7. LU factorization

- factor-solve method
- LU factorization
- $\bullet\,$ solving $Ax=b$ with A nonsingular
- the inverse of ^a nonsingular matrix
- LU factorization algorithm
- effect of rounding error
- sparse LU factorization

Factor-solve approach

to solve $Ax=b$, first write A as a product of 'simple' matrices

$$
A = A_1 A_2 \cdots A_k
$$

then solve $(A_1A_2\cdots A_k)x=b$ by solving k equations

 $A_1z_1 = b, \qquad A_2z_2 = z_1, \quad \ldots, \quad A_{k-1}z_{k-1} = z_{k-2}, \qquad A_kx = z_{k-1}$

examples

 $\bullet\,$ Cholesky factorization (for positive definite $A)$

$$
k = 2, \qquad A = LL^T
$$

 $\bullet\,$ sparse Cholesky factorization (for sparse positive definite $A)$

$$
k = 4, \qquad A = P L L^T P
$$

Complexity of factor-solve method

 $\#\mathsf{flops}=f+s$

- $\bullet\,$ f is cost of factoring A as $A=A_1A_2\cdots$. $A_{k}% =\frac{1}{\lambda_{1}}\sum_{k}\left(\left[\lambda_{1}^{A}\left(t_{k}\right) \boldsymbol{\hat{x}}_{k}\right] ^{k}\right) ^{k}$ $_{k}$ (factorization step)
- $\bullet\;$ s is cost of solving the k equations for $z_1,\;z_2,\;\ldots\;z_{k-1},\;x$ (solve step)
- $\bullet\,$ usually $f \gg s$

example: positive definite equations using the Cholesky factorization

$$
f = (1/3)n^3
$$
, $s = 2n^2$

Multiple right-hand sides

two equations with the same matrix but different right-hand sides

$$
Ax = b, \qquad A\tilde{x} = \tilde{b}
$$

- \bullet factor A once $(f$ flops)
- $\bullet\,$ solve with right-hand side b $(s$ flops)
- $\bullet\,$ solve with right-hand side \tilde{b} $(s$ flops)

cost: $f + 2s$ instead of $2(f + s)$ if we solve second equation from scratch

 ${\sf conclusion:}$ if $f\gg s$, we can solve the two equations at the cost of one

LU factorization

LU factorization without pivoting

 $A = LU$

- \bullet $\ L$ unit lower triangular, U upper triangular
- $\bullet\,$ does not always exist (even if A is nonsingular)

LU factorization (with row pivoting)

 $A = PLU$

- \bullet $\,P$ permutation matrix, L unit lower triangular, U upper triangular
- $\bullet\,$ exists if and only if A is nonsingular (see later)

cost: $(2/3)n^3$ if A has order n

Solving linear equations by LU factorization

solve $Ax = b$ with A nonsingular of order n

factor-solve method using LU factorization

- 1. factor A as $A = PLU$ $((2/3)n^3$ flops)
- 2. solve $(PLU)x=b$ in three steps
	- $\bullet\,$ permutation: $\,z_1=P^Tb\,$ (0 flops)
	- \bullet forward substitution: solve $Lz_2=z_1 \, (n^2$ flops)
	- $\bullet\,$ back substitution: solve $Ux=z_2$ $(n^2$ flops)

 $\textbf{total cost}: \; (2/3) n^3 + 2 n^2 \; \textsf{flops}, \; \textup{or roughly} \; (2/3) n^3$

this is the standard method for solving $Ax=b$

Multiple right-hand sides

two equations with the same matrix A (nonsingular and $n\times n)$:

$$
Ax = b, \qquad A\tilde{x} = \tilde{b}
$$

- \bullet factor A once
- $\bullet\,$ forward/back substitution to get x
- $\bullet\,$ forward/back substitution to get \tilde{x}

cost: $(2/3)n^3+4n^2$ or roughly $(2/3)n^3$

exercise: propose an efficient method for solving

$$
Ax = b, \qquad A^T \tilde{x} = \tilde{b}
$$

Inverse of ^a nonsingular matrix

suppose A is nonsingular of order n , with LU factorization

 $A = PLU$

• inverse from LU factorization

$$
A^{-1} = (PLU)^{-1} = U^{-1}L^{-1}P^{T}
$$

• ^gives interpretation of solve step: evaluate

$$
x = A^{-1}b = U^{-1}L^{-1}P^{T}b
$$

in three steps

$$
z_1 = P^T b
$$
, $z_2 = L^{-1} z_1$, $x = U^{-1} z_2$

Computing the inverse

solve $AX = I$ by solving n equations

$$
AX_1 = e_1, \qquad AX_2 = e_2, \qquad \ldots, \qquad AX_n = e_n
$$

 X_i is the i th column of $X; \, e_i$ is the i th unit vector of size n

- $\bullet\,$ one LU factorization of $A\colon\,2n^3/3$ flops
- \bullet $\,n\,$ solve steps: $\,2n^3\,$ flops

 \bold{total} : $(8/3)n^3$ flops

conclusion: do not solve $Ax = b$ by multiplying A^{-1} with b

LU factorization without pivoting

partition $A, \, L, \, U$ as block matrices:

$$
A = \begin{bmatrix} a_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \qquad L = \begin{bmatrix} 1 & 0 \\ L_{21} & L_{22} \end{bmatrix}, \qquad U = \begin{bmatrix} u_{11} & U_{12} \\ 0 & U_{22} \end{bmatrix}
$$

- \bullet $\ a_{11}$ and u_{11} are scalars
- \bullet L_{22} unit lower-triangular, U_{22} upper triangular of order $n-1$

determine L and U from $A = L U$, $i.e.,$

$$
\begin{bmatrix}\na_{11} & A_{12} \\
A_{21} & A_{22}\n\end{bmatrix} = \begin{bmatrix}\n1 & 0 \\
L_{21} & L_{22}\n\end{bmatrix} \begin{bmatrix}\nu_{11} & U_{12} \\
0 & U_{22}\n\end{bmatrix}
$$
\n
$$
= \begin{bmatrix}\nu_{11} & U_{12} \\
u_{11}L_{21} & L_{21}U_{12} + L_{22}U_{22}\n\end{bmatrix}
$$

recursive algorithm:

 $\bullet\,$ determine first row of U and first column of L

$$
u_{11} = a_{11}
$$
, $U_{12} = A_{12}$, $L_{21} = (1/a_{11})A_{21}$

• factor the
$$
(n-1) \times (n-1)
$$
-matrix $A_{22} - L_{21}U_{12}$ as

$$
A_{22} - L_{21}U_{12} = L_{22}U_{22}
$$

this is an LU factorization (without pivoting) of order $n-1$

 $\mathbf{cost} \colon (2/3) n^3$ flops (no proof)

Example

LU factorization (without pivoting) of

$$
A = \left[\begin{array}{rrr} 8 & 2 & 9 \\ 4 & 9 & 4 \\ 6 & 7 & 9 \end{array} \right]
$$

write as $A = L U$ with L unit lower triangular, U upper triangular

$$
A = \begin{bmatrix} 8 & 2 & 9 \\ 4 & 9 & 4 \\ 6 & 7 & 9 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}
$$

 $\bullet\,$ first row of $U,$ first column of L :

$$
\begin{bmatrix} 8 & 2 & 9 \ 4 & 9 & 4 \ 6 & 7 & 9 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \ 1/2 & 1 & 0 \ 3/4 & l_{32} & 1 \end{bmatrix} \begin{bmatrix} 8 & 2 & 9 \ 0 & u_{22} & u_{23} \ 0 & 0 & u_{33} \end{bmatrix}
$$

 $\bullet\,$ second row of U , second column of L :

$$
\begin{bmatrix} 9 & 4 \ 7 & 9 \end{bmatrix} - \begin{bmatrix} 1/2 \ 3/4 \end{bmatrix} \begin{bmatrix} 2 & 9 \end{bmatrix} = \begin{bmatrix} 1 & 0 \ l_{32} & 1 \end{bmatrix} \begin{bmatrix} u_{22} & u_{23} \ 0 & u_{33} \end{bmatrix}
$$

$$
\begin{bmatrix} 8 & -1/2 \ 11/2 & 9/4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \ 11/16 & 1 \end{bmatrix} \begin{bmatrix} 8 & -1/2 \ 0 & u_{33} \end{bmatrix}
$$

• third row of $U: u_{33} = 9/4 + 11/32 = 83/32$

conclusion:

$$
A = \begin{bmatrix} 8 & 2 & 9 \\ 4 & 9 & 4 \\ 6 & 7 & 9 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \\ 3/4 & 11/16 & 1 \end{bmatrix} \begin{bmatrix} 8 & 2 & 9 \\ 0 & 8 & -1/2 \\ 0 & 0 & 83/32 \end{bmatrix}
$$

Not every nonsingular A can be factored as $A = L U$

$$
A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}
$$

 $\bullet\,$ first row of $U,$ first column of L :

$$
\begin{bmatrix} 1 & 0 & 0 \ 0 & 0 & 2 \ 0 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & l_{32} & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \ 0 & u_{22} & u_{23} \ 0 & 0 & u_{33} \end{bmatrix}
$$

 $\bullet\,$ second row of U , second column of L :

$$
\left[\begin{array}{cc} 0 & 2 \\ 1 & -1 \end{array}\right] = \left[\begin{array}{cc} 1 & 0 \\ l_{32} & 1 \end{array}\right] \left[\begin{array}{cc} u_{22} & u_{23} \\ 0 & u_{33} \end{array}\right]
$$

 $u_{22} = 0, u_{23} = 2, l_{32} \cdot 0 = 1$?

LU factorization (with row pivoting)

if A is $n \times n$ and nonsingular, then it can be factored as

 $A = PLU$

 \overline{P} is a permutation matrix, L is unit lower triangular, U is upper triangular

- $\bullet\,$ not unique; there may be several possible choices for $P,\,L,\,U$
- \bullet interpretation: permute the rows of A and factor P^T ^{T}A as P^{T} $T A = LU$
- also known as Gaussian elimination with partial pivoting (GEPP)
- \bullet cost: $(2/3)n^3$ flops

Proof: by induction; show that if every nonsingular $(n-1) \times (n-1)$ matrix has an LU factorization then the same is true for nonsingular $n \times n$ -matrices

- \bullet if A is nonsingular, A cannot have an entirely zero column
- \bullet if a_{11} is zero, one can permute the rows of A such that

$$
\tilde{A} = P_1^T A = \begin{bmatrix} \tilde{a}_{11} & \tilde{A}_{12} \\ \tilde{A}_{21} & \tilde{A}_{22} \end{bmatrix}
$$

where \tilde{A}_{22} has size $(n-1) \times (n-1)$ and $\tilde{a}_{11} \neq 0$

 $\bullet\,$ the Schur complement of \tilde{a}_{11} in \tilde{A} is

$$
\tilde{A}_{22}-\frac{1}{\tilde{a}_{11}}\tilde{A}_{21}\tilde{A}_{12}
$$

and we know that it is nonsingular if \tilde{A} is nonsingular

LU factorization

• by assumption, this matrix can be factorized as

$$
\tilde{A}_{22} - \frac{1}{\tilde{a}_{11}} \tilde{A}_{21} \tilde{A}_{12} = P_2 L_{22} U_{22}
$$

 $\bullet\,$ this provides the LU factorization of A :

$$
A = P_1 \begin{bmatrix} \tilde{a}_{11} & \tilde{A}_{12} \\ \tilde{A}_{21} & \tilde{A}_{22} \end{bmatrix}
$$

\n
$$
= P_1 \begin{bmatrix} 1 & 0 \\ 0 & P_2 \end{bmatrix} \begin{bmatrix} \tilde{a}_{11} & \tilde{A}_{12} \\ P_2^T \tilde{A}_{21} & P_2^T \tilde{A}_{22} \end{bmatrix}
$$

\n
$$
= P_1 \begin{bmatrix} 1 & 0 \\ 0 & P_2 \end{bmatrix} \begin{bmatrix} \tilde{a}_{11} & \tilde{A}_{12} \\ P_2^T \tilde{A}_{21} & L_{22}U_{22} + (1/\tilde{a}_{11})P_2^T \tilde{A}_{21} \tilde{A}_{12} \end{bmatrix}
$$

\n
$$
= P_1 \begin{bmatrix} 1 & 0 \\ 0 & P_2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ (1/\tilde{a}_{11})P_2^T \tilde{A}_{21} & L_{22} \end{bmatrix} \begin{bmatrix} \tilde{a}_{11} & \tilde{A}_{12} \\ 0 & U_{22} \end{bmatrix}
$$

• so if we define

$$
P = P_1 \begin{bmatrix} 1 & 0 \\ 0 & P_2 \end{bmatrix}, \quad L = \begin{bmatrix} 1 & 0 \\ (1/\tilde{a}_{11}) P_2^T \tilde{A}_{21} & L_{22} \end{bmatrix}, \quad U = \begin{bmatrix} \tilde{a}_{11} & \tilde{A}_{12} \\ 0 & U_{22} \end{bmatrix}
$$

 \bullet then P is permutation matrix, L is unit lower triangular, U is upper triangular and $A = PLU$

Example

$$
\begin{bmatrix} 0 & 5 & 5 \ 2 & 9 & 0 \ 6 & 8 & 8 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \ 0 & 1 & 0 \ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \ 1/3 & 1 & 0 \ 0 & 15/19 & 1 \end{bmatrix} \begin{bmatrix} 6 & 8 & 8 \ 0 & 19/3 & -8/3 \ 0 & 0 & 135/19 \end{bmatrix}
$$

the factorization is not unique; the same matrix can be factored as

$$
\begin{bmatrix} 0 & 5 & 5 \ 2 & 9 & 0 \ 6 & 8 & 8 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \ 1 & 0 & 0 \ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 3 & -19/5 & 1 \end{bmatrix} \begin{bmatrix} 2 & 9 & 0 \ 0 & 5 & 5 \ 0 & 0 & 27 \end{bmatrix}
$$

Effect of rounding error

$$
\left[\begin{array}{cc} 10^{-5} & 1 \\ 1 & 1 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{c} 1 \\ 0 \end{array}\right]
$$

exact solution:

$$
x_1 = \frac{-1}{1 - 10^{-5}},
$$
 $x_2 = \frac{1}{1 - 10^{-5}}$

let us solve the equations using LU factorization, rounding intermediate results to ⁴ significant decimal digits

we will do this for the two possible permutation matrices:

$$
P = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]
$$
 or
$$
P = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right]
$$

first choice of $P: P = I$ (no pivoting)

$$
\begin{bmatrix} 10^{-5} & 1 \ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \ 10^5 & 1 \end{bmatrix} \begin{bmatrix} 10^{-5} & 1 \ 0 & 1 - 10^5 \end{bmatrix}
$$

 $L,\ U$ rounded to 4 decimal significant digits

$$
L = \left[\begin{array}{cc} 1 & 0 \\ 10^5 & 1 \end{array} \right], \qquad U = \left[\begin{array}{cc} 10^{-5} & 1 \\ 0 & -10^5 \end{array} \right]
$$

forward substitution

$$
\begin{bmatrix} 1 & 0 \ 10^5 & 1 \end{bmatrix} \begin{bmatrix} z_1 \ z_2 \end{bmatrix} = \begin{bmatrix} 1 \ 0 \end{bmatrix} \implies z_1 = 1, \ z_2 = -10^5
$$

back substitution

$$
\begin{bmatrix} 10^{-5} & 1 \ 0 & -10^5 \end{bmatrix} \begin{bmatrix} x_1 \ x_2 \end{bmatrix} = \begin{bmatrix} 1 \ -10^5 \end{bmatrix} \implies x_1 = 0, \quad x_2 = 1
$$

error in x_1 is 100%

second choice of P : interchange rows

$$
\left[\begin{array}{cc} 1 & 1 \\ 10^{-5} & 1 \end{array}\right] = \left[\begin{array}{cc} 1 & 0 \\ 10^{-5} & 1 \end{array}\right] \left[\begin{array}{cc} 1 & 1 \\ 0 & 1 - 10^{-5} \end{array}\right]
$$

 $L,\ U$ rounded to 4 decimal significant digits

$$
L = \left[\begin{array}{cc} 1 & 0 \\ 10^{-5} & 1 \end{array} \right], \qquad U = \left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right]
$$

forward substitution

$$
\begin{bmatrix} 1 & 0 \ 10^{-5} & 1 \end{bmatrix} \begin{bmatrix} z_1 \ z_2 \end{bmatrix} = \begin{bmatrix} 0 \ 1 \end{bmatrix} \implies z_1 = 0, \quad z_2 = 1
$$

backward substitution

$$
\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \implies x_1 = -1, x_2 = 1
$$

error in x_1 , x_2 is about 10^{-5}

LU factorization

Sparse linear equations

if A is sparse, it is usually factored as

$$
A = P_1 L U P_2
$$

 P_1 and P_2 are permutation matrices

 \bullet interpretation: permute rows and columns of A and factor $\tilde{A} = P_1^T A P_2^T$

$$
\tilde{A} = LU
$$

- \bullet choice of P_1 and P_2 greatly affects the sparsity of L and U : many heuristic methods exist for selecting good permutations
- in practice: #flops $\ll (2/3)n^3$; exact value is a complicated function of n number of nonzero elements, sparsity pattern n , number of nonzero elements, sparsity pattern

Conclusion

different levels of understanding how linear equation solvers work:

highest level: $x = A\bb{b}$ costs $(2/3)n^3$; more efficient than $x = inv(A)*b$

intermediate level: factorization step $A = PLU$ followed by solve step

lowest level: details of factorization $A = PLU$

- for most applications, level ¹ is sufficient
- $\bullet\,$ in some situations $(\emph{e.g.},$ multiple right-hand sides) level 2 is useful
- level ³ is important only for experts who write numerical libraries

References

Lecture notes on

 $LU\text{\textit{Factorization}}$, $\textsf{EE}103$, L. Vandenberhge, UCLA