so sparse, and requires storage of ns ≈ m3

• every we halve h, m is doubled, the cost and storage are increased by a factor
of 16 and 8, respectively

when n is fairly large, the iterative methods can require less cost and storage
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Splitting methods

we solve the system Ax = b where A ∈ Rn×n and A is nonsingular

we split A into a difference
A =M −N

where M is such that solving Mz = f is easy ; then we have

(M −N)x = b =⇒ Mx = Nx+ b =⇒ x =M−1Nx+M−1b

this suggests the following iteration

x(k+1) =M−1Nx(k) +M−1b

until the sequence converges
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Convergence of splitting methods

we can write the iteration matrix as

T =M−1N =M−1(M −A) = I −M−1A

idea: T should be less than one in some sense (even better if M ≈ A)

Theorem: the iteration

x(k+1) = Tx(k) +M−1b

converges for all x(0) if and only if

spectral radius of T , ρ(T ) , max |λ(T )| < 1

i.e., the largest magnitude of all eigenvalues of T is less than 1
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Proof sketch.

• we can show that for any T , ρ(T ) = inf ‖T‖ (not obvious)

where the infimum is taken over all induced matrix norm ‖ · ‖

• if ρ(T ) < 1 then there exists an induced norm such that ‖T‖ < 1

• the iteration x(k+1) = Tx(k) + c has the closed-form formula:

x(k) = T kx(0) +

k−1∑
j=0

T jc

• the term T kx(0) must go to 0 as k →∞ if ρ(T ) < 1

‖T kx(0)‖ ≤ ‖T k‖‖x(0)‖ ≤ ‖T‖k‖x(0)‖ → 0

•
∑∞

j=0 T
jc = (I − T )−1c (Neumann series)
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Jacobi iteration

split the diagonal part of A, denoted by D

A = D − (D −A)

the Jacobi’s iteration is

x(k+1) = (I −D−1A)x(k) +D−1b

or equivalently

x(k+1) = x(k) −D−1(Ax(k)) +D−1b = x(k) +D−1r(k)

where r(k) = b−Ax(k) is the residual after k iterations

note: we should exploit the sparsity structure of A in the implementation
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Gauss-Seidel iteration

split the lower triangular part of A, denoted by L

A = L− (L−A)

the Gauss-Seidel iteration is

x(k+1) = (I − L−1A)x(k) + L−1b

or equivalently

x(k+1) = x(k) − L−1(Ax(k)) + L−1b = x(k) + L−1r(k)

where r(k) = b−Ax(k) is the residual after k iterations
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Convergence

Jacobi adn Gauss-Seidel convergence theorem:

1. if A is diagonally dominant, i.e.,

|aii| >
∑
j 6=i

|aij|, (1 ≤ i ≤ n)

then both Jacobi and Gauss-Seidel iteration converge

moreover, Gauss-Seidel converges faster in the sense that

ρ(TGS) < ρ(TJ)

where TGS and TJ are the iteration matrices for Gauss-Seidel and Jacobi

2. if A is positive semidefinite then both Jacobi and Gauss-Seidel will converge
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Successive Over-Relaxation (SOR)

let D,L and U be diagonal, strictly lower and strictly upper triangular parts of A

we split A as follows

A =

(
1

ω
D + L

)
−
((

1

ω
− 1

)
D − U

)
the SOR iteration is

x(k+1) = x(k) −Q−1Ax(k) +Q−1b

where Q is lower triangular and depends on ω ∈ R:

Q =

(
1

ω
D + L

)
= ω−1(D + ωL)
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remarks:

• we are averaging the result of a Gauss-Seidel step with the previous iterate

• ω is the weighting parameter in the average

• when ω = 1, SOR reduces to Gauss-Seidel iteration

• for most problems, the optimal ω is not known

• the best performance of SOR often occurs when ω ∈ [1, 2]

convergence theorem:

1. if A is positive semidefinite then for any value ω ∈ (0, 2), the SOR iteration
will converge to the exact solution of Ax = b

2. if ω < 0 or ω > 2 then the iteration will not converge
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Numerical example

we solve the system Ax = b where A has a triband structure

A ∈ R10000×10000

aij =


4, i = j

−1, |i− j| = 1

0, otherwise

• xi = ±1, generated randomly

• b is obtained by multiplying A with x

solve the system by Jacobi, Gauss-Seidel, and SOR methods
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SOR method
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• vary ω ∈ (0, 2); the convergence depends heavily on the choice of ω

• as ω → 2 or ω → 0, SOR is slow to converge

• we found that in this example, using ω = 1.05 gives the best performance
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comparison of the three methods
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• Gauss-Seidel is converging faster than Jacobi method

• SOR with ω = 1.05 is converging slightly faster than Gauss-Seidel
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Summary

method Splitting matrix (M)
Jacobi D
Gauss-Seidel D + L

SOR
1

ω
D + L
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