EE507 - Computational Techniques for EE Jitkomut Songsiri

3. Solution of Nonlinear Equations

e [ntroduction

e Bisection Method

e Newton's Method

e Secant Method

e Fixed Points and Functional lteration
e Computing Roots of Polynomials

e Homotopy and Continuation Methods
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Definition and examples

x is a zero (or root) of a function f if f(x) =0

examples
f(x) = e” has no zeros
o f(x)= ~* has one zero
o f(x)= — 3z has three zeros
e f(x) = cosx has infinitely many zeros

cf., one linear equation in one variable ax = b

e a unique solution if a # 0
e no solutionif a =0, b # 0

e any x € Risasolutionifa=06=0
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Characteristics of algorithms for nonlinear equations

how f is described

e user provides subroutine to compute f(x) (and possibly f'(x)) at x

e called ‘black box’ or ‘oracle’ model for describing f

e evaluating f and f’ can be expensive (e.g., require a circuit simulation)

limitations of algorithms

e there exist no algorithms that are guaranteed to find all solutions

e most algorithms find at most one solution

e need prior information from the user: e.g., an interval that contains a
zero, or a point near a solution
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methods for solving nonlinear equations are iterative

e generate a sequence of points (%), kK =0,1,2,... that converge to a
solution: (%) is called the kth iterate: (%) is the starting point

o computing (¥t from z(*) is called one iteration of the algorithm
e each iteration typically requires one evaluation of f (or f and f’) at z(*)

e algorithms need a stopping criterion, e.g., terminate if

|f(:6(k))\ < specified tolerance

e speed of the algorithm depends on:

— the cost of evaluating f(x) (and possibly, f'(x))
— the number of iterations
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Analyzing speed of convergence

suppose =(¥) — z* with f(z*) = 0; how fast does z(*) go to z*?

error after k iterations:

e absolute error: |z(%) — x*|
e relative error: |2(*) — z*|/|z*| (defined if z* # 0)

e number of correct digits:

(defined if z* # 0 and |z(®) — 2*|/|z*| < 1)

Solution of Nonlinear Equations

3-5



rates of convergence of a sequence z(¥) with limit z*
e linear convergence: there exists a ¢ € (0,1) such that

2P — x| < ¢|ze®) — 2| for sufficiently large k

e R-linear convergence: there exists ¢ € (0,1), M > 0 such that

%) — 2*| < Mc*  for sufficiently large k

e quadratic convergence: there exists a ¢ > 0 s.t.

2P+ — ¥ < c|z® — 22 for sufficiently large k

e superlinear convergence: there exists a sequence c; with ¢ — 0 s.t.

P — x| < ¢ |2®) — 2*]  for sufficiently large k
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interpretation (if z* # 0): let

i) = — logy

(i.e., ) ~ the number of correct digits at iteration k)

e linear convergence: we gain roughly —log,, c correct digits per step

pRL) > (k) _ logqgc

e quadratic convergence: for k sufficiently large, number of correct digits
roughly doubles in one step

r D > _log(c|z*|) + 2r*)

e superlinear convergence: number of correct digits gained per step

Increases with k
rED) _p(F) oo
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examples (with x* = 1)

o () =14 0.5% converges linearly (with ¢ = 1/2):

D — 1] 28 1

) — 1] 2k T 2

o 20 = 14052 converges quadratically (with ¢ = 1)

|$(k+1) — 1 B (22’“)2 _1
(k) — 1|2 g2k+t

o v(F) =1+ (1/(k+1))* converges superlinearly

|$(k+1) . 1| B (k—|—1)k

0
20 1] (k2
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1+ 0.5%

k
1+ 0.5

1+ (1/(k 4+ 1)")

© 00 O Ui W N~ O

—
-

2.00000000000000
1.50000000000000
1.25000000000000
1.12500000000000
1.06250000000000
1.03125000000000
1.01562500000000
1.00781250000000
1.00390625000000
1.00195313125000
1.00097656250000

1.50000000000000
1.25000000000000
1.06250000000000
1.00390625000000
1.00001525878906
1.00000000023283
1.00000000000000
1.00000000000000
1.00000000000000
1.00000000000000
1.00000000000000

2.00000000000000
1.50000000000000
1.11111111111111
1.01562500000000
1.00160000000000
1.00012860082305
1.00000849985975
1.00000047683716
1.00000002323057
1.00000000100000
1.00000000003855

e sequence 1: we gain roughly —log,,(c) = 0.3 correct digits per step
e sequence 2: number of correct digits roughly doubles at each step

e sequence 3: number of correct digits gained per step increases slowly
(from 0.5 initially to 2 near the end)
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Bisection method

f : R — R, continuous

S

if f(1)f(u) <0, then the interval [/, u| contains at least one zero

Intermediate Value Theorem: Let f € C([a,b]) and assume p is a value
between f(a) and f(b), that is

fla)<p < f(b), or [f(b)<p< f(a)
then there exists a point ¢ € |a, b] for which f(c) =p
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idea sketch

to find x*, let x be the midpoint of [I, u]

assume f(l) # 0, then there are three possibilities:

1. f(I)f(z) <0 = x* is between [ and =
2. f(l)f(x) >0 = z* is between x and u

3. f()f(zr)=0= f(r)=0and z* ==x
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/ 1(k) (k) ()

given [, u with [ < w and f(I)f(u) < 0; a required tolerance §,€ > 0
repeat

1. x:= (Il 4+u)/2.

2. Compute f(x).

3. if f(x) =0, return z.

4. if f(x)f(l) <0, u:=x, else, | := .

until u — [ < eor |[f(x)] <O

one function evaluation per iteration
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remarks

e to avoid numerical error, calculate midpoint by z =1 + (u —[)/2

o effectively determine f(I)f(xz) < 0 via

sign(f(1)) # sign(f(z))
since the multiplication could cause an underflow or overflow

e always put a maximum number of steps to avoid an infinite loop
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convergence rate

o uk) — (k) measures our uncertainty in localizing a zero z*:

28— x| < k) — (k)

e uncertainty is halved at each iteration:

1 k
LB ) _ (5) (w(® _ ()

1 k
2® | < (5) (u® _ ()

i.e., R-linear convergence with ¢ = 1/2, M = u(®) —[(0)
e number of iterations required for u(¥) — () < ¢ or |2(F) — z*| < e

4,0 _ (0)

€

k > log,
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example: f(z) =e* —e™®

e unique zero x* =0

e start bisection method with [ = —1, u = 21

k *
z(F) — 2|
10° ‘ ‘
[ §
.
100 %,
[ ]
'Q‘ ..
vioe
- ¢ \b_
10 "+ °
L
4 \*\
[ ]
107 o
\.
\._‘
10°°
10_8 1 1 1
0 5 10 15 20
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conclusions

e the bisection method is also known as the method of interval halving

e bisection is known as a global method, i.e., always converges no matter
how far you start from the actual root

e it cannot find roots when the function is tangent to the axis

e convergence is slow compared to other methods
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Newton’s method

f : R — R, differentiable

given initial x, required tolerance € > 0
repeat

1. Compute f(x) and f'(x).

2. if |f(z)| < €, return x.

3. z:=x — f(z)/f ().

until maximum number of iterations is exceeded.

e each iteration requires one evaluation of f and f’
e there exist other (more sophisticated) stopping criteria

e we assume f/(z®) #£0, all k
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interpretation (with notation z = (¥, 21 = g(k+1))

far(y) = f(z) + f(2)(y —

e make affine approximation of f around x using Taylor series expansion:
far(y) = f(@) + f(z)(y — 2)
e solve the linearized equation f.g(y) = 0 and take the solution y as ™

vt =2 — @)/ f()
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Examples

o f(x)=¢e"—e 7 start at (0 =10

10

10" ¢

10

10 '+

10 't

10

10

10

! 10

-10

asymptotic convergence is much faster than bisection method
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o f(x)=e"—e"—3x

= -1 0 1 2
x
— start at (0 = —1: converges to r = —1.62
— start at z(9) = —0.8: converges to x = 1.62
— start at z(?) = —0.7: converges to x = 0

converges to a different solution depending on the starting point
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et —e "
o f(x)= pr— (unique root at z = 0)

— start at (9 = 0.9:

M = —57107!
2 = 1.3107"
3 = 161072
@ = 25107°
) = —3.010°Y7

converges very rapidly

— start at (9 = 1.1:

(M =1.110°, () =1.2 109, ) = —1.710°,
) = 5.7 10°, z®) = —2.310%

does not converge
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error analysis: let f € C?([a,b]) with f(2*) = 0 for x* € [a, D]

e expand f in a Taylor series about = = z(*) and evaluate at z = z*
1
0= f(a*) = F@) + (@ —2®) /(@) + (o = 2®)2 (60

where £%) is between z(*) and z*

e divide both sides by f’(z(*)) and re-arrange, we have

fla®) 1 (™)
M_fu%»_x';*x_xwf?aﬁﬁ

:E(

e assume the convergence; f/(z*)) ~ f'(2*) and f"(£*)) =~ f"(z*)

iC(k—H) M PN E(ZC* o x(k))2f”($*)

Fa)

the error at one step is like the square of the error at the previous step
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Theorem of Newton’s Method

assume

o f € C%1I) and I is an open interval
e f(z*) =0 for some x* € I and that f'(z*) # 0

o 2(F) is defined by the Newton's iteration

then for (9 sufficiently close to z* we have that

lim z(F) = 2*

k— o0
and
. * — x(lﬁ—l) f//(ib*)
lim = ——Z
k—oo (x* — (k)2 f'(x*)

Solution of Nonlinear Equations
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Proof.

e define J a ball around x* with radius € > 0
J={z||r -2 <€}

with € small enough so that J C I and f is not vanished on J
e J is closed and f” is continous on J; there exists ¢ such that

_ maxeey |f(2)]

— : and ¢ < oo
2minge s |f/(7)]

® since 5(0) c J, the Newton error for the first iteration satisfies

11( ¢(0)
‘x* . x(l)‘ < ‘x* o x(O)‘2 f (f ) < C|£IZ* . $(0)|2
2/ ()
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e choose (%) so that [2* — 2(°)| < 1/c, then we have
™ — 33(1)| < clz* — ZC(O)|2 < |x* — ZC(O)l

which forces z(1) ¢ J

e apply the Newton's method recursively; the entire sequences is in J and

k
(+1) g = Lpr x(k))2‘f”(§( )| < et B2

[/ (2 M)

which shows the quadratic convergence

|x

e define the error e®) = z* — 2(*): we can show
M) < (1/¢)(ce®)”
and e®) — 0 as k — oo provided that
cel® = clz* — 2] < 1 ((?) is closed enough to x*)
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o zF) — x* and £€F) — z* (since £(*) is between z* and z(*))

e continuity on f shows that

lim @ — 2D = — lim f”(f(k))
k—o00 (ZC* — iC(k))2 k— o0 f’(gj(k))

f//(hmk—mo g(kz))
_2f’(limk_>OO x(k))
f"(x*)
f' ()
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conclusions

e Newton's method works very well if we start near a solution
e it may not work at all if we start too far from a solution

e if there are multiple solutions, it may converge to a different solution
depending on the starting point; it does not necessarily converge to the
solution closest to the starting point

e also known as Newton—Raphson Iteration

e convergence is quadratic (only a few iterations required to get solution
close to root)

e Newton's method is combined with other slower methods to ensure
convergence

Solution of Nonlinear Equations 3-27



Computation of the Square Root

given a a positive number, finding /a is equivalent to finding a root of
flx)=2"-a=0

applying the Newton's iteration to f(z) gives

1 a
(k+1) _ = (.(k) 5 2%
o 9 (x + x(k)>

if we pick 2(®) > 0 then the relative error satisfies

(")

2k

2D _ /g
Ja

the error decreases very rapidly

Solution of Nonlinear Equations 3-28



Proof. the Newton error equation is

2D g = () — \/a)zf"(f(k)) (2™ — \/a)?

so the relative error satisfies
p(k+1) _ \/a

va |- (x(k)ﬁﬁ)

o if 2(9) > 0. the Newton iteration gives (k) > 0 for all k

| Va

22(F)

e the error equation says that v/a < 2(*® for all k > 1

e hence, |\/a/z*)| < 1 and from the relative error equation, we have

ac(k+1\>/_a_ NG . % (x(k)\/_a\/a)

2

e iterate the above inequality recursively, we get the desired result
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example: compute v9 = 3 using (0 =1

the Newton's iteration

generate the sequences:

rF D = 0.5(2%) 4+ 9/20))

(k)

O UL W N+~ O

1.0000000000
5.0000000000
3.4000000000
3.0235294118
3.0000915541
3.0000000014
3.0000000000

get 10 digits correct by only 6 iterations

Solution of Nonlinear Equations
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Newton’s Method for Convex Function

convex function: f is convex if and only if dom( f) is convex and

fl0x+ (1 —=0)y) <O0f(x)+(1-0)f(y), v,y

with 0 <6<1

e if f is differentiable, then f is convex if and only if

f) = f(@) + f@)(y —2), Vya

e if f is twice differentiable, then f is convex if and only if

f'(x) =0
e examples: e, x, 2%, |z|, —log(z), zlog(x), |||
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assumptions:

e f€C’(R)
e f isincreasing, i.e., f'(z) > 0 for all x
e f is convex

e f has a zero at z*
Result: if f satisfies the above assumptions, then z* is unique, and the
Newton lteration will converge to x* from any starting point

to apply Newton method, we also assume f’ # 0 for all x

the uniqueness of x* is evident as f is increasing; cannot cross zero twice
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Proof: the error equation of the Newton's iteration is

k
p(BHD) %(ZC* - iC(k))Qf”(f( ))

f' (@)

denote e(*) = 2(k) _ 2* the error at the kth iteration

e f is convex and increasing, so f” >0 and f' > 0 (assume f’ £ 0) Vz

e the error equation says (k) > 2* for all k > 1 and since f is inscreasing,
f(@®) > fa*) =0

e the Newton iterations:

k1) _ (k) f () (k1) (k) f ()
f(zk)’ f(zR)

says that both e®) and z(¥) are decreasing sequences
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e moreover, e*) and 2(*) are bounded below (by 0 and z*)

e therefore, the limits of both sequences exist and given by

e* = lim e®, 2= lim 2™
k— oo k— oo

e take the limit to the Newton's iteration

k
lim e*tY) = lim — lim f(x( ))
k— 00 k—oo  k—oo f’(g;(k))
P (€
f'(2)

e hence, f(z) = 0 and we can conclude that z = x*
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Newton’s Method for Systems of Nonlinear Equations

consider a function f : R" — R"

let * = x + h and use the affine approximation of f about x
0=f(z") = fx+h)~ f(z)+ Df(x)h

where D f(z) is the Jacobian matrix of f, i.e., Df(z);; = %

then, solve h from

h= D) f(x)
provided that the Jacobian matrix is nonsingular

Newton’'s method is summarized by
2D — 2 — [D (2] f (V)
which follows the same treatment for single equation
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Secant method

idea:

e Newton's method requires a formula for f/(x)

e use an approximation to the derivative in the Newton formula

fa® — (D)

x(k) — (k=1

fl(a®) ~

the approximation comes directly from the definition of f’ as a limit

e iteration for the secant method is

k k—1
x<k+1>:$<k>_f($<k>)( z® — 2t )

fl@®)) — f (@)
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Secant Algorithm

f : R — R, continuous

given two initial points x, Tprev, required tolerance e > 0
repeat

1. Compute f(x)

2. if |f(z)| < €, return x.
3.
4
5

g:= (f(z) = f(Tprev)) /(T — Tprev).

. ajprev = XI.

cxi=x — f(x)/g.

until maximum number of iterations is exceeded.

e first iteration requires two evaluations of f (at x and Zpyev)

e subsequent iterations require one evaluation (at x)

e we assume g #= 0

Solution of Nonlinear Equations
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interpretation (with notation: x = 2%, g7 = g(k+1) o = xé’iév

far(y) = f(z) + 9(y — x)

secant line

X Lprev

e affine approximation fag with fag(x) = f(2), fag(Tprev) = f(Zprev):

f(.CU) o f(ajprev)

r — xprev

farr(y) = f(x) +g(y —x) with g =

e solve linear equation f,g(y) = 0 and take the solution as new iterate z7:
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_ 0
o f(x)=¢e"—e 7 start at 2(9) = 10, :C]E)r)ev =11
2 (k) — 2 | f(x®)]
10" 10° ‘
<L_°~~o.~°~
‘O~~°~
'O~,°~°~°~e
100 ‘!‘°"°"°"°'°'°-°-0--0--o-o_e_e~°\ 100 e~e~ .
o ‘Y
° k
107 P 107° ?
\b \
-20 -10
10, 5 10 15 20 9 5 10 15
k k

Examples

fast asymptotic convergence, but slower than Newton method

20

e other examples: secant method works well if we start near a solution;

may not converge otherwise

Solution of Nonlinear Equations
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Error Analysis of Secant Method

define (k) = g(k) _ p*

e from the definition of the secant method and with some algebra:

Flz®)ek=D) _ f(zk=1))c(k)
flax®)) — f(ztk=1)

ohH1) (k1) ok

o factoring out e(®e(*~1D and inserting (x(¥) — (kD) /(x(*) — g(k=1))

(k) _ o (k=1) ) f@™) )

e(k—i—l) _ e(k) o(k—1) e(k)e(k—l)
f([]j(k)) — f([]j(k_l)) (k) — p(k—1)

(error equation)
e by Taylor's Theorem
1

(€M) () +O((eM)?)

f@®) = fa+e®) = fla*) 4+ f(a")+
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e use f(x*) = 0 and divide both sides by e(*)

Fa®)/e® = f'(*) + e § (@) + O((e®))

e changing the index to £ — 1

f@W”vé“”=fmﬂ+éé“9ﬂwﬂ+oaw“%%

e subtract the above two equations and neglect the higher order terms

1

F(a®)/e® — a1 fek=1) - (euc) _ 6(&—1)) £(*)

o since z(F) — p(k=1) — ¢(k) _ o(k—1)

f(a®)/e®) — f(zk=1)/ek=1) lf”( “
B _ (1) ~ol W
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e use the above result and

:E(k:) — :E(k:—l) 1

Y

fa®) — flatk=D) 7 f/(z*)

in the error equation, we obtain

2 f'(z*)

1 24 *
p(k+1) /" (@ )e(k)e(k—l) — co(R) o(k=1)

e assume the method has a-order convergence, i.e.,

‘e(k—l—l)‘ N A\e(k) ‘oz

hence, we have
e~ AleE=Do e~ (A7 W) e
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e substitute the above result to get the asymptotic values of e():

A1+1/a|c‘—1 N |6(k)|1—oz—|—1/oz

e the LHS is a nonzero constant while £ — o0, so the exponent of (k)
must be zero

l-a+1/a=0 = a=(1+V5)/2~1.62

e the convergence rate of secant method is super linear
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Convergence of Newton and secant methods

Newton method: if f/(z*) # 0 and z(?) is sufficiently close to z*, then
Newton's method converges and there exists a ¢ > 0 such that

‘x(kz—l—l) . ZIZ*‘ S c ‘w(k:) . $*|2
i.e., quadratic convergence

secant method: if f/(z*) # 0 and z(?) is sufficiently close to x*, then the
secant method converges and there exists a ¢ > 0 such that

‘x(kz—l—l) . ZIZ*‘ < C|£Ij(k) o ZE*‘T

where r = (1 ++/5)/2 ~ 1.6

1.€e., superlinear convergence
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Summary

bisection method

e does not require derivatives
e user must provide initial interval [I, u] with f(I)f(u) < 0

e R-linear convergence

Newton’s method

e requires derivatives
e user must provide starting point near a solution

e quadratic convergence

secant method

e does not require derivatives
e user must provide two starting points near a solution

e superlinear convergence
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Fixed Point Iteration

Idea: consider Newton's method as applied to f(z) = 2° —a

1 a
(k+1) _ = (o (k) o &
=g (”” + :C(k>>

as k — oo, we know that z(F) — Va

write this more abstractly as

1
cF D = g(z®))  for  g(z) = 5(:13 +azx” )

o f(z¥) =0 <= a*=g(z¥)
e 1™ is a fixed point of the function g

e functions g = a/x or g = a + x — x? yield the same fixed point

Solution of Nonlinear Equations
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g(z) =z +0.5(z" — a) flz) =22 —a

20

15

—y=x"-a

2
= x+0.5(x"—a ---y=0
y (x"-a) 15 y

10f Ty

10y

e the root is where the curve crosses the 2 axis

e the fixed point is where the curve crosses the line y = «
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Functional Iteration

a sequence of points computed by a formula of the form

Ln+1 = g(xn)

is called functional iteration

example: iterate these functions with @ = 9 and z(®) =1

glzx—ké(xz—a), go=a/r, gzs=a+x—z° g4s=0.5(x+a/T)

k| (k) +05(x(k)? —a) | a/z(k) | a+x(k) —2(k)* | 0.5(x(k) + a/z(k))
0 1.0000 1.0000 1.0000 1.0000

1 —3.0000 9.0000 9.0000 5.0000

2 —3.0000 1.0000 —6.3000e + 01 3.4000

3 —3.0000 9.0000 —4.0230e 4 03 3.0235

4 —3.0000 1.0000 —1.6189¢ 4 07 3.0001

5 —3.0000 9.0000 —2.6207e 4 14 3.0000
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Graphical interpretation

y = g(x)

(Tk+1, 9(Th11))

Solution of Nonlinear Equations 3-49



suppose a sequence x,, converges with lim,, ., x,, = 2

if g is continuous then

g(z) = (nh_>rr;0 Tp) = nh_)rrgo g(xy) = nhrrgo Tpi1 = 2

we call z a fixed point of the function g

one may ask the following questions:

e existence and uniqueness of a fixed point

e if the iteration converges, how fast does it converge ?
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Contractive Mapping

a mapping (or function) g is said to be contractive on S C dom g if

there exists a scalar A\ < 1 such that

l9(x) — g(y)| < Alz —y|

forall x,y € S

e loosely speaking, a contractive function is a non-expansive map
e every contractive mapping is Lipschitz continuous

e if g is continuously differentiable on [a, b] with

max |g'(z)] < 1
x€la,b]

then g is contractive on |a, D] (by Mean-Value Theorem)
examples: g(x) = e ", cosz on [0, 1]
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Contractive Mapping Theorem

if g: S — S is contractive for all x € S, then

e g has a uniqued fixed point in S

e this fixed point is a limit of every sequence

Tpi1 = g(xy) with zg€ S
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Fixed Point Existence and Convergence
let g € C([a,b]) with a < g(x) < b for all z € [a, D]
1. g has at least one fixed point x € [a, b]

2. if g is contractive on [a, ] then

(a) a* (root of f(z) =0) is unique

(b) the iteration
p(nt1) g(x(n))

converges to x* for any initial guess z(°) € [a, b]
(c) the error estimate obeys

)\k:
1—A

a* — x(k)‘ < ‘x(l) _ $(0>‘

R-linear convergence with ¢ = A and M = |[z(1) — 20| /(1 — ))
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e Proof 1: define h(z) = g(z) — = and use the intermediate value theorem
e Proof 2a-2b: a direct result from contractive mapping theorem

e Proof 2c: since g is contractive
o = 2] = |g(a") - g(a* )| < A — 2]
write this recursively, we obtain
™ — zc(k)\ < AF|ar — :E(O)\
and apply the following result:

2% — 20| = |z* — g(2!V) + 2D — 29| < [g(a*) — g(z!V)] + [V — 2]

< Ma* — O] 4 |21 — 2O

from which it follows that

1
I —A

z* — $(0)| < |$(1) _ $(0)|
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example 1 apply the theorem on g4(z) = 0.5(x + a/x) with a = 9

o 2 < gy(x) <A4forall xe|24]
e gi(x) =1/2—a/2z° and |gi(x)| < 1 on [2,4]
e hence g4(x) is contractive on [2, 4]

e there's a fixed point in [2,4] and the iteration converges

example 2 apply the theorem on g3(xz) = a+x — 2° witha =9

e |g5(z)] < 1on (0,1) (says gs is contractive on [, 3])

e but g3(x) does not satisfy 1/4 < gs(x) < 1/2

e no fixed poin in [1/4,1/2] (in fact the y/a = 3 is not in this interval)
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Local Convergence for Fixed Point lteration
assumptions:

e ” is a fixed point
e g be a continuously differentiable in an open interval of z*

o [g'(x¥)| <1
then for all x sufficiently close to x*, the iteration

Ln+1 = g(xn)

converges,
* —_—
lim ©— Tl g (x*)
n— I — Ty
and
A'I’L
™ — x| 1_)\|x1—x0\

for some \ < 1
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Proof.

e since g is continously differentiable, we can find an closed interval J
centered at x™ such that

J(x)| <A<1, YzelJd

e from the definition of fixed point iteration

" — 1] = |g(a™) — g(x0)] < Az™ — x|

e 1 is closer to x* than xg, and so are all the rest of the iterates
e thus, g(x) € J forallxz € J

e the rest of the proof follows similarly to the result in page 2-53
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Higher order rate of convergence

assumptions:

e g is p times continuously differentiable

e z* is a fixed point, i.e., z* = g(a*)

if

but ¢(P) # 0 then the iteration

Ln+1 = g(xn)

converges with order p for xg sufficiently close to z*
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Proof.

e since ¢'(x*) = 0 < 1, the iteration converges for z( close to x*

e by Taylor's Theorem,

where &,, is between x,, and x*

e since all derivative terms are zero except that in the remainder term,

(T, — )

g($n> — g(iE*) — D! g(p) (fn)
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e so that the iteration them implies

n —x* 1
o) 2o

from which the convergence with order p follows

Newton’s method: equivalent to a fixed point iteration with

note that

P @ = @) )
glz) =1 ( Ok )

with f(z*) = 0 we can see that ¢'(z*) =1-1 =0

Newton's method has (local) order of convergence of at least 2
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Computing Roots of Polynomials

consider the polynomial p
p(2) = apz™ + ap—12""" + -+ a1z + ag
if a,, # 0, p is of degree n

Factor Theorem: a polynomial of degree n can be written as a product of
n linear factors

p(2) = (z =71)(z =72) - (2 = "n)gn

e 1, for k=1,...,n corresponds to a root of p(z)

® ¢, Is a constant

e multiplicity of 7 is the number of factor z — 7 in p(2)
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questions:

e how can we find the roots of p ?

e is there any root at all ?

Theorem 1. Every nonconstant polynomial has at least one root in the

complex field.

(This says nothing about the existence of real roots!)

Theorem 2. A polynomial of degree n has exactly n roots in the
complex plane; each root is counted to its multiplicity.

Is it possible to restrict these roots to a limited area?
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Localization Theorem

Theorem 3. All roots of the polynomial p lie in the open disk whose
center is at the origin of the complex plane and whose radius is

p=1+— max |ay|

e the radius is always greater than 1, 7.e., p > 1

e the radius p is an upper bound of the moduli of all roots

| < p, k=1,...,n
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example: p(z) =

Re(z)

the radius of the disk from the localization theorem is

1
p=14 1 mpx lar] = 1+2/

all the roots of p are: 1414, —1, %1
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we can get a more specific region of all roots of p(z2)

let ¢(2) be a polynomial with the order reverse to p(z)
q(z) = apz" +a1z" '+ +an_12 +ay

in another word, q(z) = z"p(1/z)

therefore, if r is a root of p, then 1/r is a root of ¢
p(r)=0 <= q(1/r)=0

this fact yields the following theorem

Theorem 4. if all the roots of q are in the disk {z | |z| < v}, then all the
nonzero roots of p are outside the disk {z | |z| < 1/~}.
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example: p(z) =2 -2+ 234+ 2242, p=3

q(2) = 22° 4+ 27+ 27

Re(z2)

1
—z+l, oy =14gmax{l,1,-1,1} =1+1/2 = 3/2

all roots of p(z) lie in the ring 2/3 < |z] <3
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Evaluating a Polynomial

to evaluate a polynomial
p(z) =ao+aiz + -+ anz"

it requires n multiplications, n additions, and forming 2?2, 23, ...

a more effficient way to do is to write p(z) as
p(z) =ap+ z(a1 + z(ag + -+ z(an_1 + anz) -+ ))

e this is called nested multiplication
e requires only n multiplication and n additions

e an algorithm form of nested multiplication is known as Horner’s rule
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Horner’s Rule

p(z) =ap+ z(a1 + z(ag + -+ z(an_1 + anz) -+ ))

given a point z, and polynomial coefficients a;, 7 = 0,...,n
set p = a,
for Kk = n — 1 downto O
p = ar + pz
endfor
return p
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Horner’s Rule for Evaluating a Derivative

Horner's rule can be modified to compute p’(z) as well
p/(Z) = aj + 2&22 + 361,3Z3 4+ ...+ nanzn—l

which can be written in a nested multiplication as

p/(z) = a1 + 2(2&2 + 2(3&3 + -+ z((n — 1)@77,—1 + n@nz) e

given a point z and polynomial coefficients a;, 5 = 0,...,n
set d = na,
for k = n — 1 downto 1

d = kap + dz

endfor
return d
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More Efficient Horner’s Algorithm

Idea: store intermediate values for computing derivatives

to evaluate p(z) at zg, consider the polynomial

P\z) — P20
2y P =)
Z — 20
where
p(2) = ap2™ 4+ ap_12""" + -+ a1z + ag
let

q(2) = bp_12" " F b2 4 £ bz + by

comparing coefficients yields

p(z) = (2 —20)q(2) + p(20)
= ?(ZO): Z()bg + £b0 —Vzobllz + ...+ &bn_g _VZObn—lzzn_l + bn_lz”
ao al an—1 an
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the two sets of coefficients are related by

bn—1 = ayn

bp—2 = ap—1+ 20bn_1
b() = a1+ Zobl

p(z0) = aop+ 2obo

nested computation: p(zg) = ag+ 20(a1 + zo(azs + -+ - (Gn_1+ 20an) - -+ ))

given a point z, and polynomial coefficients a;, 7 = 0,...,n
set b,,_1 = a,
for k =n — 1 downto O

br—1 = ar + zbg

endfor
return b; fori = —1,0,...,n — 1 (where b_1 = ag + zbg = p(2))
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Horner’s Algorithm in a Table

to calculate by hand, we can form the coefficients in a table as

(075 Ap—1 Qp—2 e ao
<0 20bn—1 20bn—2 T 2obo
bn—l bn—2 bn—3 T b—l

example: evaluate p(3) where

p(z) =2 —42° + 72 — 52 — 2

1 —4 7 —5 —2
3 3 -3 12 21
1 —1 7 19

hence, p(3) is equal to 19
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Deflation

a process of removing a linear factor from p(z) is called deflation

o if zy is a root of p(z) then p(z) = (2 — z9)q(2)

e removing factor z — 2y gives g(z) which can be determined by b,'s

example: deflate p(z) in page 2-72 given that 2 is a root of p(z)

1 —4 7 —9 —2
2 2 —4 6 2
1 —2 1 0
thus, we have
p(z) = 2 =422+ 722 -52-2=(2—-2)(2>—22°+32z+1)
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Evaluating the Derivatives

suppose that p(z) can be written in the form
p(2) =cn(z — 20)" + Cnoi(z — 20)" 1 4+ + ¢
and hence ¢(z) is of the form,

p(2) — p(20)

q(z) = =cn(z—20)" T iz —20)" 4+

e Taylor's Theorem says that c;, = p'*)(2g)/k!
e ¢o = p(z9) and obtained by applying Horner's algorithm to p at z
e 1 = p'(z9) and obtained by applying Horner's algorithm to ¢ at z

e repeat Horner's algorithm until we can get all coefficients c¢;'s
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example: expand the Taylor series around the point 3 of the polynomial

p(z) =2* —42° 4+ 72 — 52 — 2

1 —4 7 —9 —2
3 3 -3 12 21

1 —1 4 7 19
3 3 6 30

1 2 10 37
3 3 15

1 D 25
3 3

1 3

hence, the Taylor series is

p(z) = (z—3)" +8(z—3)°+25(2x —3)* +37(z — 3) + 19
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Complete Horner’s Algorithm

the algorithm in page 2-74 can be implemented in pseudocode as follows

given a point z, and polynomial coefficients a;, 2 = 0, ..., n
for k =0Qupton —1
for ) = n — 1 downto k
aj = aj + z2a;41
endfor
endfor
return a; for 0 < < n

where the coefficients ¢ overwrite the input coefficients aj

Last note: Horner's algorithm can be used to compute f(x) and f/(x) in
Newton’'s method when applied to polynomial functions
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Bairstow’s Method

Theorem 5. [If all coefficients of p(z) are real, and if w is a nonreal root

of p(z), then so is w. In addition, (z — w)(z — w) is a real quadratic factor
of p(2).

basically, a complex root of a real polynomial must occur in complex
conjugate pair

Idea:

e Newton's method requires complex arithmetic to find a complex root
e using Bairstow's method, we can employs only real arithmetic

e the method uses Newton's iteration to search for quadratic factors
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Quotient and Remainder

if a real polynomial p(2) = a,2" + ap_12"" 1+ - +ag
is divided by the quadratic polynomial

d(z) = 2° —uz — v

then the quotient and remainder

Q(Z) — bnzn_Q + bn—lzn_3 + -+ b3z + by
r(z) = bi(z—u)+ by

such that p(z) = q(2)d(z) + r(2) can be computed recursively by setting
bn—l—l — bn—i—2 =0

and using
b, = ag + ubg11 + Vb2 n>k>0
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Bairstow's method uses Newton's iteration to find w, v such that

e d (the quadratic polynomial) will then become a factor of p

e once u, v are found, the roots of d are readily obtained

e the Newton's iteration for solving bo(u,v) = 0 and by(u,v) =0 is

Oby (ug, v) by (ug, vk)

] [ad
Vk41 Vg, Obo(ug, vg)  Obo(ug, vi)

ou ov

e the partial derivatives and by (ug, vk ), bo(uk, vr) are computed from the

recurrence equation in page 2-78
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Laguerre lteration

p(z): a real polynomial

given initial z, required tolerance € > 0

repeat
_ 1)
1. Compute A = ZON
2. Compute B = A? — pp((zz)).
3. Compute C = (A + /(n —1)(nB — A?))/n.
(the sign is chosen so that |C'| is largest)
4. if |1/C| < ¢, return z.
5. z ==z —1/C.

until maximum number of iterations is exceeded.

e cach iteration requires one evaluation of p,p’ and p”

e evaluating p,p’ and p”’ at z can be done by Horner's algorithm
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interpretation: define

e r;, i =1,2,...,n the n real roots of p(z)

e 1/v; the distance from a point z (on real axis) to the ith root

v; = (2 — 1) "

by writing p(z) as a product of linear factors

p(z) = (2 =r)(z =712) -~ (2 = 14)

and consider
Inp(z)|=In|lz—ri|+---+Inlz —r,

we can verify that

A = gkl = 55 = Yiaes = X
2 /Z /lz n n
B = —Hhpe)l = (5F) 55 = Thigsy = o
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Fact: for any real z # r; for all j, the numbers (z — ;)™ lies in the
interval whose endpoints are

(A++/(n—1)(nB — A2))/n

hence, C~1 is an estimate of the distance from z to the nearest root

Proof. in fact, for any real numbers v; with

S
S

we can consider
A? —2Av 407 = (A —v1)? = (va + v+ -+ 1y,)?
by Cauchy Schwarz inequality

A* =24 +vi < (n—1)(v3 +vi 4+ - +0v2) = (n—1)(B —vi)
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rewrite the inequality as a quadratic polynomial in vy
nv; — 2Av, + A* — (n —1)B <0

define
q(x) = nz® — 2Ax + A* — (n — 1)B

so we have ¢(v1) <0

for large |x|, evidently ¢(x) > 0, so v; must lie between two roots of ¢:

(A++/(n—1)(nB — A?))/n

which are the endpoints given in 2-82

e nB — A% > 0 (by Cauchy Schwarz inequality), so the endpoints are real

e the result also holds for v;, 1 =2,...,n

o use v; = (2 — r;) ! and we finish the proof
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example: p(z) = z* — 823 — 2522 + 442 + 60

p(z) has all simple roots r = —1,2,—3 and 10

remarks:

z

=z

=z

=z

_w N~k O

—20.000000
—4.369910
—3.041839
—3.000003
—3.000000

Solution of Nonlinear Equations

100.000000
10.416379
10.000039
10.000000
10.000000

used in several softwares packages

4.000000
2.272328
2.001053
2.000000
2.000000

third-order convergence near simple roots

—2.000000
—1.242866
—1.002888
—1.000000
—1.000000

for polynomials with all real roots, converges from any starting point

if p has multiple roots, the convergence rate is linear
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example: p(z) = 2% — 422 + 62 — 4

p(z) has complex roots r =2 and 1 £+

k z z z

0 1000000.000000 100.000000 — 2000.0000007 5.000000

1 1.333334 + 0.943020¢ 1.332561 — 0.942549: 1.285968 4 0.2562162

2 1.003279 + 1.000001¢2 1.003260 — 0.999979: 1.833103 — 0.2980872

3 1.000000 + 1.0000007 1.000000 — 1.0000002 1.989546 — 0.0061912

4 1.000000 + 1.000000% 1.000000 — 1.0000002 2.000000 + 0.000000¢%
remarks:

e when a starting point is complex or p has complex zeros, the iteration is

performed in complex arithmetic

e A B and C are now complex numbers

e fast convergence though a starting point is quite far from the root
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Homotopy and Continuation Methods

e let f: X — Y be a function and we find the roots of an equation
flz) =0
e for a function g, we define a homotopy h : [0,1] X X — Y as

h(t,z) = tf(z) + (1 = t)g(x),

where t runs over the interval [0, 1]

if t =0, then h(0,z) = g(z) = 0 — easy problem

If t =1, then h(1,2) = f(z) = 0 — original problem

h((),:l?) — g(aj) h(l,:l?) — f(:lf)

t=20 t=1
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if h(t,x) = 0 has a unique root for each t € [0, 1]

then the root is a function of ¢, denoted by
{z(t):0<t <1}

example: let g(x) = f(x) — f(xo)

h(t,z) =tf(xz)+ (1 —1t)[f(z) — f(zo0)],
= f(z) + (t — 1) f(z0)

x(0) will be the solution of the problem when ¢ = 0 (simple problem)

x(1) is the solution to the original problem (f(x) = 0)
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continuation method: determine the curve z(¢) by computing points

CE(tO), CI?(tl), .. ,,CU(tm)

on the curve
if the function ¢t — x(¢) and the function h are differentiable

differentiating O = h(t, z(t)) respect to t gives
0 = hu(t, (t)) + halt, 2(t))2'(t)
the differential equation describing the path:
/() = = [ha(t, 2(0)] " ha(t, (1)), 2(0) = g

(where z(0) is supposedly known)
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example: find the roots of system equation

2 g2

define a homotopy

h(t,z) = f(z) + (t —1)f(z0o)

select g = (1, 1)

pn | Of1/06 Of1/0&% | | 261 —6&
hx_f(x)_[afz/afl 8f2/8§2]_[ 2 & ]

st =[ 5 | =7

the inverse of f'(x) is

—1 _ g/ —1 1 &1 682
b = 1) Rl
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the differential equation describing the solution path is

[ 52/[ ] — _h—lh — 1 [ 51 4252 ]
& P 24688 | 6 l&G

use the Euler method, i.e.,
r(t+96) =x(t) + 2'(t), ¢ =0.01

to solve the differential equation numerically

obtain z(1) = (—3.019,1.997)

use this as a starting point in
Newton’'s method

Root Position

(notice that f has a root (—3,2))

0 0.2 0.4 0.6 0.8 1
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Continuously Differentiable Solution

Theorem 6. /f f : R™ — R" is continuously differentiable and if
I1F/(z)] " || < M onR™, then for any zo € R™ there is a unique curve

(x(t):0<t <1},

in R™ such that
f(x(t)) + (t = 1)f(z0) =0,

with) <t <1

the function t — x(t) is a continuously differentiable solution of the

initial-value problem
—1

v = = [f/(2)] " (o)

where 2(0) = xg
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Solution of Homogeneous Equation

Lemma 7. Let A be an n x (n+ 1) matrix. A solution of the
homogeneous equation Ax = 0 is given by

2y = (~1)7+" det(4)).

where A; is A without column j.

Proof. augment the ith row of A with A; call this matrix as B

e B3 is obviously singular since it contains two equal rows

e expand the determinant of B by the elements in its top row:

n—+1 n—+1
0=det B = Z(—l)jﬂazj det(Aj) = Z Qg5 4
7=1 g=1
e this is true fori =1,2,...,n, we have Ax = 0. ]
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Tracing the Path

another way of tracing the path z(¢) given by Garcia and Zangwill (1981)

suppose that x € R™ and t € [0, 1]

a vector y € R("*t1) s defined by

Yy = (t7€17€27°°'7§n)7

where &1,&s,...,&, are the components of x

hence, our equation is
h(t,z) =0 = h(y)=0 = h(y(s)) =0

where we allow y to be a function of an independent variable s

differentiate respect to s, we have

W (y(s))y'(s) =0
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the vector y(s) has n + 1 components, with denote by 71,72, ..., 711

from the lemma, we get
;= (1) det(4;) (1<j<n+1),

where A = h/(y(s)) and A, is A without column j

example: find the roots of system equation

2 g2

consider the homotopy h(t,x) = f(z) + (t — 1) f(xo) with g = (1,1)

| g-35+2+1
h(t,w)—[ 1§1§2—21+7t ]

Solution of Nonlinear Equations 3-94



differentiate with respect to s

t/
e =| 3 g e . - |
| 52

solve the linear equation to obtain the differential equations

th = 25% + 6537 t(O) = 0,
gi — _61 — 42527 51(0) — 17
§ = & —146, &(0) = 1

use the Euler method to solve the diff. equation (§s = 0.001), we obtain

(s,t,£1,&) = (0.089,0.999, —3.024, 2.004),
(s,t,£1,&) = (0.090,1.042, —3.105, 2.048).
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2.5

Finish

2t ]

1.5+ -
WN
Start

1t ]
0.5} ]

0 -3 -2 -1 0 1

points near t = 1 can be used to start a Newton iteration
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Relation to Newton’s Method

consider the homotopy

ht,x) = f(x) — e " f(xo),
where t runs from 0 to oo

we seek a curve or path, z = z(t), on which

0= h(t,z(t)) = f(z(t)) — e f(zo)-
differentiating A w.r.p to t leads to a diff. eq. describing the path:
0 = fi(z(t)2'(t) +e " flzo) = f'(x(t)a'(t) + f(x(t))
P(t) = —[f @) fla)

integrating with Euler’s method with step size 1 results in Newton’s
method:

Ln+1 = Ln — [f/(xn)]_l f(zn)
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Conclusions

e homotopy can be any continuous connection between two functions

e we solve the problem f(x) = 0 by solving the series of the problems

h(to,z) =0, h(ty,2) =0, ..., h(tm,x) =0

e homotopy method requires the numerical solution systems of differential
equation.

e Newton's method is a subproblem of homotopy method
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