3. Solution of Nonlinear Equations

- Introduction
- Bisection Method
- Newton's Method
- Secant Method
- Fixed Points and Functional Iteration
- Computing Roots of Polynomials
- Homotopy and Continuation Methods

Definition and examples

x is a zero (or root) of a function f if f(x) = 0

examples

- $f(x) = e^x$ has no zeros
- $f(x) = e^x e^{-x}$ has one zero
- $f(x) = e^x e^{-x} 3x$ has three zeros
- $f(x) = \cos x$ has infinitely many zeros

cf., one linear equation in one variable ax = b

- a unique solution if $a \neq 0$
- no solution if a = 0, $b \neq 0$
- any $x \in \mathbf{R}$ is a solution if a = b = 0

Characteristics of algorithms for nonlinear equations

how f is described

- user provides subroutine to compute f(x) (and possibly f'(x)) at x
- called 'black box' or 'oracle' model for describing \boldsymbol{f}
- evaluating f and f' can be expensive (*e.g.*, require a circuit simulation)

limitations of algorithms

- there exist no algorithms that are guaranteed to find all solutions
- most algorithms find at most one solution
- need prior information from the user: *e.g.*, an interval that contains a zero, or a point near a solution

methods for solving nonlinear equations are iterative

- generate a sequence of points $x^{(k)}$, k = 0, 1, 2, ... that converge to a solution; $x^{(k)}$ is called the *k*th *iterate*; $x^{(0)}$ is the *starting point*
- computing $x^{(k+1)}$ from $x^{(k)}$ is called one *iteration* of the algorithm
- each iteration typically requires one evaluation of f (or f and f') at $x^{(k)}$
- algorithms need a stopping criterion, *e.g.*, terminate if

 $|f(x^{(k)})| \leq \text{specified tolerance}$

- speed of the algorithm depends on:
 - the cost of evaluating f(x) (and possibly, f'(x))
 - the number of iterations

Analyzing speed of convergence

suppose $x^{(k)} \to x^*$ with $f(x^*) = 0$; how fast does $x^{(k)}$ go to x^* ?

error after k iterations:

- absolute error: $|x^{(k)} x^{\star}|$
- relative error: $|x^{(k)} x^{\star}|/|x^{\star}|$ (defined if $x^{\star} \neq 0$)
- number of correct digits:

$$\left\lfloor -\log_{10}\left(\frac{|x^{(k)} - x^{\star}|}{|x^{\star}|}\right) \right\rfloor$$

(defined if $x^* \neq 0$ and $|x^{(k)} - x^*|/|x^*| \leq 1$)

rates of convergence of a sequence $x^{(k)}$ with limit x^*

• linear convergence: there exists a $c \in (0, 1)$ such that

 $|x^{(k+1)} - x^{\star}| \le c |x^{(k)} - x^{\star}|$ for sufficiently large k

• R-linear convergence: there exists $c \in (0, 1)$, M > 0 such that

 $|x^{(k)} - x^{\star}| \leq Mc^k$ for sufficiently large k

• quadratic convergence: there exists a c > 0 s.t.

$$|x^{(k+1)} - x^{\star}| \le c |x^{(k)} - x^{\star}|^2$$
 for sufficiently large k

• superlinear convergence: there exists a sequence c_k with $c_k \rightarrow 0$ s.t.

$$|x^{(k+1)} - x^{\star}| \le c_k |x^{(k)} - x^{\star}|$$
 for sufficiently large k

interpretation (if $x^* \neq 0$): let

$$r^{(k)} = -\log_{10}(\frac{|x^{(k)} - x^{\star}|}{|x^{\star}|})$$

(*i.e.*, $r^{(k)} \approx$ the number of correct digits at iteration k)

• linear convergence: we gain roughly $-\log_{10} c$ correct digits per step

$$r^{(k+1)} \ge r^{(k)} - \log_{10} c$$

• quadratic convergence: for k sufficiently large, number of correct digits roughly doubles in one step

$$r^{(k+1)} \ge -\log(c|x^{\star}|) + 2r^{(k)}$$

• superlinear convergence: number of correct digits gained per step increases with \boldsymbol{k}

$$r^{(k+1)} - r^{(k)} \to \infty$$

examples (with $x^* = 1$)

• $x^{(k)} = 1 + 0.5^k$ converges linearly (with c = 1/2):

$$\frac{|x^{(k+1)} - 1|}{|x^{(k)} - 1|} = \frac{2^k}{2^{k+1}} = \frac{1}{2}$$

• $x^{(k)} = 1 + 0.5^{2^k}$ converges quadratically (with c = 1)

$$\frac{|x^{(k+1)} - 1|}{|x^{(k)} - 1|^2} = \frac{(2^{2^k})^2}{2^{2^{k+1}}} = 1$$

• $x^{(k)} = 1 + (1/(k+1))^k$ converges superlinearly

$$\frac{|x^{(k+1)} - 1|}{|x^{(k)} - 1|} = \frac{(k+1)^k}{(k+2)^{k+1}} \to 0$$

k	$1 + 0.5^{k}$	$1 + 0.5^{2^k}$	$1 + (1/(k+1)^k)$
0	2.000000000000000000000000000000000000	1.5000000000000000000000000000000000000	2.000000000000000000000000000000000000
1	1.5000000000000000000000000000000000000	1.25000000000000000000000000000000000000	1.5000000000000000000000000000000000000
2	1.25000000000000000000000000000000000000	1.06250000000000	1.111111111111111111
3	1.125000000000000	1.00390625000000	1.01562500000000
4	1.06250000000000	1.00001525878906	1.00160000000000
5	1.03125000000000	1.0000000023283	1.00012860082305
6	1.01562500000000	1.000000000000000000000000000000000000	1.00000849985975
7	1.00781250000000	1.000000000000000000000000000000000000	1.00000047683716
8	1.00390625000000	1.000000000000000000000000000000000000	1.0000002323057
9	1.00195313125000	1.000000000000000000000000000000000000	1.00000000100000
10	1.00097656250000	1.000000000000000000000000000000000000	1.0000000003855

- sequence 1: we gain roughly $-\log_{10}(c) = 0.3$ correct digits per step
- sequence 2: number of correct digits roughly doubles at each step
- sequence 3: number of correct digits gained per step increases slowly (from 0.5 initially to 2 near the end)

Bisection method

if f(l)f(u) < 0, then the interval [l, u] contains at least one zero

Intermediate Value Theorem: Let $f \in \mathbf{C}([a, b])$ and assume p is a value between f(a) and f(b), that is

$$f(a) \le p \le f(b), \quad \text{or} \quad f(b) \le p \le f(a)$$

then there exists a point $c \in [a, b]$ for which f(c) = p

idea sketch

to find x^{\star} , let x be the midpoint of [l, u]

$$x = \frac{1}{2}(u+l)$$

assume $f(l) \neq 0$, then there are three possibilities:

- 1. $f(l)f(x) < 0 \implies x^*$ is between l and x
- 2. $f(l)f(x) > 0 \Longrightarrow x^*$ is between x and u
- 3. $f(l)f(x) = 0 \implies f(x) = 0$ and $x^* = x$

given l, u with l < u and f(l)f(u) < 0; a required tolerance $\delta, \epsilon > 0$ repeat

1. x := (l + u)/2. 2. Compute f(x). 3. if f(x) = 0, return x. 4. if f(x)f(l) < 0, u := x, else, l := x. until $u - l < \epsilon$ or $|f(x)| < \delta$

one function evaluation per iteration

remarks

- to avoid numerical error, calculate midpoint by x = l + (u l)/2
- effectively determine f(l)f(x) < 0 via

 $\mathbf{sign}(f(l)) \neq \mathbf{sign}(f(x))$

since the multiplication could cause an underflow or overflow

• always put a maximum number of steps to avoid an infinite loop

convergence rate

• $u^{(k)} - l^{(k)}$ measures our uncertainty in localizing a zero x^{\star} :

$$|x^{(k)} - x^{\star}| \le u^{(k)} - l^{(k)}$$

• uncertainty is halved at each iteration:

$$u^{(k)} - l^{(k)} = \left(\frac{1}{2}\right)^k (u^{(0)} - l^{(0)})$$
$$|x^{(k)} - x^*| \leq \left(\frac{1}{2}\right)^k (u^{(0)} - l^{(0)})$$

i.e., R-linear convergence with c = 1/2, $M = u^{(0)} - l^{(0)}$

• number of iterations required for $u^{(k)} - l^{(k)} \leq \epsilon$ or $|x^{(k)} - x^{\star}| \leq \epsilon$:

$$k \ge \log_2 \frac{u^{(0)} - l^{(0)}}{\epsilon}$$

example: $f(x) = e^{x} - e^{-x}$

- unique zero $x^{\star} = 0$
- start bisection method with l = -1, u = 21

Solution of Nonlinear Equations

conclusions

- the bisection method is also known as the method of interval halving
- bisection is known as a *global* method, *i.e.*, always converges no matter how far you start from the actual root
- it cannot find roots when the function is tangent to the axis
- convergence is slow compared to other methods

Newton's method

 $f: \mathbf{R} \rightarrow \mathbf{R}$, differentiable

given initial x, required tolerance $\epsilon > 0$ repeat

- 1. Compute f(x) and f'(x).
- 2. if $|f(x)| \leq \epsilon$, return x.
- 3. x := x f(x)/f'(x).

until maximum number of iterations is exceeded.

- $\bullet\,$ each iteration requires one evaluation of f and f'
- there exist other (more sophisticated) stopping criteria
- we assume $f'(x^{(k)}) \neq 0$, all k

interpretation (with notation $x = x^{(k)}$, $x^+ = x^{(k+1)}$)

• make affine approximation of f around x using Taylor series expansion:

$$f_{\text{aff}}(y) = f(x) + f'(x)(y - x)$$

• solve the linearized equation $f_{\text{aff}}(y) = 0$ and take the solution y as x^+ :

$$x^+ = x - f(x)/f'(x)$$

Examples

asymptotic convergence is much faster than bisection method

•
$$f(x) = e^x - e^{-x} - 3x$$

- start at $x^{(0)} = -1$: converges to x = -1.62
- start at $x^{(0)} = -0.8$: converges to x = 1.62
- start at $x^{(0)} = -0.7$: converges to x = 0

converges to a different solution depending on the starting point

converges very rapidly

- start at
$$x^{(0)} = 1.1$$
:

$$x^{(1)} = 1.1 \ 10^0, \qquad x^{(2)} = 1.2 \ 10^0, \qquad x^{(3)} = -1.7 \ 10^0, x^{(4)} = 5.7 \ 10^0, \qquad x^{(5)} = -2.3 \ 10^4$$

does not converge

Solution of Nonlinear Equations

error analysis: let $f \in \mathbf{C}^2([a, b])$ with $f(x^*) = 0$ for $x^* \in [a, b]$

• expand f in a Taylor series about $x = x^{(k)}$ and evaluate at $x = x^{\star}$

$$0 = f(x^{\star}) = f(x^{(k)}) + (x^{\star} - x^{(k)})f'(x^{(k)}) + \frac{1}{2}(x^{\star} - x^{(k)})^2 f''(\xi^{(k)})$$

where $\xi^{(k)}$ is between $x^{(k)}$ and x^{\star}

- divide both sides by $f^\prime(x^{(k)})$ and re-arrange, we have

$$x^{(k)} - \frac{f(x^{(k)})}{f'(x^{(k)})} - x^{\star} = \frac{1}{2}(x^{\star} - x^{(k)})^2 \frac{f''(\xi^{(k)})}{f'(x^{(k)})}$$

• assume the convergence; $f'(x^{(k)}) \approx f'(x^{\star})$ and $f''(\xi^{(k)}) \approx f''(x^{\star})$

$$x^{(k+1)} - x^{\star} \approx \frac{1}{2} (x^{\star} - x^{(k)})^2 \frac{f''(x^{\star})}{f'(x^{\star})}$$

the error at one step is like the square of the error at the previous step

Theorem of Newton's Method

assume

- $f \in \mathbf{C}^2(I)$ and I is an open interval
- $f(x^{\star}) = 0$ for some $x^{\star} \in I$ and that $f'(x^{\star}) \neq 0$
- $x^{(k)}$ is defined by the Newton's iteration

then for $x^{(0)}$ sufficiently close to x^{\star} we have that

$$\lim_{k \to \infty} x^{(k)} = x^*$$

and

$$\lim_{k \to \infty} \frac{x^* - x^{(k+1)}}{(x^* - x^{(k)})^2} = -\frac{f''(x^*)}{f'(x^*)}$$

Proof.

- define J a ball around x^\star with radius $\epsilon>0$

$$J = \{x \mid |x - x^*| \le \epsilon\}$$

with ϵ small enough so that $J \subset I$ and f is not vanished on J

• J is closed and f'' is continous on J; there exists c such that

$$c = \frac{\max_{x \in J} |f''(x)|}{2\min_{x \in J} |f'(x)|} \quad \text{and} \quad c < \infty$$

• since $\xi^{(0)} \in J$, the Newton error for the first iteration satisfies

$$|x^{\star} - x^{(1)}| \le |x^{\star} - x^{(0)}|^2 \frac{f''(\xi^{(0)})}{2f'(x^{(0)})} \le c|x^{\star} - x^{(0)}|^2$$

• choose $x^{(0)}$ so that $|x^{\star} - x^{(0)}| < 1/c$, then we have

$$|x^{\star} - x^{(1)}| \le c|x^{\star} - x^{(0)}|^2 < |x^{\star} - x^{(0)}|$$

which forces $x^{(1)} \in J$

• apply the Newton's method recursively; the entire sequences is in J and

$$|x^{(k+1)} - x^{\star}| = \frac{1}{2}(x^{\star} - x^{(k)})^2 \frac{|f''(\xi^{(k)})|}{|f'(x^{(k)})|} \le c|x^{\star} - x^{(k)}|^2$$

which shows the quadratic convergence

- define the error $e^{(k)} = x^\star - x^{(k)};$ we can show

$$|e^{(k)}| \le (1/c)(ce^{(0)})^{2^k}$$

and $e^{(k)} \rightarrow 0$ as $k \rightarrow \infty$ provided that

$$ce^{(0)} = c|x^{\star} - x^{(0)}| < 1$$
 ($x^{(0)}$ is closed enough to x^{\star})

• $x^{(k)} \to x^*$ and $\xi^{(k)} \to x^*$ (since $\xi^{(k)}$ is between x^* and $x^{(k)}$)

 \bullet continuity on f shows that

$$\lim_{k \to \infty} \frac{x^* - x^{(k+1)}}{(x^* - x^{(k)})^2} = -\lim_{k \to \infty} \frac{f''(\xi^{(k)})}{f'(x^{(k)})}$$
$$= -\frac{f''(\lim_{k \to \infty} \xi^{(k)})}{2f'(\lim_{k \to \infty} x^{(k)})}$$
$$= \frac{f''(x^*)}{f'(x^*)}$$

conclusions

- Newton's method works very well if we start near a solution
- it may not work at all if we start too far from a solution
- if there are multiple solutions, it may converge to a different solution depending on the starting point; it does not necessarily converge to the solution closest to the starting point
- also known as Newton–Raphson Iteration
- convergence is quadratic (only a few iterations required to get solution close to root)
- Newton's method is combined with other slower methods to ensure convergence

Computation of the Square Root

given a a positive number, finding \sqrt{a} is equivalent to finding a root of

$$f(x) = x^2 - a = 0$$

applying the Newton's iteration to f(x) gives

$$x^{(k+1)} = \frac{1}{2} \left(x^{(k)} + \frac{a}{x^{(k)}} \right)$$

if we pick $x^{(0)} > 0$ then the relative error satisfies

$$\left|\frac{x^{(k+1)} - \sqrt{a}}{\sqrt{a}}\right| \le 2\left(\frac{x^{(0)} - \sqrt{a}}{2\sqrt{a}}\right)^{2^k}$$

the error decreases very rapidly

Proof. the Newton error equation is

$$x^{(k+1)} - \sqrt{a} = (x^{(k)} - \sqrt{a})^2 \frac{f''(\xi^{(k)})}{f'(x^{(k)})} = \frac{(x^{(k)} - \sqrt{a})^2}{2x^{(k)}}$$

so the relative error satisfies

$$\left|\frac{x^{(k+1)} - \sqrt{a}}{\sqrt{a}}\right| = \left(\frac{x^{(k)} - \sqrt{a}}{\sqrt{a}}\right)^2 \left|\frac{\sqrt{a}}{2x^{(k)}}\right|$$

- if $x^{(0)} > 0$, the Newton iteration gives $x^{(k)} > 0$ for all k
- the error equation says that $\sqrt{a} \leq x^{(k)}$ for all $k \geq 1$
- hence, $|\sqrt{a}/x^{(k)}| \leq 1$ and from the relative error equation, we have

$$\left|\frac{x^{(k+1)} - \sqrt{a}}{\sqrt{a}}\right| \le \frac{1}{2} \left(\frac{x^{(k)} - \sqrt{a}}{\sqrt{a}}\right)^2$$

• iterate the above inequality recursively, we get the desired result

example: compute $\sqrt{9} = 3$ using $x^{(0)} = 1$

the Newton's iteration

$$x^{(k+1)} = 0.5(x^{(k)} + 9/x^{(k)})$$

generate the sequences:

k	$x^{(k)}$	
0	1.0000000000	
1	5.0000000000	
2	3.4000000000	
3	3.0235294118	
4	3.0000915541	
5	3.000000014	
6	3.0000000000	

get 10 digits correct by only 6 iterations

Newton's Method for Convex Function

convex function: f is convex if and only if dom(f) is convex and

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y), \quad \forall x, y$$

with $0 \le \theta \le 1$

• if f is differentiable, then f is convex if and only if

$$f(y) \ge f(x) + f'(x)(y - x), \quad \forall y, x$$

• if f is twice differentiable, then f is convex if and only if

 $f''(x) \ge 0$

• examples: e^{ax} , x, x^2 , |x|, $-\log(x)$, $x\log(x)$, ||x||

assumptions:

- $f \in \mathbf{C}^2(\mathbf{R})$
- f is increasing, *i.e.*, $f'(x) \ge 0$ for all x
- f is convex
- f has a zero at x^{\star}

Result: if f satisfies the above assumptions, then x^* is unique, and the Newton Iteration will converge to x^* from *any* starting point

to apply Newton method, we also assume $f' \neq 0$ for all x

the uniqueness of x^{\star} is evident as f is increasing; cannot cross zero twice

Proof: the error equation of the Newton's iteration is

$$x^{(k+1)} - x^{\star} = \frac{1}{2} (x^{\star} - x^{(k)})^2 \frac{f''(\xi^{(k)})}{f'(x^{(k)})}$$

denote $e^{(k)} = x^{(k)} - x^*$ the error at the kth iteration

- f is convex and increasing, so $f'' \ge 0$ and f' > 0 (assume $f' \ne 0$) $\forall x$
- the error equation says $x^{(k)} \ge x^{\star}$ for all $k \ge 1$ and since f is inscreasing,

$$f(x^{(k)}) \ge f(x^{\star}) = 0$$

• the Newton iterations:

$$x^{(k+1)} = x^{(k)} - \frac{f(x^{(k)})}{f'(x^{(k)})}, \quad e^{(k+1)} = e^{(k)} - \frac{f(x^{(k)})}{f'(x^{(k)})}$$

says that both $e^{(k)}$ and $x^{(k)}$ are decreasing sequences

Solution of Nonlinear Equations

- moreover, $e^{(k)}$ and $x^{(k)}$ are bounded below (by 0 and x^{\star})
- therefore, the limits of both sequences exist and given by

$$e^{\star} = \lim_{k \to \infty} e^{(k)}, \quad z = \lim_{k \to \infty} x^{(k)}$$

• take the limit to the Newton's iteration

$$\lim_{k \to \infty} e^{(k+1)} = \lim_{k \to \infty} -\lim_{k \to \infty} \frac{f(x^{(k)})}{f'(x^{(k)})}$$
$$e^{\star} = e^{\star} - \frac{f(z)}{f'(z)}$$

• hence, f(z) = 0 and we can conclude that $z = x^{\star}$

Newton's Method for Systems of Nonlinear Equations

consider a function $f : \mathbf{R}^n \to \mathbf{R}^n$

let $x^{\star} = x + h$ and use the affine approximation of f about x

$$0 = f(x^{\star}) = f(x+h) \approx f(x) + Df(x)h$$

where Df(x) is the Jacobian matrix of f, *i.e.*, $Df(x)_{ij} = \frac{\partial f_i(x)}{\partial x_j}$

then, solve h from

$$h = -Df(x)^{-1}f(x)$$

provided that the Jacobian matrix is nonsingular

Newton's method is summarized by

$$x^{(k+1)} = x^{(k)} - [Df(x^{(k)})]^{-1}f(x^{(k)})$$

which follows the same treatment for single equation

Secant method

idea:

- Newton's method requires a formula for f'(x)
- use an approximation to the derivative in the Newton formula

$$f'(x^{(k)}) \approx \frac{f(x^{(k)} - f(x^{(k-1)}))}{x^{(k)} - x^{(k-1)}}$$

the approximation comes directly from the definition of f' as a limit

• iteration for the secant method is

$$x^{(k+1)} = x^{(k)} - f(x^{(k)}) \left(\frac{x^{(k)} - x^{(k-1)}}{f(x^{(k)}) - f(x^{(k-1)})}\right)$$
Secant Algorithm

$f: \mathbf{R} ightarrow \mathbf{R}$, continuous

given two initial points $x,\,x_{\rm prev},$ required tolerance $\epsilon>0$ repeat

- 1. Compute f(x)2. if $|f(x)| \le \epsilon$, return x. 3. a := (f(x)) = f(x = 0)
- 3. $g := (f(x) f(x_{\text{prev}}))/(x x_{\text{prev}}).$
- 4. $x_{\text{prev}} := x$.

5.
$$x := x - f(x)/g$$
.

until maximum number of iterations is exceeded.

- first iteration requires two evaluations of f (at x and x_{prev})
- subsequent iterations require one evaluation (at x)
- we assume $g \neq 0$

interpretation (with notation: $x = x^{(k)}$, $x^+ = x^{(k+1)}$, $x_{\text{prev}} = x_{\text{prev}}^{(k)}$) $f_{\text{aff}}(y) = f(x) + g(y - x)$ f(y) f(y) f(y) y

• affine approximation f_{aff} with $f_{\text{aff}}(x) = f(x)$, $f_{\text{aff}}(x_{\text{prev}}) = f(x_{\text{prev}})$:

$$f_{\text{aff}}(y) = f(x) + g(y - x) \quad \text{with } g = \frac{f(x) - f(x_{\text{prev}})}{x - x_{\text{prev}}}$$

• solve linear equation $f_{\text{aff}}(y) = 0$ and take the solution as new iterate x^+ :

$$x^+ = x - f(x)/g$$

Solution of Nonlinear Equations

Examples

fast asymptotic convergence, but slower than Newton method

 other examples: secant method works well if we start near a solution; may not converge otherwise

Error Analysis of Secant Method

define $e^{(k)} = x^{(k)} - x^{\star}$

• from the definition of the secant method and with some algebra:

$$e^{(k+1)} = x^{(k+1)} - x^{\star} = \frac{f(x^{(k)})e^{(k-1)} - f(x^{(k-1)})e^{(k)}}{f(x^{(k)}) - f(x^{(k-1)})}$$

• factoring out $e^{(k)}e^{(k-1)}$ and inserting $(x^{(k)} - x^{(k-1)})/(x^{(k)} - x^{(k-1)})$

$$e^{(k+1)} = \left(\frac{x^{(k)} - x^{(k-1)}}{f(x^{(k)}) - f(x^{(k-1)})}\right) \left(\frac{\frac{f(x^{(k)})}{e^{(k)}} - \frac{f(x^{(k-1)})}{e^{(k-1)}}}{x^{(k)} - x^{(k-1)}}\right) e^{(k)}e^{(k-1)}$$

(error equation)

• by Taylor's Theorem

$$f(x^{(k)}) = f(x^{\star} + e^{(k)}) = f(x^{\star}) + e^{(k)}f'(x^{\star}) + \frac{1}{2}(e^{(k)})^2 f''(x^{\star}) + \mathcal{O}((e^{(k)})^3)$$

• use $f(x^{\star}) = 0$ and divide both sides by $e^{(k)}$

$$f(x^{(k)})/e^{(k)} = f'(x^{\star}) + \frac{1}{2}e^{(k)}f''(x^{\star}) + \mathcal{O}((e^{(k)})^2)$$

• changing the index to k-1

$$f(x^{(k-1)})/e^{(k-1)} = f'(x^*) + \frac{1}{2}e^{(k-1)}f''(x^*) + \mathcal{O}((e^{(k-1)})^2)$$

• subtract the above two equations and neglect the higher order terms

$$f(x^{(k)})/e^{(k)} - f(x^{(k-1)})/e^{(k-1)} \approx \frac{1}{2} \left(e^{(k)} - e^{(k-1)} \right) f''(x^*)$$

• since
$$x^{(k)} - x^{(k-1)} = e^{(k)} - e^{(k-1)}$$

$$\frac{f(x^{(k)})/e^{(k)} - f(x^{(k-1)})/e^{(k-1)}}{x^{(k)} - x^{(k-1)}} \approx \frac{1}{2}f''(x^{\star})$$

• use the above result and

$$\frac{x^{(k)} - x^{(k-1)}}{f(x^{(k)}) - f(x^{(k-1)})} \approx \frac{1}{f'(x^{\star})}$$

in the error equation, we obtain

$$e^{(k+1)} \approx \frac{1}{2} \frac{f''(x^{\star})}{f'(x^{\star})} e^{(k)} e^{(k-1)} = c e^{(k)} e^{(k-1)}$$

• assume the method has α -order convergence, *i.e.*,

$$|e^{(k+1)}| \sim A |e^{(k)}|^{\alpha}$$

hence, we have

$$|e^{(k)}| \sim A |e^{(k-1)}|^{\alpha}, \qquad |e^{(k-1)}| \sim (A^{-1}|e^{(k)}|)^{1/\alpha}$$

• substitute the above result to get the asymptotic values of $e^{(k)}$:

$$A^{1+1/\alpha}|c|^{-1} \sim |e^{(k)}|^{1-\alpha+1/\alpha}$$

• the LHS is a nonzero constant while $k \to \infty$, so the exponent of $e^{(k)}$ must be zero

$$1 - \alpha + 1/\alpha = 0 \implies \alpha = (1 + \sqrt{5})/2 \approx 1.62$$

• the convergence rate of secant method is *super linear*

Convergence of Newton and secant methods

Newton method: if $f'(x^*) \neq 0$ and $x^{(0)}$ is sufficiently close to x^* , then Newton's method converges and there exists a c > 0 such that

$$|x^{(k+1)} - x^{\star}| \le c |x^{(k)} - x^{\star}|^2$$

i.e., quadratic convergence

secant method: if $f'(x^*) \neq 0$ and $x^{(0)}$ is sufficiently close to x^* , then the secant method converges and there exists a c > 0 such that

$$|x^{(k+1)} - x^{\star}| \le c |x^{(k)} - x^{\star}|^{r}$$

where $r=(1+\sqrt{5})/2\approx 1.6$

i.e., superlinear convergence

Summary

bisection method

- does not require derivatives
- user must provide initial interval [l, u] with f(l)f(u) < 0
- R-linear convergence

Newton's method

- requires derivatives
- user must provide starting point near a solution
- quadratic convergence

secant method

- does not require derivatives
- user must provide two starting points near a solution
- superlinear convergence

Fixed Point Iteration

Idea: consider Newton's method as applied to $f(x) = x^2 - a$

$$x^{(k+1)} = \frac{1}{2} \left(x^{(k)} + \frac{a}{x^{(k)}} \right)$$

as $k \to \infty,$ we know that $x^{(k)} \to \sqrt{a}$

write this more abstractly as

$$x^{(k+1)} = g(x^{(k)})$$
 for $g(x) = \frac{1}{2}(x + ax^{-1})$

•
$$f(x^{\star}) = 0 \iff x^{\star} = g(x^{\star})$$

- x^{\star} is a **fixed point** of the function g
- functions g = a/x or $g = a + x x^2$ yield the same fixed point

- the root is where the curve crosses the x axis
- the fixed point is where the curve crosses the line y = x

Functional Iteration

a sequence of points computed by a formula of the form

$$x_{n+1} = g(x_n)$$

is called **functional iteration**

example: iterate these functions with a = 9 and $x^{(0)} = 1$

$$g_1 = x + \frac{1}{2}(x^2 - a), \quad g_2 = a/x, \quad g_3 = a + x - x^2, \quad g_4 = 0.5(x + a/x)$$

k	$x(k) + 0.5(x(k)^2 - a)$	a/x(k)	$a + x(k) - x(k)^2$	0.5(x(k) + a/x(k))
0	1.0000	1.0000	1.0000	1.0000
1	-3.0000	9.0000	9.0000	5.0000
2	-3.0000	1.0000	-6.3000e + 01	3.4000
3	-3.0000	9.0000	-4.0230e + 03	3.0235
4	-3.0000	1.0000	-1.6189e + 07	3.0001
5	-3.0000	9.0000	-2.6207e + 14	3.0000

Graphical interpretation

x

suppose a sequence x_n converges with $\lim_{n\to\infty} x_n = z$

if g is *continuous* then

$$g(z) = g(\lim_{n \to \infty} x_n) = \lim_{n \to \infty} g(x_n) = \lim_{n \to \infty} x_{n+1} = z$$

we call z a **fixed point** of the function g

one may ask the following questions:

- existence and uniqueness of a fixed point
- if the iteration converges, how fast does it converge ?

Contractive Mapping

a mapping (or function) g is said to be *contractive* on $S \subseteq \operatorname{dom} g$ if there exists a scalar $\lambda < 1$ such that

$$|g(x) - g(y)| \le \lambda |x - y|$$

for all $x, y \in S$

- loosely speaking, a contractive function is a *non-expansive* map
- every contractive mapping is Lipschitz continuous
- if g is continuously differentiable on [a, b] with

$$\max_{x \in [a,b]} |g'(x)| < 1$$

then g is contractive on [a, b]

(by Mean-Value Theorem)

examples: $g(x) = e^{-x}, \cos x$ on [0, 1]

Contractive Mapping Theorem

if $g:S\to S$ is contractive for all $x\in S,$ then

- g has a *uniqued* fixed point in S
- this fixed point is a limit of every sequence

$$x_{n+1} = g(x_n)$$
 with $x_0 \in S$

Fixed Point Existence and Convergence

let $g \in \mathbf{C}([a,b])$ with $a \leq g(x) \leq b$ for all $x \in [a,b]$

- 1. g has at least one fixed point $x \in [a, b]$
- 2. if g is contractive on [a, b] then
 - (a) x^{\star} (root of f(x) = 0) is unique
 - (b) the iteration

$$x^{(n+1)} = g(x^{(n)})$$

converges to x^{\star} for any initial guess $x^{(0)} \in [a, b]$

(c) the error estimate obeys

$$|x^{\star} - x^{(k)}| \le \frac{\lambda^k}{1 - \lambda} |x^{(1)} - x^{(0)}|$$

R-linear convergence with $c=\lambda$ and $M=|x^{(1)}-x^{(0)}|/(1-\lambda)$

- Proof 1: define h(x) = g(x) x and use the intermediate value theorem
- Proof 2a-2b: a direct result from contractive mapping theorem
- Proof 2c: since g is contractive

$$|x^{\star} - x^{(k)}| = |g(x^{\star}) - g(x^{(k-1)})| \le \lambda |x^{\star} - x^{(k-1)}|$$

write this recursively, we obtain

$$|x^{\star} - x^{(k)}| \le \lambda^k |x^{\star} - x^{(0)}|$$

and apply the following result:

$$\begin{aligned} |x^{\star} - x^{(0)}| &= |x^{\star} - g(x^{(0)}) + x^{(1)} - x^{(0)}| \le |g(x^{\star}) - g(x^{(0)})| + |x^{(1)} - x^{(0)}| \\ &\le \lambda |x^{\star} - x^{(0)}| + |x^{(1)} - x^{(0)}| \end{aligned}$$

from which it follows that

$$|x^{\star} - x^{(0)}| \le \frac{1}{1 - \lambda} |x^{(1)} - x^{(0)}|$$

example 1 apply the theorem on $g_4(x) = 0.5(x + a/x)$ with a = 9

- $2 \le g_4(x) \le 4$ for all $x \in [2, 4]$
- $g'_4(x) = 1/2 a/2x^2$ and $|g'_4(x)| < 1$ on [2, 4]
- hence $g_4(x)$ is contractive on [2,4]
- there's a fixed point in [2,4] and the iteration converges

example 2 apply the theorem on $g_3(x) = a + x - x^2$ with a = 9

- $|g'_3(x)| < 1$ on (0,1) (says g_3 is contractive on $[\frac{1}{4}, \frac{1}{2}]$)
- but $g_3(x)$ does not satisfy $1/4 \le g_3(x) \le 1/2$
- no fixed poin in [1/4, 1/2] (in fact the $\sqrt{a} = 3$ is not in this interval)

Local Convergence for Fixed Point Iteration

assumptions:

- x^{\star} is a fixed point
- g be a continuously differentiable in an open interval of x^{\star}
- $|g'(x^\star)| < 1$

then for all x_0 sufficiently close to x^* , the iteration

$$x_{n+1} = g(x_n)$$

converges,

$$\lim_{n \to \infty} \frac{x^* - x_{n+1}}{x^* - x_n} = g'(x^*)$$

and

$$|x^{\star} - x_n| \le \frac{\lambda^n}{1 - \lambda} |x_1 - x_0|$$

for some $\lambda < 1$

Proof.

• since g is continously differentiable, we can find an closed interval J centered at x^\star such that

$$|g'(x)| \le \lambda < 1, \qquad \forall x \in J$$

• from the definition of fixed point iteration

$$|x^{\star} - x_1| = |g(x^{\star}) - g(x_0)| \le \lambda |x^{\star} - x_0|$$

- x_1 is closer to x^* than x_0 , and so are all the rest of the iterates
- thus, $g(x) \in J$ for all $x \in J$
- the rest of the proof follows similarly to the result in page 2-53

Higher order rate of convergence

assumptions:

• g is p times continuously differentiable

•
$$x^{\star}$$
 is a fixed point, $i.e.,\ x^{\star}=g(x^{\star})$

if

$$g'(x^*) = g''(x^*) = \dots = g^{(p-1)}(x^*) = 0$$

but $g^{(p)} \neq 0$ then the iteration

$$x_{n+1} = g(x_n)$$

converges with order p for x_0 sufficiently close to x^{\star}

Proof.

- since $g'(x^{\star}) = 0 < 1$, the iteration converges for x_0 close to x^{\star}
- by Taylor's Theorem,

$$g(x_n) = g(x^*) + (x_n - x^*)g'(x^*) + \dots + \frac{(x_n - x^*)^{p-1}}{(p-1)!}g^{(p-1)}(x^*) + \frac{(x_n - x^*)^p}{p!}g^{(p)}(\xi_n)$$

where ξ_n is between x_n and x^*

• since all derivative terms are zero except that in the remainder term,

$$g(x_n) - g(x^*) = \frac{(x_n - x^*)^p}{p!} g^{(p)}(\xi_n)$$

• so that the iteration them implies

$$\frac{(x_{n+1} - x^{\star})}{(x_n - x^{\star})^p} = \frac{1}{p!}g^{(p)}(\xi_n)$$

from which the convergence with order p follows

Newton's method: equivalent to a fixed point iteration with

$$g(x) = x - \frac{f(x)}{f'(x)}$$

note that

$$g'(x) = 1 - \left(\frac{|f'(x)|^2 - f(x)f''(x)|}{|f'(x)|^2}\right)$$

with $f(x^{\star})=0$ we can see that $g'(x^{\star})=1$ -1 = 0

Newton's method has (local) order of convergence of at least 2

Computing Roots of Polynomials

consider the polynomial p

$$p(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$$

if $a_n \neq 0$, p is of degree n

Factor Theorem: a polynomial of degree n can be written as a product of n linear factors

$$p(z) = (z - r_1)(z - r_2) \cdots (z - r_n)q_n$$

- r_k for $k = 1, \ldots, n$ corresponds to a root of p(z)
- q_n is a constant
- multiplicity of r_k is the number of factor $z r_k$ in p(z)

questions:

- how can we find the roots of p ?
- is there any root at all ?

Theorem 1. Every nonconstant polynomial has at least one root in the complex field.

(This says nothing about the existence of real roots!)

Theorem 2. A polynomial of degree n has exactly n roots in the complex plane; each root is counted to its multiplicity.

is it possible to restrict these roots to a limited area?

Localization Theorem

Theorem 3. All roots of the polynomial p lie in the open disk whose center is at the origin of the complex plane and whose radius is

$$\rho = 1 + \frac{1}{|a_n|} \max_{0 \le k < n} |a_k|$$

- the radius is always greater than 1, i.e., $\rho>1$
- the radius ρ is an upper bound of the moduli of all roots

$$|r_k| \le \rho, \qquad k = 1, \dots, n$$

the radius of the disk from the localization theorem is

$$\rho = 1 + \frac{1}{|a_5|} \max_{0 \le k < 5} |a_k| = 1 + 2/1 = 3$$

all the roots of p are: $1\pm i,-1,\pm i$

we can get a more specific region of all roots of p(z)

let q(z) be a polynomial with the order reverse to p(z)

$$q(z) = a_0 z^n + a_1 z^{n-1} + \dots + a_{n-1} z + a_n$$

in another word, $q(z) = z^n p(1/z)$

therefore, if r is a root of p, then 1/r is a root of q

$$p(r) = 0 \quad \Longleftrightarrow \quad q(1/r) = 0$$

this fact yields the following theorem

Theorem 4. if all the roots of q are in the disk $\{z \mid |z| \le \gamma\}$, then all the nonzero roots of p are outside the disk $\{z \mid |z| < 1/\gamma\}$.

example: $p(z) = z^5 - z^4 + z^3 + z^2 + 2$, $\rho = 3$

Evaluating a Polynomial

to evaluate a polynomial

$$p(z) = a_0 + a_1 z + \dots + a_n z^n$$

it requires n multiplications, n additions, and forming z^2, z^3, \ldots

a more effficient way to do is to write p(z) as

$$p(z) = a_0 + z(a_1 + z(a_2 + \dots + z(a_{n-1} + a_n z) \dots))$$

- this is called **nested multiplication**
- requires only n multiplication and n additions
- an algorithm form of nested multiplication is known as Horner's rule

Horner's Rule

$$p(z) = a_0 + z(a_1 + z(a_2 + \dots + z(a_{n-1} + a_n z) \dots))$$

given a point z, and polynomial coefficients a_j , j = 0, ..., nset $p = a_n$ for k = n - 1 downto 0 $p = a_k + pz$ endfor return p

Horner's Rule for Evaluating a Derivative

Horner's rule can be modified to compute p'(z) as well

$$p'(z) = a_1 + 2a_2z + 3a_3z^3 + \dots + na_nz^{n-1}$$

which can be written in a nested multiplication as

$$p'(z) = a_1 + z(2a_2 + z(3a_3 + \dots + z((n-1)a_{n-1} + na_nz) \dots))$$

given a point z and polynomial coefficients a_j , j = 0, ..., nset $d = na_n$ for k = n - 1 downto 1 $d = ka_k + dz$ endfor return d

More Efficient Horner's Algorithm

Idea: store intermediate values for computing derivatives to evaluate p(z) at z_0 , consider the polynomial

$$q(z) = \frac{p(z) - p(z_0)}{z - z_0}$$

where

$$p(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$$

let

$$q(z) = b_{n-1}z^{n-1} + b_{n-2}z^{n-2} + \dots + b_1z + b_0$$

comparing coefficients yields

$$p(z) = (z - z_0)q(z) + p(z_0)$$

= $\underbrace{p(z_0) - z_0 b_0}_{a_0} + \underbrace{(b_0 - z_0 b_1)}_{a_1}z + \dots + \underbrace{(b_{n-2} - z_0 b_{n-1})}_{a_{n-1}}z^{n-1} + \underbrace{b_{n-1}}_{a_n}z^n$

the two sets of coefficients are related by

$$b_{n-1} = a_n$$

$$b_{n-2} = a_{n-1} + z_0 b_{n-1}$$

$$\vdots$$

$$b_0 = a_1 + z_0 b_1$$

$$p(z_0) = a_0 + z_0 b_0$$

nested computation: $p(z_0) = a_0 + z_0(a_1 + z_0(a_2 + \cdots + (a_{n-1} + z_0a_n) \cdots))$

given a point z, and polynomial coefficients a_j , j = 0, ..., nset $b_{n-1} = a_n$ for k = n - 1 downto 0 $b_{k-1} = a_k + zb_k$ endfor

return b_i for i = -1, 0, ..., n - 1 (where $b_{-1} = a_0 + zb_0 = p(z)$)

Horner's Algorithm in a Table

to calculate by hand, we can form the coefficients in a table as

example: evaluate p(3) where

$$p(z) = z^4 - 4z^3 + 7z^2 - 5z - 2$$

hence, p(3) is equal to 19
Deflation

a process of removing a linear factor from p(z) is called **deflation**

• if
$$z_0$$
 is a root of $p(z)$ then $p(z) = (z - z_0)q(z)$

• removing factor $z - z_0$ gives q(z) which can be determined by b_j 's

example: deflate p(z) in page 2-72 given that 2 is a root of p(z)

thus, we have

$$p(z) = z^4 - 4z^3 + 7z^2 - 5z - 2 = (z - 2)(z^3 - 2z^2 + 3z + 1)$$

Evaluating the Derivatives

suppose that p(z) can be written in the form

$$p(z) = c_n(z - z_0)^n + c_{n-1}(z - z_0)^{n-1} + \dots + c_0$$

and hence q(z) is of the form,

$$q(z) = \frac{p(z) - p(z_0)}{z - z_0} = c_n (z - z_0)^{n-1} + c_{n-1} (z - z_0)^{n-2} + \dots + c_1$$

- Taylor's Theorem says that $c_k = p^{(k)}(z_0)/k!$
- $c_0 = p(z_0)$ and obtained by applying Horner's algorithm to p at z_0
- $c_1 = p'(z_0)$ and obtained by applying Horner's algorithm to q at z_0
- repeat Horner's algorithm until we can get all coefficients c_k 's

example: expand the Taylor series around the point 3 of the polynomial

hence, the Taylor series is

$$p(z) = (z-3)^4 + 8(z-3)^3 + 25(z-3)^2 + 37(z-3) + 19$$

Solution of Nonlinear Equations

Complete Horner's Algorithm

the algorithm in page 2-74 can be implemented in pseudocode as follows

```
given a point z, and polynomial coefficients a_i, i = 0, ..., n
for k = 0 upto n - 1
for j = n - 1 downto k
a_j = a_j + za_{j+1}
endfor
endfor
return a_i for 0 \le i \le n
```

where the coefficients c_k overwrite the input coefficients a_k

Last note: Horner's algorithm can be used to compute f(x) and f'(x) in Newton's method when applied to polynomial functions

Bairstow's Method

Theorem 5. If all coefficients of p(z) are real, and if w is a nonreal root of p(z), then so is \overline{w} . In addition, $(z - w)(z - \overline{w})$ is a real quadratic factor of p(z).

basically, a complex root of a real polynomial must occur in complex conjugate pair

Idea:

- Newton's method requires complex arithmetic to find a complex root
- using Bairstow's method, we can employs only *real* arithmetic
- the method uses Newton's iteration to search for quadratic factors

Quotient and Remainder

if a *real* polynomial $p(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_0$

is divided by the *quadratic* polynomial

$$d(z) = z^2 - uz - v$$

then the quotient and remainder

$$q(z) = b_n z^{n-2} + b_{n-1} z^{n-3} + \dots + b_3 z + b_2$$

$$r(z) = b_1 (z - u) + b_0$$

such that p(z) = q(z)d(z) + r(z) can be computed recursively by setting

$$b_{n+1} = b_{n+2} = 0$$

and using

$$b_k = a_k + ub_{k+1} + vb_{k+2} \qquad n \ge k \ge 0$$

Bairstow's method uses Newton's iteration to find u, v such that

$$b_0(u,v) = 0$$

$$b_1(u,v) = 0$$

- d (the quadratic polynomial) will then become a factor of p
- $\bullet\,$ once u,v are found, the roots of d are readily obtained
- the Newton's iteration for solving $b_0(u,v) = 0$ and $b_1(u,v) = 0$ is

$$\begin{bmatrix} u_{k+1} \\ v_{k+1} \end{bmatrix} = \begin{bmatrix} u_k \\ v_k \end{bmatrix} - \begin{bmatrix} \frac{\partial b_1(u_k, v_k)}{\partial u} & \frac{\partial b_1(u_k, v_k)}{\partial v} \\ \frac{\partial b_0(u_k, v_k)}{\partial u} & \frac{\partial b_0(u_k, v_k)}{\partial v} \end{bmatrix}^{-1} \begin{bmatrix} b_1(u_k, v_k) \\ b_0(u_k, v_k) \end{bmatrix}$$

• the partial derivatives and $b_1(u_k, v_k)$, $b_0(u_k, v_k)$ are computed from the recurrence equation in page 2-78

Laguerre Iteration

p(z): a real polynomial

given initial z, required tolerance $\epsilon > 0$ repeat

- 1. Compute $A = \frac{p'(z)}{p(z)}$.
- 2. Compute $B = A^2 \frac{p''(z)}{p(z)}$.
- 3. Compute $C = (A \pm \sqrt{(n-1)(nB A^2)})/n$. (the sign is chosen so that |C| is largest)
- 4. if $|1/C| \leq \epsilon$, return z.

5.
$$z := z - 1/C$$
.

until maximum number of iterations is exceeded.

- each iteration requires one evaluation of p,p^\prime and $p^{\prime\prime}$
- evaluating p, p' and p'' at z can be done by Horner's algorithm

interpretation: define

- r_i , i = 1, 2, ..., n the n real roots of p(z)
- $1/v_i$ the distance from a point z (on real axis) to the *i*th root

$$v_i = (z - r_i)^{-1}$$

by writing p(z) as a product of linear factors

$$p(z) = (z - r_1)(z - r_2) \cdots (z - r_n)$$

and consider

$$\ln |p(z)| = \ln |z - r_1| + \dots + \ln |z - r_n|$$

we can verify that

$$A = \frac{d}{dz} \ln |p(z)| = \frac{p'(z)}{p(z)} = \sum_{i=1}^{n} \frac{1}{z - r_i} = \sum_{i=1}^{n} v_i$$

$$B = -\frac{d^2}{dz^2} \ln |p(z)| = \left(\frac{p'(z)}{p(z)}\right)^2 - \frac{p''(z)}{p(z)} = \sum_{i=1}^{n} \frac{1}{(z - r_i)^2} = \sum_{i=1}^{n} v_i^2$$

Solution of Nonlinear Equations

Fact: for any real $z \neq r_j$ for all j, the numbers $(z - r_j)^{-1}$ lies in the interval whose endpoints are

$$(A \pm \sqrt{(n-1)(nB - A^2)})/n$$

hence, C^{-1} is an estimate of the distance from z to the nearest root *Proof.* in fact, for *any real numbers* v_i with

$$A = \sum_{i=1}^{n} v_i, \qquad B = \sum_{i=1}^{n} v_i^2$$

we can consider

$$A^{2} - 2Av_{1} + v_{1}^{2} = (A - v_{1})^{2} = (v_{2} + v_{3} + \dots + v_{n})^{2}$$

by Cauchy Schwarz inequality

$$A^{2} - 2Av_{1} + v_{1}^{2} \le (n-1)(v_{2}^{2} + v_{3}^{2} + \dots + v_{n}^{2}) = (n-1)(B - v_{1}^{2})$$

rewrite the inequality as a quadratic polynomial in v_1

$$nv_1^2 - 2Av_1 + A^2 - (n-1)B \le 0$$

define

$$q(x) = nx^{2} - 2Ax + A^{2} - (n-1)B$$

so we have $q(v_1) \leq 0$

for large |x|, evidently q(x) > 0, so v_1 must lie between two roots of q:

$$(A \pm \sqrt{(n-1)(nB - A^2)})/n$$

which are the endpoints given in 2-82

- $nB A^2 \ge 0$ (by Cauchy Schwarz inequality), so the endpoints are real
- the result also holds for v_i , $i = 2, \ldots, n$
- use $v_i = (z r_i)^{-1}$ and we finish the proof

example: $p(z) = z^4 - 8z^3 - 25z^2 + 44z + 60$

p(z) has all simple roots r = -1, 2, -3 and 10

k	z	z	z	z
0	-20.000000	100.000000	4.000000	-2.000000
1	-4.369910	10.416379	2.272328	-1.242866
2	-3.041839	10.000039	2.001053	-1.002888
3	-3.000003	10.000000	2.000000	-1.000000
4	-3.000000	10.000000	2.000000	-1.000000

remarks:

- used in several softwares packages
- for polynomials with all real roots, converges from any starting point
- third-order convergence near simple roots
- if p has multiple roots, the convergence rate is linear

example: $p(z) = z^3 - 4z^2 + 6z - 4$

p(z) has *complex* roots r = 2 and $1 \pm i$

k	z	z	z
0	1000000.000000	100.000000 - 2000.000000i	5.000000
1	1.333334 + 0.943020i	1.332561 - 0.942549i	1.285968 + 0.256216i
2	1.003279 + 1.000001i	1.003260 - 0.999979i	1.833103 - 0.298087i
3	1.000000 + 1.000000i	1.000000 - 1.000000i	1.989546 - 0.006191i
4	1.000000 + 1.000000i	1.000000 - 1.000000i	2.000000 + 0.000000i

remarks:

- when a starting point is complex or p has complex zeros, the iteration is performed in complex arithmetic
- *A*, *B* and *C* are now complex numbers
- fast convergence though a starting point is quite far from the root

Homotopy and Continuation Methods

• let $f: X \to Y$ be a function and we find the roots of an equation

f(x) = 0

• for a function g, we define a homotopy $h: [0,1] \times X \to Y$ as

$$h(t, x) = tf(x) + (1 - t)g(x),$$

where t runs over the interval [0, 1]

if t = 0, then $h(0, x) = g(x) = 0 \rightarrow easy problem$ If t = 1, then $h(1, x) = f(x) = 0 \rightarrow original problem$

if h(t, x) = 0 has a unique root for each $t \in [0, 1]$ then the root is a function of t, denoted by

 $\{x(t): 0 \le t \le 1\}$

example: let $g(x) = f(x) - f(x_0)$

$$h(t,x) = tf(x) + (1-t) [f(x) - f(x_0)],$$

= $f(x) + (t-1)f(x_0)$

x(0) will be the solution of the problem when t = 0 (simple problem) x(1) is the solution to the original problem (f(x) = 0)

continuation method: determine the curve x(t) by computing points

$$x(t_0), x(t_1), \ldots, x(t_m)$$

on the curve

if the function $t \mapsto x(t)$ and the function h are differentiable

differentiating 0 = h(t, x(t)) respect to t gives

 $0 = h_t(t, x(t)) + h_x(t, x(t))x'(t)$

the differential equation describing the path:

$$x'(t) = -[h_x(t, x(t))]^{-1} h_t(t, x(t)), \quad x(0) = x_0$$

(where x(0) is supposedly known)

Solution of Nonlinear Equations

example: find the roots of system equation

$$0 = f(x) = \begin{bmatrix} \xi_1^2 - 3\xi_2^2 + 3\\ \xi_1\xi_2 + 6 \end{bmatrix}, \quad x = (\xi_1, \xi_2) \in \mathbb{R}^2.$$

define a homotopy

$$h(t,x) = f(x) + (t-1)f(x_0)$$

select $x_0 = (1, 1)$

$$h_x = f'(x) = \begin{bmatrix} \frac{\partial f_1}{\partial \xi_1} & \frac{\partial f_1}{\partial \xi_2} \\ \frac{\partial f_2}{\partial \xi_1} & \frac{\partial f_2}{\partial \xi_2} \end{bmatrix} = \begin{bmatrix} 2\xi_1 & -6\xi_2 \\ \xi_2 & \xi_1 \end{bmatrix}$$
$$h_t = f(x_0) = \begin{bmatrix} f_1(x_0) \\ f_2(x_0) \end{bmatrix} = \begin{bmatrix} 1 \\ 7 \end{bmatrix}$$

the inverse of $f^\prime(x)$ is

$$h_x^{-1} = \left[f'(x)\right]^{-1} = \frac{1}{2\xi_1^2 + 6\xi_2^2} \begin{bmatrix} \xi_1 & 6\xi_2 \\ -\xi_2 & 2\xi_1 \end{bmatrix}.$$

Solution of Nonlinear Equations

the differential equation describing the solution path is

$$\begin{bmatrix} \xi_1' \\ \xi_2' \end{bmatrix} = -h_x^{-1}h_t = -\frac{1}{2\xi_1^2 + 6\xi_2^2} \begin{bmatrix} \xi_1 & 42\xi_2 \\ -\xi_2 & 14\xi_1 \end{bmatrix}$$

use the Euler method, i.e.,

$$x(t+\delta) = x(t) + x'(t)\delta, \quad \delta = 0.01$$

to solve the differential equation numerically

obtain
$$x(1) = (-3.019, 1.997)$$

use this as a starting point in Newton's method

(notice that f has a root (-3,2))

Continuously Differentiable Solution

Theorem 6. If $f : \mathbb{R}^n \to \mathbb{R}^n$ is continuously differentiable and if $\|[f'(x)]^{-1}\| \le M$ on \mathbb{R}^n , then for any $x_0 \in \mathbb{R}^n$ there is a unique curve

$$\{x(t): 0 \le t \le 1\},\$$

in \mathbb{R}^n such that

$$f(x(t)) + (t-1)f(x_0) = 0,$$

with $0 \le t \le 1$

the function $t \mapsto x(t)$ is a **continuously differentiable solution** of the initial-value problem

$$x' = -[f'(x)]^{-1} f(x_0)$$

where $x(0) = x_0$

Solution of Homogeneous Equation

Lemma 7. Let A be an $n \times (n+1)$ matrix. A solution of the homogeneous equation Ax = 0 is given by

$$x_j = (-1)^{j+1} \det(A_j),$$

where A_j is A without column j.

Proof. augment the *i*th row of A with A; call this matrix as B

- B is obviously singular since it contains two equal rows
- expand the determinant of B by the elements in its top row:

$$0 = \det B = \sum_{j=1}^{n+1} (-1)^{j+1} a_{ij} \det(A_j) = \sum_{j=1}^{n+1} a_{ij} x_j$$

• this is true for $i = 1, 2, \ldots, n$, we have Ax = 0.

Tracing the Path

another way of tracing the path x(t) given by Garcia and Zangwill (1981) suppose that $x \in \mathbb{R}^n$ and $t \in [0, 1]$ a vector $y \in \mathbb{R}^{(n+1)}$ is defined by

$$y = (t, \xi_1, \xi_2, \dots, \xi_n),$$

where $\xi_1, \xi_2, \ldots, \xi_n$ are the components of x

hence, our equation is

$$h(t,x) = 0 \implies h(y) = 0 \implies h(y(s)) = 0$$

where we allow y to be a function of an *independent variable* s differentiate respect to s, we have

$$h'(y(s))y'(s) = 0$$

the vector y(s) has n + 1 components, with denote by $\eta_1, \eta_2, \ldots, \eta_{n+1}$ from the lemma, we get

$$\eta'_j = (-1)^{j+1} \det(A_j) \quad (1 \le j \le n+1),$$

where A = h'(y(s)) and A_j is A without column j

example: find the roots of system equation

$$0 = f(x) = \begin{bmatrix} \xi_1^2 - 3\xi_2^2 + 3\\ \xi_1\xi_2 + 6 \end{bmatrix}, \quad x = (\xi_1, \xi_2) \in \mathbb{R}^2$$

consider the homotopy $h(t, x) = f(x) + (t - 1)f(x_0)$ with $x_0 = (1, 1)$

$$h(t,x) = \begin{bmatrix} \xi_1^2 - 3\xi_2^2 + 2 + t \\ \xi_1\xi_2 - 1 + 7t \end{bmatrix}$$

differentiate with respect to s

$$h'(y(s))y'(s) = \begin{bmatrix} 1 & 2\xi_1 & -6\xi_2 \\ 7 & \xi_2 & \xi_1 \end{bmatrix} \begin{bmatrix} t' \\ \xi'_1 \\ \xi'_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

solve the linear equation to obtain the differential equations

$$\begin{cases} t' = 2\xi_1^2 + 6\xi_2^2, \quad t(0) = 0, \\ \xi_1' = -\xi_1 - 42\xi_2, \quad \xi_1(0) = 1, \\ \xi_2' = \xi_2 - 14\xi_1, \quad \xi_2(0) = 1. \end{cases}$$

use the Euler method to solve the diff. equation ($\delta s = 0.001$), we obtain

$$(s, t, \xi_1, \xi_2) = (0.089, 0.999, -3.024, 2.004),$$

 $(s, t, \xi_1, \xi_2) = (0.090, 1.042, -3.105, 2.048).$

points near t = 1 can be used to start a Newton iteration

Relation to Newton's Method

consider the homotopy

$$h(t,x) = f(x) - e^{-t}f(x_0),$$

where t runs from 0 to ∞

we seek a curve or path, x = x(t), on which

$$0 = h(t, x(t)) = f(x(t)) - e^{-t}f(x_0).$$

differentiating h w.r.p to t leads to a diff. eq. describing the path:

$$0 = f'(x(t))x'(t) + e^{-t}f(x_0) = f'(x(t))x'(t) + f(x(t))$$

$$x'(t) = -[f'(x(t))]^{-1}f(x(t))$$

integrating with **Euler's method** with step size **1** results in **Newton's method**:

$$x_{n+1} = x_n - [f'(x_n)]^{-1} f(x_n)$$

Conclusions

- homotopy can be any continuous connection between two functions
- we solve the problem f(x) = 0 by solving the series of the problems

$$h(t_0, x) = 0, \ h(t_1, x) = 0, \ \dots, \ h(t_m, x) = 0$$

- homotopy method requires the numerical solution systems of differential equation.
- Newton's method is a subproblem of homotopy method

References

Lecture notes on

Nonlinear equations with one variable, EE103, L. Vandenberhge, UCLA

Lecture notes on

Solution of Nonlinear Equations, EE507, D. Banjerdponchai, Chulalongkorn University

Chapter 2 in

J. F. Epperson, An Introduction to Numerical Methods and Analysis, John Wiley & Sons, 2007

Chapter 3 in

D. Kincaid and W. Cheney, *Numerical Analysis: Mathematics of Scientific Computing*, 3rd edition, Brooks & Cole, 2002