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3. Solution of Nonlinear Equations
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Definition and examples

x is a zero (or root) of a function f if f(x) = 0

examples

• f(x) = ex has no zeros

• f(x) = ex − e−x has one zero

• f(x) = ex − e−x − 3x has three zeros

• f(x) = cosx has infinitely many zeros

cf., one linear equation in one variable ax = b

• a unique solution if a 6= 0

• no solution if a = 0, b 6= 0

• any x ∈ R is a solution if a = b = 0
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Characteristics of algorithms for nonlinear equations

how f is described

• user provides subroutine to compute f(x) (and possibly f ′(x)) at x

• called ‘black box’ or ‘oracle’ model for describing f

• evaluating f and f ′ can be expensive (e.g., require a circuit simulation)

limitations of algorithms

• there exist no algorithms that are guaranteed to find all solutions

• most algorithms find at most one solution

• need prior information from the user: e.g., an interval that contains a
zero, or a point near a solution
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methods for solving nonlinear equations are iterative

• generate a sequence of points x(k), k = 0, 1, 2, . . . that converge to a
solution; x(k) is called the kth iterate; x(0) is the starting point

• computing x(k+1) from x(k) is called one iteration of the algorithm

• each iteration typically requires one evaluation of f (or f and f ′) at x(k)

• algorithms need a stopping criterion, e.g., terminate if

|f(x(k))| ≤ specified tolerance

• speed of the algorithm depends on:

– the cost of evaluating f(x) (and possibly, f ′(x))
– the number of iterations
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Analyzing speed of convergence

suppose x(k) → x⋆ with f(x⋆) = 0; how fast does x(k) go to x⋆?

error after k iterations:

• absolute error: |x(k) − x⋆|

• relative error: |x(k) − x⋆|/|x⋆| (defined if x⋆ 6= 0)

• number of correct digits:

⌊

− log10

(|x(k) − x⋆|
|x⋆|

)⌋

(defined if x⋆ 6= 0 and |x(k) − x⋆|/|x⋆| ≤ 1)
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rates of convergence of a sequence x(k) with limit x⋆

• linear convergence: there exists a c ∈ (0, 1) such that

|x(k+1) − x⋆| ≤ c |x(k) − x⋆| for sufficiently large k

• R-linear convergence: there exists c ∈ (0, 1), M > 0 such that

|x(k) − x⋆| ≤ Mck for sufficiently large k

• quadratic convergence: there exists a c > 0 s.t.

|x(k+1) − x⋆| ≤ c |x(k) − x⋆|2 for sufficiently large k

• superlinear convergence: there exists a sequence ck with ck → 0 s.t.

|x(k+1) − x⋆| ≤ ck |x(k) − x⋆| for sufficiently large k
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interpretation (if x⋆ 6= 0): let

r(k) = − log10(
|x(k) − x⋆|

|x⋆| )

(i.e., r(k) ≈ the number of correct digits at iteration k)

• linear convergence: we gain roughly − log10 c correct digits per step

r(k+1) ≥ r(k) − log10 c

• quadratic convergence: for k sufficiently large, number of correct digits
roughly doubles in one step

r(k+1) ≥ − log(c|x⋆|) + 2r(k)

• superlinear convergence: number of correct digits gained per step
increases with k

r(k+1) − r(k) → ∞
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examples (with x⋆ = 1)

• x(k) = 1 + 0.5k converges linearly (with c = 1/2):

|x(k+1) − 1|
|x(k) − 1| =

2k

2k+1
=

1

2

• x(k) = 1 + 0.52
k
converges quadratically (with c = 1)

|x(k+1) − 1|
|x(k) − 1|2 =

(22
k
)2

22k+1
= 1

• x(k) = 1 + (1/(k + 1))k converges superlinearly

|x(k+1) − 1|
|x(k) − 1| =

(k + 1)k

(k + 2)k+1
→ 0
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k 1 + 0.5k 1 + 0.52k 1 + (1/(k + 1)k)

0 2.00000000000000 1.50000000000000 2.00000000000000

1 1.50000000000000 1.25000000000000 1.50000000000000

2 1.25000000000000 1.06250000000000 1.11111111111111

3 1.12500000000000 1.00390625000000 1.01562500000000

4 1.06250000000000 1.00001525878906 1.00160000000000

5 1.03125000000000 1.00000000023283 1.00012860082305

6 1.01562500000000 1.00000000000000 1.00000849985975

7 1.00781250000000 1.00000000000000 1.00000047683716

8 1.00390625000000 1.00000000000000 1.00000002323057

9 1.00195313125000 1.00000000000000 1.00000000100000

10 1.00097656250000 1.00000000000000 1.00000000003855

• sequence 1: we gain roughly − log10(c) = 0.3 correct digits per step

• sequence 2: number of correct digits roughly doubles at each step

• sequence 3: number of correct digits gained per step increases slowly
(from 0.5 initially to 2 near the end)
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Bisection method

f : R → R, continuous

l
u l

u

if f(l)f(u) < 0, then the interval [l, u] contains at least one zero

Intermediate Value Theorem: Let f ∈ C([a, b]) and assume p is a value
between f(a) and f(b), that is

f(a) ≤ p ≤ f(b), or f(b) ≤ p ≤ f(a)

then there exists a point c ∈ [a, b] for which f(c) = p
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idea sketch

to find x⋆, let x be the midpoint of [l, u]

x =
1

2
(u+ l)

assume f(l) 6= 0, then there are three possibilities:

1. f(l)f(x) < 0 =⇒ x⋆ is between l and x

2. f(l)f(x) > 0 =⇒ x⋆ is between x and u

3. f(l)f(x) = 0 =⇒ f(x) = 0 and x⋆ = x
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l(k) u(k)x(k)
y

f(y)

given l, u with l < u and f(l)f(u) < 0; a required tolerance δ, ǫ > 0

repeat

1. x := (l + u)/2.

2. Compute f(x).

3. if f(x) = 0, return x.

4. if f(x)f(l) < 0, u := x, else, l := x.

until u − l < ǫ or |f(x)| < δ

one function evaluation per iteration
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remarks

• to avoid numerical error, calculate midpoint by x = l + (u− l)/2

• effectively determine f(l)f(x) < 0 via

sign(f(l)) 6= sign(f(x))

since the multiplication could cause an underflow or overflow

• always put a maximum number of steps to avoid an infinite loop
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convergence rate

• u(k) − l(k) measures our uncertainty in localizing a zero x⋆:

|x(k) − x⋆| ≤ u(k) − l(k)

• uncertainty is halved at each iteration:

u(k) − l(k) =

(
1

2

)k

(u(0) − l(0))

|x(k) − x⋆| ≤
(
1

2

)k

(u(0) − l(0))

i.e., R-linear convergence with c = 1/2, M = u(0) − l(0)

• number of iterations required for u(k) − l(k) ≤ ǫ or |x(k) − x⋆| ≤ ǫ:

k ≥ log2
u(0) − l(0)

ǫ
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example: f(x) = ex − e−x

• unique zero x⋆ = 0

• start bisection method with l = −1, u = 21
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conclusions

• the bisection method is also known as the method of interval halving

• bisection is known as a global method, i.e., always converges no matter
how far you start from the actual root

• it cannot find roots when the function is tangent to the axis

• convergence is slow compared to other methods
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Newton’s method

f : R → R, differentiable

given initial x, required tolerance ǫ > 0

repeat

1. Compute f(x) and f ′(x).

2. if |f(x)| ≤ ǫ, return x.

3. x := x − f(x)/f ′(x).

until maximum number of iterations is exceeded.

• each iteration requires one evaluation of f and f ′

• there exist other (more sophisticated) stopping criteria

• we assume f ′(x(k)) 6= 0, all k
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interpretation (with notation x = x(k), x+ = x(k+1))

x
x+

y

f(y)
faff(y) = f(x) + f ′(x)(y − x)

• make affine approximation of f around x using Taylor series expansion:

faff(y) = f(x) + f ′(x)(y − x)

• solve the linearized equation faff(y) = 0 and take the solution y as x+:

x+ = x− f(x)/f ′(x)
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Examples

• f(x) = ex − e−x, start at x(0) = 10
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asymptotic convergence is much faster than bisection method

Solution of Nonlinear Equations 3-19



• f(x) = ex − e−x − 3x

−2 −1 0 1 2
−1.5

−1

−0.5

0

0.5

1

1.5

x

– start at x(0) = −1: converges to x = −1.62
– start at x(0) = −0.8: converges to x = 1.62
– start at x(0) = −0.7: converges to x = 0

converges to a different solution depending on the starting point
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• f(x) =
ex − e−x

ex + e−x
(unique root at x = 0)

– start at x(0) = 0.9:

x(1) = −5.7 10−1

x(2) = 1.3 10−1

x(3) = −1.6 10−3

x(4) = 2.5 10−9

x(5) = −3.0 10−17

converges very rapidly

−4 −2 0 2 4
−1

−0.5

0

0.5

1

x

– start at x(0) = 1.1:

x(1) = 1.1 100, x(2) = 1.2 100, x(3) = −1.7 100,

x(4) = 5.7 100, x(5) = −2.3 104

does not converge
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error analysis: let f ∈ C2([a, b]) with f(x⋆) = 0 for x⋆ ∈ [a, b]

• expand f in a Taylor series about x = x(k) and evaluate at x = x⋆

0 = f(x⋆) = f(x(k)) + (x⋆ − x(k))f ′(x(k)) +
1

2
(x⋆ − x(k))2f ′′(ξ(k))

where ξ(k) is between x(k) and x⋆

• divide both sides by f ′(x(k)) and re-arrange, we have

x(k) − f(x(k))

f ′(x(k))
− x⋆ =

1

2
(x⋆ − x(k))2

f ′′(ξ(k))

f ′(x(k))

• assume the convergence; f ′(x(k)) ≈ f ′(x⋆) and f ′′(ξ(k)) ≈ f ′′(x⋆)

x(k+1) − x⋆ ≈ 1

2
(x⋆ − x(k))2

f ′′(x⋆)

f ′(x⋆)

the error at one step is like the square of the error at the previous step
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Theorem of Newton’s Method

assume

• f ∈ C2(I) and I is an open interval

• f(x⋆) = 0 for some x⋆ ∈ I and that f ′(x⋆) 6= 0

• x(k) is defined by the Newton’s iteration

then for x(0) sufficiently close to x⋆ we have that

lim
k→∞

x(k) = x⋆

and

lim
k→∞

x⋆ − x(k+1)

(x⋆ − x(k))2
= −f ′′(x⋆)

f ′(x⋆)
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Proof.

• define J a ball around x⋆ with radius ǫ > 0

J = {x | |x− x⋆| ≤ ǫ}

with ǫ small enough so that J ⊂ I and f is not vanished on J

• J is closed and f ′′ is continous on J ; there exists c such that

c =
maxx∈J |f ′′(x)|
2minx∈J |f ′(x)| and c < ∞

• since ξ(0) ∈ J , the Newton error for the first iteration satisfies

|x⋆ − x(1)| ≤ |x⋆ − x(0)|2 f
′′(ξ(0))

2f ′(x(0))
≤ c|x⋆ − x(0)|2
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• choose x(0) so that |x⋆ − x(0)| < 1/c, then we have

|x⋆ − x(1)| ≤ c|x⋆ − x(0)|2 < |x⋆ − x(0)|

which forces x(1) ∈ J

• apply the Newton’s method recursively; the entire sequences is in J and

|x(k+1) − x⋆| =
1

2
(x⋆ − x(k))2

|f ′′(ξ(k))|
|f ′(x(k))| ≤ c|x⋆ − x(k)|2

which shows the quadratic convergence

• define the error e(k) = x⋆ − x(k); we can show

|e(k)| ≤ (1/c)(ce(0))2
k

and e(k) → 0 as k → ∞ provided that

ce(0) = c|x⋆ − x(0)| < 1 (x(0) is closed enough to x⋆)
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• x(k) → x⋆ and ξ(k) → x⋆ (since ξ(k) is between x⋆ and x(k))

• continuity on f shows that

lim
k→∞

x⋆ − x(k+1)

(x⋆ − x(k))2
= − lim

k→∞

f ′′(ξ(k))

f ′(x(k))

= − f ′′(limk→∞ ξ(k))

2f ′(limk→∞ x(k))

=
f ′′(x⋆)

f ′(x⋆)
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conclusions

• Newton’s method works very well if we start near a solution

• it may not work at all if we start too far from a solution

• if there are multiple solutions, it may converge to a different solution
depending on the starting point; it does not necessarily converge to the
solution closest to the starting point

• also known as Newton–Raphson Iteration

• convergence is quadratic (only a few iterations required to get solution
close to root)

• Newton’s method is combined with other slower methods to ensure
convergence
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Computation of the Square Root

given a a positive number, finding
√
a is equivalent to finding a root of

f(x) = x2 − a = 0

applying the Newton’s iteration to f(x) gives

x(k+1) =
1

2

(

x(k) +
a

x(k)

)

if we pick x(0) > 0 then the relative error satisfies

∣
∣
∣
∣

x(k+1) −√
a√

a

∣
∣
∣
∣
≤ 2

(
x(0) −√

a

2
√
a

)2k

the error decreases very rapidly
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Proof. the Newton error equation is

x(k+1) −
√
a = (x(k) −

√
a)2

f ′′(ξ(k))

f ′(x(k))
=

(x(k) −√
a)2

2x(k)

so the relative error satisfies

∣
∣
∣
∣

x(k+1) −√
a√

a

∣
∣
∣
∣
=

(
x(k) −√

a√
a

)2 ∣
∣
∣
∣

√
a

2x(k)

∣
∣
∣
∣

• if x(0) > 0, the Newton iteration gives x(k) > 0 for all k

• the error equation says that
√
a ≤ x(k) for all k ≥ 1

• hence, |√a/x(k)| ≤ 1 and from the relative error equation, we have

∣
∣
∣
∣

x(k+1) −√
a√

a

∣
∣
∣
∣
≤ 1

2

(
x(k) −√

a√
a

)2

• iterate the above inequality recursively, we get the desired result
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example: compute
√
9 = 3 using x(0) = 1

the Newton’s iteration

x(k+1) = 0.5(x(k) + 9/x(k))

generate the sequences:

k x(k)

0 1.0000000000

1 5.0000000000

2 3.4000000000

3 3.0235294118

4 3.0000915541

5 3.0000000014

6 3.0000000000

get 10 digits correct by only 6 iterations
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Newton’s Method for Convex Function

convex function: f is convex if and only if dom(f) is convex and

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y), ∀x, y

with 0 ≤ θ ≤ 1

• if f is differentiable, then f is convex if and only if

f(y) ≥ f(x) + f ′(x)(y − x), ∀y, x

• if f is twice differentiable, then f is convex if and only if

f ′′(x) ≥ 0

• examples: eax, x, x2, |x|, − log(x), x log(x), ‖x‖
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assumptions:

• f ∈ C2(R)

• f is increasing, i.e., f ′(x) ≥ 0 for all x

• f is convex

• f has a zero at x⋆

Result: if f satisfies the above assumptions, then x⋆ is unique, and the
Newton Iteration will converge to x⋆ from any starting point

to apply Newton method, we also assume f ′ 6= 0 for all x

the uniqueness of x⋆ is evident as f is increasing; cannot cross zero twice
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Proof: the error equation of the Newton’s iteration is

x(k+1) − x⋆ =
1

2
(x⋆ − x(k))2

f ′′(ξ(k))

f ′(x(k))

denote e(k) = x(k) − x⋆ the error at the kth iteration

• f is convex and increasing, so f ′′ ≥ 0 and f ′ > 0 (assume f ′ 6= 0) ∀x

• the error equation says x(k) ≥ x⋆ for all k ≥ 1 and since f is inscreasing,

f(x(k)) ≥ f(x⋆) = 0

• the Newton iterations:

x(k+1) = x(k) − f(x(k))

f ′(x(k))
, e(k+1) = e(k) − f(x(k))

f ′(x(k))

says that both e(k) and x(k) are decreasing sequences
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• moreover, e(k) and x(k) are bounded below (by 0 and x⋆)

• therefore, the limits of both sequences exist and given by

e⋆ = lim
k→∞

e(k), z = lim
k→∞

x(k)

• take the limit to the Newton’s iteration

lim
k→∞

e(k+1) = lim
k→∞

− lim
k→∞

f(x(k))

f ′(x(k))

e⋆ = e⋆ − f(z)

f ′(z)

• hence, f(z) = 0 and we can conclude that z = x⋆
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Newton’s Method for Systems of Nonlinear Equations

consider a function f : Rn → Rn

let x⋆ = x+ h and use the affine approximation of f about x

0 = f(x⋆) = f(x+ h) ≈ f(x) +Df(x)h

where Df(x) is the Jacobian matrix of f , i.e., Df(x)ij =
∂fi(x)
∂xj

then, solve h from
h = −Df(x)−1f(x)

provided that the Jacobian matrix is nonsingular

Newton’s method is summarized by

x(k+1) = x(k) − [Df(x(k))]−1f(x(k))

which follows the same treatment for single equation
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Secant method

idea:

• Newton’s method requires a formula for f ′(x)

• use an approximation to the derivative in the Newton formula

f ′(x(k)) ≈ f(x(k) − f(x(k−1))

x(k) − x(k−1)

the approximation comes directly from the definition of f ′ as a limit

• iteration for the secant method is

x(k+1) = x(k) − f(x(k))

(
x(k) − x(k−1)

f(x(k))− f(x(k−1))

)
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Secant Algorithm

f : R → R, continuous

given two initial points x, xprev, required tolerance ǫ > 0

repeat

1. Compute f(x)

2. if |f(x)| ≤ ǫ, return x.

3. g := (f(x) − f(xprev))/(x − xprev).

4. xprev := x.

5. x := x − f(x)/g.

until maximum number of iterations is exceeded.

• first iteration requires two evaluations of f (at x and xprev)

• subsequent iterations require one evaluation (at x)

• we assume g 6= 0
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interpretation (with notation: x = x(k), x+ = x(k+1), xprev = x
(k)
prev)

secant line

x
x+

xprev
y

f(y)

faff(y) = f(x) + g(y − x)

• affine approximation faff with faff(x) = f(x), faff(xprev) = f(xprev):

faff(y) = f(x) + g(y − x) with g =
f(x)− f(xprev)

x− xprev

• solve linear equation faff(y) = 0 and take the solution as new iterate x+:

x+ = x− f(x)/g
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Examples

• f(x) = ex − e−x, start at x(0) = 10, x
(0)
prev = 11
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fast asymptotic convergence, but slower than Newton method

• other examples: secant method works well if we start near a solution;
may not converge otherwise
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Error Analysis of Secant Method

define e(k) = x(k) − x⋆

• from the definition of the secant method and with some algebra:

e(k+1) = x(k+1) − x⋆ =
f(x(k))e(k−1) − f(x(k−1))e(k)

f(x(k))− f(x(k−1))

• factoring out e(k)e(k−1) and inserting (x(k) − x(k−1))/(x(k) − x(k−1))

e(k+1) =

(
x(k) − x(k−1)

f(x(k))− f(x(k−1))

)




f(x(k))

e(k)
− f(x(k−1))

e(k−1)

x(k) − x(k−1)



 e(k)e(k−1)

(error equation)

• by Taylor’s Theorem

f(x(k)) = f(x⋆+e(k)) = f(x⋆)+e(k)f ′(x⋆)+
1

2
(e(k))2f ′′(x⋆)+O((e(k))3)
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• use f(x⋆) = 0 and divide both sides by e(k)

f(x(k))/e(k) = f ′(x⋆) +
1

2
e(k)f ′′(x⋆) +O((e(k))2)

• changing the index to k − 1

f(x(k−1))/e(k−1) = f ′(x⋆) +
1

2
e(k−1)f ′′(x⋆) +O((e(k−1))2)

• subtract the above two equations and neglect the higher order terms

f(x(k))/e(k) − f(x(k−1))/e(k−1) ≈ 1

2

(

e(k) − e(k−1)
)

f ′′(x⋆)

• since x(k) − x(k−1) = e(k) − e(k−1)

f(x(k))/e(k) − f(x(k−1))/e(k−1)

x(k) − x(k−1)
≈ 1

2
f ′′(x⋆)
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• use the above result and

x(k) − x(k−1)

f(x(k))− f(x(k−1))
≈ 1

f ′(x⋆)

in the error equation, we obtain

e(k+1) ≈ 1

2

f ′′(x⋆)

f ′(x⋆)
e(k)e(k−1) = ce(k)e(k−1)

• assume the method has α-order convergence, i.e.,

|e(k+1)| ∼ A|e(k)|α

hence, we have

|e(k)| ∼ A|e(k−1)|α, |e(k−1)| ∼ (A−1|e(k)|)1/α
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• substitute the above result to get the asymptotic values of e(k):

A1+1/α|c|−1 ∼ |e(k)|1−α+1/α

• the LHS is a nonzero constant while k → ∞, so the exponent of e(k)

must be zero

1− α+ 1/α = 0 =⇒ α = (1 +
√
5)/2 ≈ 1.62

• the convergence rate of secant method is super linear
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Convergence of Newton and secant methods

Newton method: if f ′(x⋆) 6= 0 and x(0) is sufficiently close to x⋆, then
Newton’s method converges and there exists a c > 0 such that

|x(k+1) − x⋆| ≤ c |x(k) − x⋆|2

i.e., quadratic convergence

secant method: if f ′(x⋆) 6= 0 and x(0) is sufficiently close to x⋆, then the
secant method converges and there exists a c > 0 such that

|x(k+1) − x⋆| ≤ c |x(k) − x⋆|r

where r = (1 +
√
5)/2 ≈ 1.6

i.e., superlinear convergence
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Summary

bisection method

• does not require derivatives

• user must provide initial interval [l, u] with f(l)f(u) < 0

• R-linear convergence

Newton’s method

• requires derivatives

• user must provide starting point near a solution

• quadratic convergence

secant method

• does not require derivatives

• user must provide two starting points near a solution

• superlinear convergence
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Fixed Point Iteration

Idea: consider Newton’s method as applied to f(x) = x2 − a

x(k+1) =
1

2

(

x(k) +
a

x(k)

)

as k → ∞, we know that x(k) → √
a

write this more abstractly as

x(k+1) = g(x(k)) for g(x) =
1

2
(x+ ax−1)

• f(x⋆) = 0 ⇐⇒ x⋆ = g(x⋆)

• x⋆ is a fixed point of the function g

• functions g = a/x or g = a+ x− x2 yield the same fixed point
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g(x) = x + 0.5(x2 − a)
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f(x) = x2 − a

• the root is where the curve crosses the x axis

• the fixed point is where the curve crosses the line y = x
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Functional Iteration

a sequence of points computed by a formula of the form

xn+1 = g(xn)

is called functional iteration

example: iterate these functions with a = 9 and x(0) = 1

g1 = x+
1

2
(x2 − a), g2 = a/x, g3 = a+ x− x2, g4 = 0.5(x+ a/x)

k x(k) + 0.5(x(k)2 − a) a/x(k) a + x(k) − x(k)2 0.5(x(k) + a/x(k))

0 1.0000 1.0000 1.0000 1.0000

1 −3.0000 9.0000 9.0000 5.0000

2 −3.0000 1.0000 −6.3000e + 01 3.4000

3 −3.0000 9.0000 −4.0230e + 03 3.0235

4 −3.0000 1.0000 −1.6189e + 07 3.0001

5 −3.0000 9.0000 −2.6207e + 14 3.0000
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Graphical interpretation

y = g(x)

y = x

x

y

(xk, g(xk))

(xk+1, g(xk+1))
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suppose a sequence xn converges with limn→∞ xn = z

if g is continuous then

g(z) = g( lim
n→∞

xn) = lim
n→∞

g(xn) = lim
n→∞

xn+1 = z

we call z a fixed point of the function g

one may ask the following questions:

• existence and uniqueness of a fixed point

• if the iteration converges, how fast does it converge ?
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Contractive Mapping

a mapping (or function) g is said to be contractive on S ⊆ dom g if

there exists a scalar λ < 1 such that

|g(x)− g(y)| ≤ λ|x− y|

for all x, y ∈ S

• loosely speaking, a contractive function is a non-expansive map

• every contractive mapping is Lipschitz continuous

• if g is continuously differentiable on [a, b] with

max
x∈[a,b]

|g′(x)| < 1

then g is contractive on [a, b] (by Mean-Value Theorem)

examples: g(x) = e−x, cosx on [0, 1]

Solution of Nonlinear Equations 3-51



Contractive Mapping Theorem

if g : S → S is contractive for all x ∈ S, then

• g has a uniqued fixed point in S

• this fixed point is a limit of every sequence

xn+1 = g(xn) with x0 ∈ S
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Fixed Point Existence and Convergence

let g ∈ C([a, b]) with a ≤ g(x) ≤ b for all x ∈ [a, b]

1. g has at least one fixed point x ∈ [a, b]

2. if g is contractive on [a, b] then

(a) x⋆ (root of f(x) = 0) is unique

(b) the iteration
x(n+1) = g(x(n))

converges to x⋆ for any initial guess x(0) ∈ [a, b]

(c) the error estimate obeys

|x⋆ − x(k)| ≤ λk

1− λ
|x(1) − x(0)|

R-linear convergence with c = λ and M = |x(1) − x(0)|/(1− λ)
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• Proof 1: define h(x) = g(x)− x and use the intermediate value theorem

• Proof 2a-2b: a direct result from contractive mapping theorem

• Proof 2c: since g is contractive

|x⋆ − x(k)| = |g(x⋆)− g(x(k−1))| ≤ λ|x⋆ − x(k−1)|

write this recursively, we obtain

|x⋆ − x(k)| ≤ λk|x⋆ − x(0)|

and apply the following result:

|x⋆ − x(0)| = |x⋆ − g(x(0)) + x(1) − x(0)| ≤ |g(x⋆)− g(x(0))|+ |x(1) − x(0)|
≤ λ|x⋆ − x(0)|+ |x(1) − x(0)|

from which it follows that

|x⋆ − x(0)| ≤ 1

1− λ
|x(1) − x(0)|
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example 1 apply the theorem on g4(x) = 0.5(x+ a/x) with a = 9

• 2 ≤ g4(x) ≤ 4 for all x ∈ [2, 4]

• g′4(x) = 1/2− a/2x2 and |g′4(x)| < 1 on [2, 4]

• hence g4(x) is contractive on [2, 4]

• there’s a fixed point in [2, 4] and the iteration converges

example 2 apply the theorem on g3(x) = a+ x− x2 with a = 9

• |g′3(x)| < 1 on (0, 1) (says g3 is contractive on [14 , 1
2])

• but g3(x) does not satisfy 1/4 ≤ g3(x) ≤ 1/2

• no fixed poin in [1/4, 1/2] (in fact the
√
a = 3 is not in this interval)
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Local Convergence for Fixed Point Iteration

assumptions:

• x⋆ is a fixed point

• g be a continuously differentiable in an open interval of x⋆

• |g′(x⋆)| < 1

then for all x0 sufficiently close to x⋆, the iteration

xn+1 = g(xn)

converges,

lim
n→

x⋆ − xn+1

x⋆ − xn
= g′(x⋆)

and

|x⋆ − xn| ≤
λn

1− λ
|x1 − x0|

for some λ < 1
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Proof.

• since g is continously differentiable, we can find an closed interval J
centered at x⋆ such that

|g′(x)| ≤ λ < 1, ∀x ∈ J

• from the definition of fixed point iteration

|x⋆ − x1| = |g(x⋆)− g(x0)| ≤ λ|x⋆ − x0|

• x1 is closer to x⋆ than x0, and so are all the rest of the iterates

• thus, g(x) ∈ J for all x ∈ J

• the rest of the proof follows similarly to the result in page 2-53
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Higher order rate of convergence

assumptions:

• g is p times continuously differentiable

• x⋆ is a fixed point, i.e., x⋆ = g(x⋆)

if
g′(x⋆) = g′′(x⋆) = · · · = g(p−1)(x⋆) = 0

but g(p) 6= 0 then the iteration

xn+1 = g(xn)

converges with order p for x0 sufficiently close to x⋆
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Proof.

• since g′(x⋆) = 0 < 1, the iteration converges for x0 close to x⋆

• by Taylor’s Theorem,

g(xn) = g(x⋆) + (xn − x⋆)g′(x⋆) + · · ·+ (xn − x⋆)p−1

(p− 1)!
g(p−1)(x⋆)

+
(xn − x⋆)p

p!
g(p)(ξn)

where ξn is between xn and x⋆

• since all derivative terms are zero except that in the remainder term,

g(xn)− g(x⋆) =
(xn − x⋆)p

p!
g(p)(ξn)
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• so that the iteration them implies

(xn+1 − x⋆)

(xn − x⋆)p
=

1

p!
g(p)(ξn)

from which the convergence with order p follows

Newton’s method: equivalent to a fixed point iteration with

g(x) = x− f(x)

f ′(x)

note that

g′(x) = 1−
(|f ′(x)|2 − f(x)f ′′(x)

|f ′(x)|2
)

with f(x⋆) = 0 we can see that g′(x⋆) = 1 -1 = 0

Newton’s method has (local) order of convergence of at least 2
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Computing Roots of Polynomials

consider the polynomial p

p(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0

if an 6= 0, p is of degree n

Factor Theorem: a polynomial of degree n can be written as a product of
n linear factors

p(z) = (z − r1)(z − r2) · · · (z − rn)qn

• rk for k = 1, . . . , n corresponds to a root of p(z)

• qn is a constant

• multiplicity of rk is the number of factor z − rk in p(z)
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questions:

• how can we find the roots of p ?

• is there any root at all ?

Theorem 1. Every nonconstant polynomial has at least one root in the

complex field.

(This says nothing about the existence of real roots!)

Theorem 2. A polynomial of degree n has exactly n roots in the

complex plane; each root is counted to its multiplicity.

is it possible to restrict these roots to a limited area?
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Localization Theorem

Theorem 3. All roots of the polynomial p lie in the open disk whose

center is at the origin of the complex plane and whose radius is

ρ = 1 +
1

|an|
max

0≤k<n
|ak|

• the radius is always greater than 1, i.e., ρ > 1

• the radius ρ is an upper bound of the moduli of all roots

|rk| ≤ ρ, k = 1, . . . , n
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example: p(z) = z5 − z4 + z3 + z2 + 2

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Re(z)

Im
(z
)

the radius of the disk from the localization theorem is

ρ = 1 +
1

|a5|
max
0≤k<5

|ak| = 1 + 2/1 = 3

all the roots of p are: 1± i,−1,±i
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we can get a more specific region of all roots of p(z)

let q(z) be a polynomial with the order reverse to p(z)

q(z) = a0z
n + a1z

n−1 + · · ·+ an−1z + an

in another word, q(z) = znp(1/z)

therefore, if r is a root of p, then 1/r is a root of q

p(r) = 0 ⇐⇒ q(1/r) = 0

this fact yields the following theorem

Theorem 4. if all the roots of q are in the disk {z | |z| ≤ γ}, then all the

nonzero roots of p are outside the disk {z | |z| < 1/γ}.
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example: p(z) = z5 − z4 + z3 + z2 + 2, ρ = 3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Re(z)

Im
(z
)

ρ1/γ

q(z) = 2z5+z3+z2−z+1, γ = 1+
1

2
max{1, 1,−1, 1} = 1+1/2 = 3/2

all roots of p(z) lie in the ring 2/3 ≤ |z| ≤ 3
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Evaluating a Polynomial

to evaluate a polynomial

p(z) = a0 + a1z + · · ·+ anz
n

it requires n multiplications, n additions, and forming z2, z3, . . .

a more effficient way to do is to write p(z) as

p(z) = a0 + z(a1 + z(a2 + · · ·+ z(an−1 + anz) · · · ))

• this is called nested multiplication

• requires only n multiplication and n additions

• an algorithm form of nested multiplication is known as Horner’s rule
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Horner’s Rule

p(z) = a0 + z(a1 + z(a2 + · · ·+ z(an−1 + anz) · · · ))

given a point z, and polynomial coefficients aj, j = 0, . . . , n

set p = an

for k = n − 1 downto 0

p = ak + pz

endfor

return p

Solution of Nonlinear Equations 3-68



Horner’s Rule for Evaluating a Derivative

Horner’s rule can be modified to compute p′(z) as well

p′(z) = a1 + 2a2z + 3a3z
3 + · · ·+ nanz

n−1

which can be written in a nested multiplication as

p′(z) = a1 + z(2a2 + z(3a3 + · · ·+ z((n− 1)an−1 + nanz) · · · ))

given a point z and polynomial coefficients aj, j = 0, . . . , n

set d = nan

for k = n − 1 downto 1

d = kak + dz

endfor

return d
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More Efficient Horner’s Algorithm

Idea: store intermediate values for computing derivatives

to evaluate p(z) at z0, consider the polynomial

q(z) =
p(z)− p(z0)

z − z0

where
p(z) = anz

n + an−1z
n−1 + · · ·+ a1z + a0

let
q(z) = bn−1z

n−1 + bn−2z
n−2 + · · ·+ b1z + b0

comparing coefficients yields

p(z) = (z − z0)q(z) + p(z0)

= p(z0)− z0b0
︸ ︷︷ ︸

a0

+ (b0 − z0b1)
︸ ︷︷ ︸

a1

z + . . .+ (bn−2 − z0bn−1)
︸ ︷︷ ︸

an−1

zn−1 + bn−1
︸︷︷︸
an

zn
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the two sets of coefficients are related by

bn−1 = an

bn−2 = an−1 + z0bn−1

...

b0 = a1 + z0b1

p(z0) = a0 + z0b0

nested computation: p(z0) = a0+ z0(a1+ z0(a2+ · · · (an−1+ z0an) · · · ))

given a point z, and polynomial coefficients aj, j = 0, . . . , n

set bn−1 = an

for k = n − 1 downto 0

bk−1 = ak + zbk

endfor

return bi for i = −1, 0, . . . , n − 1 (where b−1 = a0 + zb0 = p(z))
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Horner’s Algorithm in a Table

to calculate by hand, we can form the coefficients in a table as

an an−1 an−2 · · · a0
z0 z0bn−1 z0bn−2 · · · z0b0

bn−1 bn−2 bn−3 · · · b−1

example: evaluate p(3) where

p(z) = z4 − 4z3 + 7z2 − 5z − 2

1 −4 7 −5 −2
3 3 −3 12 21

1 −1 4 7 19

hence, p(3) is equal to 19
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Deflation

a process of removing a linear factor from p(z) is called deflation

• if z0 is a root of p(z) then p(z) = (z − z0)q(z)

• removing factor z − z0 gives q(z) which can be determined by bj’s

example: deflate p(z) in page 2-72 given that 2 is a root of p(z)

1 −4 7 −5 −2
2 2 −4 6 2

1 −2 3 1 0

thus, we have

p(z) = z4 − 4z3 + 7z2 − 5z − 2 = (z − 2)(z3 − 2z2 + 3z + 1)
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Evaluating the Derivatives

suppose that p(z) can be written in the form

p(z) = cn(z − z0)
n + cn−1(z − z0)

n−1 + · · ·+ c0

and hence q(z) is of the form,

q(z) =
p(z)− p(z0)

z − z0
= cn(z − z0)

n−1 + cn−1(z − z0)
n−2 + · · ·+ c1

• Taylor’s Theorem says that ck = p(k)(z0)/k!

• c0 = p(z0) and obtained by applying Horner’s algorithm to p at z0

• c1 = p′(z0) and obtained by applying Horner’s algorithm to q at z0

• repeat Horner’s algorithm until we can get all coefficients ck’s
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example: expand the Taylor series around the point 3 of the polynomial

p(z) = z4 − 4z3 + 7z2 − 5z − 2

1 −4 7 −5 −2
3 3 −3 12 21

1 −1 4 7 19

3 3 6 30

1 2 10 37

3 3 15

1 5 25

3 3

1 8

hence, the Taylor series is

p(z) = (z − 3)4 + 8(z − 3)3 + 25(z − 3)2 + 37(z − 3) + 19
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Complete Horner’s Algorithm

the algorithm in page 2-74 can be implemented in pseudocode as follows

given a point z, and polynomial coefficients ai, i = 0, . . . , n

for k = 0 upto n − 1

for j = n − 1 downto k

aj = aj + zaj+1

endfor

endfor

return ai for 0 ≤ i ≤ n

where the coefficients ck overwrite the input coefficients ak

Last note: Horner’s algorithm can be used to compute f(x) and f ′(x) in
Newton’s method when applied to polynomial functions

Solution of Nonlinear Equations 3-76



Bairstow’s Method

Theorem 5. If all coefficients of p(z) are real, and if w is a nonreal root

of p(z), then so is w̄. In addition, (z −w)(z − w̄) is a real quadratic factor

of p(z).

basically, a complex root of a real polynomial must occur in complex
conjugate pair

Idea:

• Newton’s method requires complex arithmetic to find a complex root

• using Bairstow’s method, we can employs only real arithmetic

• the method uses Newton’s iteration to search for quadratic factors
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Quotient and Remainder

if a real polynomial p(z) = anz
n + an−1z

n−1 + · · ·+ a0

is divided by the quadratic polynomial

d(z) = z2 − uz − v

then the quotient and remainder

q(z) = bnz
n−2 + bn−1z

n−3 + · · ·+ b3z + b2

r(z) = b1(z − u) + b0

such that p(z) = q(z)d(z) + r(z) can be computed recursively by setting

bn+1 = bn+2 = 0

and using
bk = ak + ubk+1 + vbk+2 n ≥ k ≥ 0
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Bairstow’s method uses Newton’s iteration to find u, v such that

b0(u, v) = 0

b1(u, v) = 0

• d (the quadratic polynomial) will then become a factor of p

• once u, v are found, the roots of d are readily obtained

• the Newton’s iteration for solving b0(u, v) = 0 and b1(u, v) = 0 is

[
uk+1

vk+1

]

=

[
uk

vk

]

−







∂b1(uk, vk)

∂u

∂b1(uk, vk)

∂v
∂b0(uk, vk)

∂u

∂b0(uk, vk)

∂v







−1

[
b1(uk, vk)
b0(uk, vk)

]

• the partial derivatives and b1(uk, vk), b0(uk, vk) are computed from the
recurrence equation in page 2-78
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Laguerre Iteration

p(z): a real polynomial

given initial z, required tolerance ǫ > 0

repeat

1. Compute A = p′(z)
p(z) .

2. Compute B = A2 − p′′(z)
p(z) .

3. Compute C = (A ±
√

(n − 1)(nB − A2))/n.

(the sign is chosen so that |C| is largest)

4. if |1/C| ≤ ǫ, return z.

5. z := z − 1/C.

until maximum number of iterations is exceeded.

• each iteration requires one evaluation of p, p′ and p′′

• evaluating p, p′ and p′′ at z can be done by Horner’s algorithm
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interpretation: define

• ri, i = 1, 2, . . . , n the n real roots of p(z)

• 1/vi the distance from a point z (on real axis) to the ith root

vi = (z − ri)
−1

by writing p(z) as a product of linear factors

p(z) = (z − r1)(z − r2) · · · (z − rn)

and consider
ln |p(z)| = ln |z − r1|+ · · ·+ ln |z − rn|

we can verify that

A = d
dz ln |p(z)| = p′(z)

p(z) =
∑n

i=1
1

z−ri
=

∑n
i=1 vi

B = − d2

dz2
ln |p(z)| =

(
p′(z)
p(z)

)2

− p′′(z)
p(z) =

∑n
i=1

1
(z−ri)2

=
∑n

i=1 v
2
i
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Fact: for any real z 6= rj for all j, the numbers (z − rj)
−1 lies in the

interval whose endpoints are

(A±
√

(n− 1)(nB − A2))/n

hence, C−1 is an estimate of the distance from z to the nearest root

Proof. in fact, for any real numbers vi with

A =
n∑

i=1

vi, B =
n∑

i=1

v2i

we can consider

A2 − 2Av1 + v21 = (A− v1)
2 = (v2 + v3 + · · ·+ vn)

2

by Cauchy Schwarz inequality

A2 − 2Av1 + v21 ≤ (n− 1)(v22 + v23 + · · ·+ v2n) = (n− 1)(B − v21)
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rewrite the inequality as a quadratic polynomial in v1

nv21 − 2Av1 +A2 − (n− 1)B ≤ 0

define
q(x) = nx2 − 2Ax+A2 − (n− 1)B

so we have q(v1) ≤ 0

for large |x|, evidently q(x) > 0, so v1 must lie between two roots of q:

(A±
√

(n− 1)(nB − A2))/n

which are the endpoints given in 2-82

• nB − A2 ≥ 0 (by Cauchy Schwarz inequality), so the endpoints are real

• the result also holds for vi, i = 2, . . . , n

• use vi = (z − ri)
−1 and we finish the proof
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example: p(z) = z4 − 8z3 − 25z2 + 44z + 60

p(z) has all simple roots r = −1, 2,−3 and 10

k z z z z

0 −20.000000 100.000000 4.000000 −2.000000

1 −4.369910 10.416379 2.272328 −1.242866

2 −3.041839 10.000039 2.001053 −1.002888

3 −3.000003 10.000000 2.000000 −1.000000

4 −3.000000 10.000000 2.000000 −1.000000

remarks:

• used in several softwares packages

• for polynomials with all real roots, converges from any starting point

• third-order convergence near simple roots

• if p has multiple roots, the convergence rate is linear
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example: p(z) = z3 − 4z2 + 6z − 4

p(z) has complex roots r = 2 and 1± i

k z z z

0 1000000.000000 100.000000 − 2000.000000i 5.000000

1 1.333334 + 0.943020i 1.332561 − 0.942549i 1.285968 + 0.256216i

2 1.003279 + 1.000001i 1.003260 − 0.999979i 1.833103 − 0.298087i

3 1.000000 + 1.000000i 1.000000 − 1.000000i 1.989546 − 0.006191i

4 1.000000 + 1.000000i 1.000000 − 1.000000i 2.000000 + 0.000000i

remarks:

• when a starting point is complex or p has complex zeros, the iteration is
performed in complex arithmetic

• A,B and C are now complex numbers

• fast convergence though a starting point is quite far from the root
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Homotopy and Continuation Methods

• let f : X → Y be a function and we find the roots of an equation

f(x) = 0

• for a function g, we define a homotopy h : [0, 1]×X → Y as

h(t, x) = tf(x) + (1− t)g(x),

where t runs over the interval [0, 1]

if t = 0, then h(0, x) = g(x) = 0 → easy problem

If t = 1, then h(1, x) = f(x) = 0 → original problem

t = 0 t = 1

h(0, x) = g(x) h(1, x) = f(x)
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t = 0 t = 1

ti ti+1

h(ti, x) h(ti+1, x)

if h(t, x) = 0 has a unique root for each t ∈ [0, 1]

then the root is a function of t, denoted by

{x(t) : 0 ≤ t ≤ 1}

example: let g(x) = f(x)− f(x0)

h(t, x) = tf(x) + (1− t) [f(x)− f(x0)] ,

= f(x) + (t− 1)f(x0)

x(0) will be the solution of the problem when t = 0 (simple problem)

x(1) is the solution to the original problem (f(x) = 0)
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continuation method: determine the curve x(t) by computing points

x(t0), x(t1), . . . , x(tm)

on the curve

if the function t 7→ x(t) and the function h are differentiable

differentiating 0 = h(t, x(t)) respect to t gives

0 = ht(t, x(t)) + hx(t, x(t))x
′(t)

the differential equation describing the path:

x′(t) = − [hx(t, x(t))]
−1 ht(t, x(t)), x(0) = x0

(where x(0) is supposedly known)
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example: find the roots of system equation

0 = f(x) =

[
ξ21 − 3ξ22 + 3
ξ1ξ2 + 6

]

, x = (ξ1, ξ2) ∈ R
2.

define a homotopy

h(t, x) = f(x) + (t− 1)f(x0)

select x0 = (1, 1)

hx = f ′(x) =

[
∂f1/∂ξ1 ∂f1/∂ξ2
∂f2/∂ξ1 ∂f2/∂ξ2

]

=

[
2ξ1 −6ξ2
ξ2 ξ1

]

ht = f(x0) =

[
f1(x0)
f2(x0)

]

=

[
1
7

]

the inverse of f ′(x) is

h−1
x = [f ′(x)]

−1
=

1

2ξ21 + 6ξ22

[
ξ1 6ξ2
−ξ2 2ξ1

]

.
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the differential equation describing the solution path is

[
ξ′1
ξ′2

]

= −h−1
x ht = − 1

2ξ21 + 6ξ22

[
ξ1 42ξ2
−ξ2 14ξ1

]

use the Euler method, i.e.,

x(t+ δ) = x(t) + x′(t)δ, δ = 0.01

to solve the differential equation numerically
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obtain x(1) = (−3.019, 1.997)

use this as a starting point in
Newton’s method

(notice that f has a root (−3, 2))
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Continuously Differentiable Solution

Theorem 6. If f : Rn → R
n is continuously differentiable and if

‖ [f ′(x)]
−1 ‖ ≤ M on R

n, then for any x0 ∈ R
n there is a unique curve

{x(t) : 0 ≤ t ≤ 1} ,

in R
n such that

f(x(t)) + (t− 1)f(x0) = 0,

with 0 ≤ t ≤ 1

the function t 7→ x(t) is a continuously differentiable solution of the
initial-value problem

x′ = − [f ′(x)]
−1

f(x0)

where x(0) = x0
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Solution of Homogeneous Equation

Lemma 7. Let A be an n× (n+ 1) matrix. A solution of the

homogeneous equation Ax = 0 is given by

xj = (−1)j+1 det(Aj),

where Aj is A without column j.

Proof. augment the ith row of A with A; call this matrix as B

• B is obviously singular since it contains two equal rows

• expand the determinant of B by the elements in its top row:

0 = detB =
n+1∑

j=1

(−1)j+1aij det(Aj) =
n+1∑

j=1

aijxj

• this is true for i = 1, 2, . . . , n, we have Ax = 0. �
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Tracing the Path

another way of tracing the path x(t) given by Garcia and Zangwill (1981)

suppose that x ∈ R
n and t ∈ [0, 1]

a vector y ∈ R
(n+1) is defined by

y = (t, ξ1, ξ2, . . . , ξn),

where ξ1, ξ2, . . . , ξn are the components of x

hence, our equation is

h(t, x) = 0 =⇒ h(y) = 0 =⇒ h(y(s)) = 0

where we allow y to be a function of an independent variable s

differentiate respect to s, we have

h′(y(s))y′(s) = 0
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the vector y(s) has n+ 1 components, with denote by η1, η2, . . . , ηn+1

from the lemma, we get

η′j = (−1)j+1 det(Aj) (1 ≤ j ≤ n+ 1),

where A = h′(y(s)) and Aj is A without column j

example: find the roots of system equation

0 = f(x) =

[
ξ21 − 3ξ22 + 3
ξ1ξ2 + 6

]

, x = (ξ1, ξ2) ∈ R
2

consider the homotopy h(t, x) = f(x) + (t− 1)f(x0) with x0 = (1, 1)

h(t, x) =

[
ξ21 − 3ξ22 + 2 + t
ξ1ξ2 − 1 + 7t

]
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differentiate with respect to s

h′(y(s))y′(s) =

[
1 2ξ1 −6ξ2
7 ξ2 ξ1

]




t′

ξ′1
ξ′2



 =

[
0
0

]

solve the linear equation to obtain the differential equations







t′ = 2ξ21 + 6ξ22, t(0) = 0,
ξ′1 = −ξ1 − 42ξ2, ξ1(0) = 1,
ξ′2 = ξ2 − 14ξ1, ξ2(0) = 1.

use the Euler method to solve the diff. equation (δs = 0.001), we obtain

(s, t, ξ1, ξ2) = (0.089, 0.999,−3.024, 2.004),

(s, t, ξ1, ξ2) = (0.090, 1.042,−3.105, 2.048).
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points near t = 1 can be used to start a Newton iteration
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Relation to Newton’s Method

consider the homotopy

h(t, x) = f(x)− e−tf(x0),

where t runs from 0 to ∞

we seek a curve or path, x = x(t), on which

0 = h(t, x(t)) = f(x(t))− e−tf(x0).

differentiating h w.r.p to t leads to a diff. eq. describing the path:

0 = f ′(x(t))x′(t) + e−tf(x0) = f ′(x(t))x′(t) + f(x(t))

x′(t) = − [f ′(x(t))]
−1

f(x(t))

integrating with Euler’s method with step size 1 results in Newton’s

method:
xn+1 = xn − [f ′(xn)]

−1
f(xn)
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Conclusions

• homotopy can be any continuous connection between two functions

• we solve the problem f(x) = 0 by solving the series of the problems

h(t0, x) = 0, h(t1, x) = 0, . . . , h(tm, x) = 0

• homotopy method requires the numerical solution systems of differential
equation.

• Newton’s method is a subproblem of homotopy method
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