7. LU factorization

- factor-solve method
- LU factorization
- solving Ax = b with A nonsingular
- the inverse of a nonsingular matrix
- LU factorization algorithm
- effect of rounding error
- sparse LU factorization

Factor-solve approach

to solve Ax = b, first write A as a product of 'simple' matrices

 $A = A_1 A_2 \cdots A_k$

then solve $(A_1A_2\cdots A_k)x = b$ by solving k equations

 $A_1 z_1 = b,$ $A_2 z_2 = z_1,$..., $A_{k-1} z_{k-1} = z_{k-2},$ $A_k x = z_{k-1}$

examples

• Cholesky factorization (for positive definite A)

$$k = 2, \qquad A = LL^T$$

• sparse Cholesky factorization (for sparse positive definite A)

$$k = 4, \qquad A = PLL^T P$$

Complexity of factor-solve method

 $\#\mathsf{flops} = f + s$

- f is cost of factoring A as $A = A_1 A_2 \cdots A_k$ (factorization step)
- s is cost of solving the k equations for $z_1, z_2, \ldots, z_{k-1}, x$ (solve step)
- usually $f \gg s$

example: positive definite equations using the Cholesky factorization

$$f = (1/3)n^3, \qquad s = 2n^2$$

Multiple right-hand sides

two equations with the same matrix but different right-hand sides

$$Ax = b, \qquad A\tilde{x} = \tilde{b}$$

- factor A once (f flops)
- solve with right-hand side b (s flops)
- solve with right-hand side \tilde{b} (s flops)

cost: f + 2s instead of 2(f + s) if we solve second equation from scratch

conclusion: if $f \gg s$, we can solve the two equations at the cost of one

LU factorization

LU factorization without pivoting

A = LU

- L unit lower triangular, U upper triangular
- does not always exist (even if A is nonsingular)

LU factorization (with row pivoting)

A = PLU

- P permutation matrix, L unit lower triangular, U upper triangular
- exists if and only if A is nonsingular (see later)

cost: $(2/3)n^3$ if A has order n

Solving linear equations by LU factorization

solve Ax = b with A nonsingular of order n

factor-solve method using LU factorization

- 1. factor A as A = PLU ((2/3) n^3 flops)
- 2. solve (PLU)x = b in three steps
 - permutation: $z_1 = P^T b$ (0 flops)
 - forward substitution: solve $Lz_2 = z_1$ (n^2 flops)
 - back substitution: solve $Ux = z_2$ (n^2 flops)

total cost: $(2/3)n^3 + 2n^2$ flops, or roughly $(2/3)n^3$

this is the standard method for solving Ax = b

Multiple right-hand sides

two equations with the same matrix A (nonsingular and $n \times n$):

$$Ax = b, \qquad A\tilde{x} = \tilde{b}$$

- factor A once
- forward/back substitution to get x
- forward/back substitution to get \tilde{x}

cost: $(2/3)n^3 + 4n^2$ or roughly $(2/3)n^3$

exercise: propose an efficient method for solving

$$Ax = b, \qquad A^T \tilde{x} = \tilde{b}$$

Inverse of a nonsingular matrix

suppose A is nonsingular of order n, with LU factorization

A = PLU

• inverse from LU factorization

$$A^{-1} = (PLU)^{-1} = U^{-1}L^{-1}P^T$$

• gives interpretation of solve step: evaluate

$$x = A^{-1}b = U^{-1}L^{-1}P^Tb$$

in three steps

$$z_1 = P^T b, \qquad z_2 = L^{-1} z_1, \qquad x = U^{-1} z_2$$

Computing the inverse

solve AX = I by solving n equations

$$AX_1 = e_1, \qquad AX_2 = e_2, \qquad \dots, \qquad AX_n = e_n$$

 X_i is the *i*th column of X; e_i is the *i*th unit vector of size n

- one LU factorization of A: $2n^3/3$ flops
- n solve steps: $2n^3$ flops

total: $(8/3)n^3$ flops

conclusion: do not solve Ax = b by multiplying A^{-1} with b

LU factorization without pivoting

partition A, L, U as block matrices:

$$A = \begin{bmatrix} a_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \qquad L = \begin{bmatrix} 1 & 0 \\ L_{21} & L_{22} \end{bmatrix}, \qquad U = \begin{bmatrix} u_{11} & U_{12} \\ 0 & U_{22} \end{bmatrix}$$

- a_{11} and u_{11} are scalars
- L_{22} unit lower-triangular, U_{22} upper triangular of order n-1

determine L and U from A = LU, *i.e.*,

$$\begin{bmatrix} a_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ L_{21} & L_{22} \end{bmatrix} \begin{bmatrix} u_{11} & U_{12} \\ 0 & U_{22} \end{bmatrix}$$
$$= \begin{bmatrix} u_{11} & U_{12} \\ u_{11}L_{21} & L_{21}U_{12} + L_{22}U_{22} \end{bmatrix}$$

recursive algorithm:

 $\bullet\,$ determine first row of U and first column of L

$$u_{11} = a_{11}, \qquad U_{12} = A_{12}, \qquad L_{21} = (1/a_{11})A_{21}$$

• factor the
$$(n-1) \times (n-1)$$
-matrix $A_{22} - L_{21}U_{12}$ as

$$A_{22} - L_{21}U_{12} = L_{22}U_{22}$$

this is an LU factorization (without pivoting) of order n-1

cost: $(2/3)n^3$ flops (no proof)

Example

LU factorization (without pivoting) of

$$A = \begin{bmatrix} 8 & 2 & 9 \\ 4 & 9 & 4 \\ 6 & 7 & 9 \end{bmatrix}$$

write as A = LU with L unit lower triangular, U upper triangular

$$A = \begin{bmatrix} 8 & 2 & 9 \\ 4 & 9 & 4 \\ 6 & 7 & 9 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

• first row of U, first column of L:

$$\begin{bmatrix} 8 & 2 & 9 \\ 4 & 9 & 4 \\ 6 & 7 & 9 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \\ 3/4 & l_{32} & 1 \end{bmatrix} \begin{bmatrix} 8 & 2 & 9 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

• second row of U, second column of L:

$$\begin{bmatrix} 9 & 4 \\ 7 & 9 \end{bmatrix} - \begin{bmatrix} 1/2 \\ 3/4 \end{bmatrix} \begin{bmatrix} 2 & 9 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ l_{32} & 1 \end{bmatrix} \begin{bmatrix} u_{22} & u_{23} \\ 0 & u_{33} \end{bmatrix}$$
$$\begin{bmatrix} 8 & -1/2 \\ 11/2 & 9/4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 11/16 & 1 \end{bmatrix} \begin{bmatrix} 8 & -1/2 \\ 0 & u_{33} \end{bmatrix}$$

• third row of U: $u_{33} = 9/4 + 11/32 = 83/32$

conclusion:

$$A = \begin{bmatrix} 8 & 2 & 9 \\ 4 & 9 & 4 \\ 6 & 7 & 9 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \\ 3/4 & 11/16 & 1 \end{bmatrix} \begin{bmatrix} 8 & 2 & 9 \\ 0 & 8 & -1/2 \\ 0 & 0 & 83/32 \end{bmatrix}$$

Not every nonsingular A can be factored as A = LU

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

• first row of U, first column of L:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & l_{32} & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

• second row of U, second column of L:

$$\begin{bmatrix} 0 & 2 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ l_{32} & 1 \end{bmatrix} \begin{bmatrix} u_{22} & u_{23} \\ 0 & u_{33} \end{bmatrix}$$

 $u_{22} = 0, u_{23} = 2, l_{32} \cdot 0 = 1$?

LU factorization (with row pivoting)

if A is $n\times n$ and nonsingular, then it can be factored as

A = PLU

 ${\cal P}$ is a permutation matrix, ${\cal L}$ is unit lower triangular, ${\cal U}$ is upper triangular

- $\bullet\,$ not unique; there may be several possible choices for P , L , U
- interpretation: permute the rows of A and factor $P^T A$ as $P^T A = L U$
- also known as *Gaussian elimination with partial pivoting* (GEPP)
- cost: $(2/3)n^3$ flops

Proof: by induction; show that if every nonsingular $(n-1) \times (n-1)$ matrix has an LU factorization then the same is true for nonsingular $n \times n$ -matrices

- if ${\cal A}$ is nonsingular, ${\cal A}$ cannot have an entirely zero column
- if a_{11} is zero, one can permute the rows of A such that

$$\tilde{A} = P_1^T A = \begin{bmatrix} \tilde{a}_{11} & \tilde{A}_{12} \\ \tilde{A}_{21} & \tilde{A}_{22} \end{bmatrix}$$

where \tilde{A}_{22} has size $(n-1) \times (n-1)$ and $\tilde{a}_{11} \neq 0$

• the Schur complement of \tilde{a}_{11} in \tilde{A} is

$$\tilde{A}_{22} - \frac{1}{\tilde{a}_{11}} \tilde{A}_{21} \tilde{A}_{12}$$

and we know that it is nonsingular if \tilde{A} is nonsingular

LU factorization

• by assumption, this matrix can be factorized as

$$\tilde{A}_{22} - \frac{1}{\tilde{a}_{11}}\tilde{A}_{21}\tilde{A}_{12} = P_2 L_{22} U_{22}$$

• this provides the LU factorization of A:

$$A = P_{1} \begin{bmatrix} \tilde{a}_{11} & \tilde{A}_{12} \\ \tilde{A}_{21} & \tilde{A}_{22} \end{bmatrix}$$

$$= P_{1} \begin{bmatrix} 1 & 0 \\ 0 & P_{2} \end{bmatrix} \begin{bmatrix} \tilde{a}_{11} & \tilde{A}_{12} \\ P_{2}^{T} \tilde{A}_{21} & P_{2}^{T} \tilde{A}_{22} \end{bmatrix}$$

$$= P_{1} \begin{bmatrix} 1 & 0 \\ 0 & P_{2} \end{bmatrix} \begin{bmatrix} \tilde{a}_{11} & \tilde{A}_{12} \\ P_{2}^{T} \tilde{A}_{21} & L_{22} U_{22} + (1/\tilde{a}_{11}) P_{2}^{T} \tilde{A}_{21} \tilde{A}_{12} \end{bmatrix}$$

$$= P_{1} \begin{bmatrix} 1 & 0 \\ 0 & P_{2} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ (1/\tilde{a}_{11}) P_{2}^{T} \tilde{A}_{21} & L_{22} \end{bmatrix} \begin{bmatrix} \tilde{a}_{11} & \tilde{A}_{12} \\ 0 & U_{22} \end{bmatrix}$$

• so if we define

$$P = P_1 \begin{bmatrix} 1 & 0 \\ 0 & P_2 \end{bmatrix}, \quad L = \begin{bmatrix} 1 & 0 \\ (1/\tilde{a}_{11})P_2^T \tilde{A}_{21} & L_{22} \end{bmatrix}, \quad U = \begin{bmatrix} \tilde{a}_{11} & \tilde{A}_{12} \\ 0 & U_{22} \end{bmatrix}$$

• then P is permutation matrix, L is unit lower triangular, U is upper triangular and A=PLU

Example

$$\begin{bmatrix} 0 & 5 & 5 \\ 2 & 9 & 0 \\ 6 & 8 & 8 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 1/3 & 1 & 0 \\ 0 & 15/19 & 1 \end{bmatrix} \begin{bmatrix} 6 & 8 & 8 \\ 0 & 19/3 & -8/3 \\ 0 & 0 & 135/19 \end{bmatrix}$$

the factorization is not unique; the same matrix can be factored as

$$\begin{bmatrix} 0 & 5 & 5 \\ 2 & 9 & 0 \\ 6 & 8 & 8 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & -19/5 & 1 \end{bmatrix} \begin{bmatrix} 2 & 9 & 0 \\ 0 & 5 & 5 \\ 0 & 0 & 27 \end{bmatrix}$$

Effect of rounding error

$$\begin{bmatrix} 10^{-5} & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

exact solution:

$$x_1 = \frac{-1}{1 - 10^{-5}}, \qquad x_2 = \frac{1}{1 - 10^{-5}}$$

let us solve the equations using LU factorization, rounding intermediate results to 4 significant decimal digits

we will do this for the two possible permutation matrices:

$$P = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] \quad \text{or} \quad P = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right]$$

first choice of P: P = I (no pivoting)

$$\begin{bmatrix} 10^{-5} & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 10^5 & 1 \end{bmatrix} \begin{bmatrix} 10^{-5} & 1 \\ 0 & 1 - 10^5 \end{bmatrix}$$

 $L,\,U$ rounded to 4 decimal significant digits

$$L = \begin{bmatrix} 1 & 0 \\ 10^5 & 1 \end{bmatrix}, \qquad U = \begin{bmatrix} 10^{-5} & 1 \\ 0 & -10^5 \end{bmatrix}$$

forward substitution

$$\begin{bmatrix} 1 & 0 \\ 10^5 & 1 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \implies z_1 = 1, \quad z_2 = -10^5$$

back substitution

$$\begin{bmatrix} 10^{-5} & 1\\ 0 & -10^5 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = \begin{bmatrix} 1\\ -10^5 \end{bmatrix} \implies x_1 = 0, \quad x_2 = 1$$

error in x_1 is 100%

LU factorization

second choice of *P*: interchange rows

$$\begin{bmatrix} 1 & 1 \\ 10^{-5} & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 10^{-5} & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 - 10^{-5} \end{bmatrix}$$

L, U rounded to 4 decimal significant digits

$$L = \begin{bmatrix} 1 & 0\\ 10^{-5} & 1 \end{bmatrix}, \qquad U = \begin{bmatrix} 1 & 1\\ 0 & 1 \end{bmatrix}$$

forward substitution

$$\begin{bmatrix} 1 & 0 \\ 10^{-5} & 1 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \implies z_1 = 0, \quad z_2 = 1$$

backward substitution

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \implies x_1 = -1, \quad x_2 = 1$$

error in x_1 , x_2 is about 10^{-5}

LU factorization

Sparse linear equations

if \boldsymbol{A} is sparse, it is usually factored as

$$A = P_1 L U P_2$$

 P_1 and P_2 are permutation matrices

• interpretation: permute rows and columns of A and factor $\tilde{A} = P_1^T A P_2^T$

$$\tilde{A} = LU$$

- choice of P_1 and P_2 greatly affects the sparsity of L and U: many heuristic methods exist for selecting good permutations
- in practice: #flops $\ll (2/3)n^3$; exact value is a complicated function of n, number of nonzero elements, sparsity pattern

Conclusion

different levels of understanding how linear equation solvers work:

highest level: $x = A \ b \ costs \ (2/3)n^3$; more efficient than x = inv(A) * b

intermediate level: factorization step A = PLU followed by solve step

lowest level: details of factorization A = PLU

- for most applications, level 1 is sufficient
- in some situations (*e.g.*, multiple right-hand sides) level 2 is useful
- level 3 is important only for experts who write numerical libraries

References

Lecture notes on

LU Factorization, EE103, L. Vandenberhge, UCLA