- limit, continuity, and derivative
- sets of continuous functions
- Taylor's Theorem
- orders of Convergence
- $\bullet\,$ big ${ \mathcal{O} }$ and little o
- vector and matrix norms

Limit, Continuity, Derivative

Limit of function f at c is defined as

$$
\lim_{x \to c} f(x) = L
$$

Definition: for any positive ϵ , there exists positive δ such that

$$
|f(x) - L| < \epsilon \text{ whenever } |x - c| < \delta.
$$

if there is no L with this property, the limit of f at c does not exist.

 $\textbf{Continuity}$ of function f at c is defined as

$$
\lim_{x \to c} f(x) = f(c)
$$

Derivative of function f at c is defined as

$$
f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}.
$$

if $f^{\prime}(c)$ exists, f is differentiable at $c.$

Fact: if f is differentiable at c , then f is continuous at c .

Continuous functions

 $\bm{\mathsf{C}}(\bm{\mathsf{R}}) =$ the set of all functions that are continuous on $\bm{\mathsf{R}}.$

 $\textsf{\textbf{C}}^1(\textsf{\textbf{R}}) =$ the set of all functions for which f' is continuous on $\textsf{\textbf{R}}.$

 ${\bf C}^n({\bf R})=$ the set of all functions for which $f^{(n)}$ is continuous on ${\bf R}.$

 $\textsf{\textbf{C}}^{\infty}(\textsf{\textbf{R}}) =$ the set of all functions each of whose derivatives is continuous on ^R.

Fact:

$$
C^{\infty}(R) \subset \cdots \subset C^2(R) \subset C^1(R) \subset C(R).
$$

 $\textbf{C}^n([a,~b]) =$ the set of all functions of which $f^{(n)}$ is continuous on $[a,~b].$

Derivative and Gradient

Suppose $f : \mathbf{R}^n \to \mathbf{R}^m$ and $x \in \mathbf{int\, \mathbf{dom} \,} f$

the **derivative** (or **Jacobian**) of f at x is the matrix $Df(x) \in \mathbb{R}^{m \times n}$:

$$
Df(x)_{ij} = \frac{\partial f_i(x)}{\partial x_j}, \quad i = 1, \dots, m, \quad j = 1, \dots, n
$$

- when f is real-valued $(i.e., f : \mathbf{R}^n \to \mathbf{R})$, the derivative $Df(x)$ is a row
vector vector
- $\bullet\,$ its transpose is called the $\boldsymbol{\mathsf{gradient}}$ of the function:

$$
\nabla f(x) = Df(x)^T
$$
, $\nabla f(x)_i = \frac{\partial f(x)}{\partial x_i}$, $i = 1, ..., n$

which is a column vector in \mathbf{R}^n

Second Derivative

suppose f is a real-valued function $(i.e.,\ f:\mathbf{R}^{n}\rightarrow\mathbf{R})$

the second derivative or ${\bf Hessian}$ ${\bf matrix}$ of f at $x,$ denoted $\nabla^2 f(x)$ is

$$
\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \quad i = 1, \dots, n, \quad j = 1, \dots, n
$$

example: the quadratic function $f : \mathbf{R}^n \to \mathbf{R}$

$$
f(x) = (1/2)x^T P x + q^T x + r,
$$

where $P \in \mathbf{S}^n, q \in \mathbf{R}^n$, and $r \in \mathbf{R}$

$$
\bullet \ \nabla f(x) = Px + q
$$

$$
\bullet \ \nabla^2 f(x) = P
$$

Taylor's Theorem

if $f \in \mathbf{C}^n[a, b]$ and $f^{(n+1)}$ exists on (a, b) then for any x and c in $[a, b]$

$$
f(x) = \sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(c)(x - c)^{k} + E_{n}(x)
$$

where E_n is Lagrange remainder, ξ is between x and $c,$

$$
E_n(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi)(x-c)^{n+1}.
$$

- $\bullet\,$ the first term is polynomial in x
- $\bullet \ \ E_n$ is not a polynomial in x since ξ depends on x in a nonpolynomial way

Mean-Value Theorem

special case $n=0$ of Taylor's Theorem

$$
f(x) = f(c) + f'(\xi)(x - c)
$$

where ξ is between c and $x.$

for example: $x = b$ and $c = a$

$$
f(b) - f(a) = f'(\xi)(b - a), \quad a < \xi < b.
$$

Rolle's Theorem: special case of Mean-value Theoremif $f(a) = 0, f(b) = 0$, then $f'(\xi) = 0$ for some $\xi \in (a, b)$.

Intermediate Value Theorem

let $f\in\mathbf{C}([a, b])$ and assume p is a value between $f(a)$ and $f(b)$, that is

$$
f(a) \le p \le f(b), \quad \text{or} \quad f(b) \le p \le f(a)
$$

then there exists a point $c \in [a,b]$ for which $f(c) = p$

- \bullet if $f(a)$ and $f(b)$ have different signs, f must cross zero once in $[a,b]$
- useful for finding the roots of functions; see bisection algorithm

Extreme Value Theorem

let $f\in\mathbf{C}([a, b])$; then there exists a point $c\in[a, b]$ such that

$$
f(c) \le f(x) \qquad \forall x \in [a, b]
$$

and a point $d \in [a,b]$ such that

$$
f(d) \ge f(x) \qquad \forall x \in [a, b]
$$

basically means

- $\bullet\,$ one can maximize (minimize) a *continuous* function f over a closed and bounded interval
- $\bullet\,$ the maximum and minimum values of f are attained (and finite)
- the point for which the extremum occurs is attained

Contractive Mapping

a mapping (or function) f is said to be *contractive* on $S \subseteq \textbf{dom}\, f$ if there exists a scalar $\lambda < 1$ such that

$$
|f(x) - f(y)| \le \lambda |x - y|
$$

for all $x, y \in S$

- loosely speaking, ^a contractive function is ^a non-expansive map
- every contractive mapping is Lipschitz continuous
- $\bullet\,$ if f is continuously differentiable on $[a,b]$ with

$$
\max_{x \in [a,b]} |f'(x)| < 1
$$

then f is contractive on $[a, b]$ (by Mean-Value Theorem)

examples: $f(x) = ||x||, e^{-x}, \cos x$ on $[0, 1]$

Contractive Mapping Theorem

if $f : S \to S$ is contractive for all $x \in S$, then

- \bullet f has a *uniqued* fixed point in S
- this fixed point is ^a limit of every sequence

$$
x_{n+1} = f(x_n) \quad \text{with} \quad x_0 \in S
$$

Monotonic sequence

^a sequence

$$
a_1, a_2, \ldots, a_n
$$

of real numbers, denoted by $\{a_n\}$

is called m<mark>onotone increasing</mark> if

$$
a_{n+1} \ge a_n, \quad \forall n \in \mathbb{N}
$$

and is called **monotone decreasing** if

$$
a_{n+1} \le a_n, \quad \forall n \in \mathbb{N}
$$

 $\{a_n\}$ is called *monotonic* or *monotone* if $\{a_n\}$ is monotone increasing or monotone decreasing

Convergent sequence

we say a sequence $\{a_n\}$ of real numbers has a limit a^* , denoted by

$$
a_n \to a^\star, \qquad n \to \infty
$$

or by

$$
\lim_{n \to} a_n = a^*
$$

if for all $\epsilon > 0$ there exists an integer N such that

$$
|a_n - a^*| < \epsilon, \qquad \forall n > N
$$

 ${\sf sandwich\,\, theorem}\colon \mathsf{let}\,\,\{x_n\}, \{y_n\}$, and $\,\{z_n\}\,$ be sequences in $\bf R\,\,$ s.t.

 $x_n \leq y_n \leq z_n$

if $x_n \to a$ and $z_n \to a$, then $y_n \to a$

Bounded sequence

 \bullet a sequence $\{a_n\}$ is *bounded above* if there exists $M \in \mathbf{R}$ such that

 $a_n \leq M$ $\forall n \in \mathbb{N}$

 \bullet a sequence $\{a_n\}$ is *bounded below* if there exists $m\in\mathbf{R}$ such that

 $a_n \geq m$ $\forall n \in \mathbb{N}$

 \bullet $\{a_n\}$ is a *bounded sequence* if it is bounded below and bounded above:

 $\exists M > 0, \qquad |a_n| \leq M \qquad \forall n \in \mathbb{N}$

Monotone Convergence Theorem:

^a monotone sequence of real numbers has ^a finite limit if and only if the sequence is bounded

Order of Convergence for sequences

let $\{x_n\}$ be a sequence of real numbers converging to x^* , such that

$$
\lim_{n \to \infty} \frac{|x_{n+1} - x^*|}{|x_n - x^*|^p} = C
$$

for some nonzero C and some p

then p is called the $\textbf{order of }$ convergence for the sequence $\{x_n\}$

linear convergence: $p=1$ and requires that $\vert C \vert < 1$

example:

$$
x_n = \left(1 + \frac{1}{n}\right)^n; \quad \lim_{n \to \infty} x_n = e
$$

we can show that

$$
\frac{|x_{n+1} - e|}{|x_n - e|} \to 1
$$

quadratic convergence: $p=2$

example 1:

$$
x_1 = 2; x_{n+1} = \frac{1}{2}x_n + \frac{1}{x_n}, n \ge 1
$$

example 2: the Newton's method to find a root of a function $f(x)$

$$
x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}
$$

if the convergence occurs in the Newton's method, one can show that

$$
\lim_{n \to \infty} \frac{|x_{n+1} - x^*|}{|x_n - x^*|^2} = \frac{f''(x^*)}{2f'(x^*)}
$$

superlinear convergence: faster than linear but not as fast as quadratic

 $i.e.,$ when the sequence satisfies

$$
\lim_{n \to \infty} \frac{|x_{n+1} - x^*|}{|x_n - x^*|} = 0
$$

but

$$
\lim_{n \to \infty} \frac{|x_{n+1} - x^*|}{|x_n - x^*|^2} = \infty
$$

example:

$$
x_{n+1} = x_n - (x_n^2 - 2) \frac{(x_n - x_{n-1})}{(x_n^2 - x_{n-1}^2)}
$$

 $x_n \to \sqrt{2}$ as $n \to \infty$ and we can show that

$$
\frac{|x_{n+1} - \sqrt{2}|}{|x_n - \sqrt{2}|^{1.62}} \to 0.77
$$

$\mathsf{Big}\ \mathcal O$ notation

for a given function $g(x)$ and a point c , define $\mathcal{O}(g(x))$ as

 $\mathcal{O}(g(x)) = \{f(x) | \exists \delta, C > 0, |f(x)| \le C |g(x)|, \text{ for } |x - c| < \delta\}$

- $\bullet \ \mathcal{O}(g(x))$ is pronounced as 'big-oh of g'
- set of all functions that is bounded by $g(x)$ when $x \to c$
- $\bullet\,$ set of all functions with a *smaller* or the *same* rate of growth as g
- $\bullet\,$ the constant C is nonzero and independent of x

with an abuse of notation, the expression

$$
f(x) = \mathcal{O}(g(x)), \quad x \to c
$$

means that function f belongs to the set $\mathcal{O}(g(x))$

 $(=$ does not really mean 'equal' or 'symmetry')

examples

$$
x^{2} = \mathcal{O}(x), \quad x \to 0; \qquad x = \mathcal{O}(x^{2}), \quad x \to \infty
$$

$$
e^{-x} = \mathcal{O}(1), \quad x \to \infty; \quad 2x + x \sin(x) = \mathcal{O}(x), \quad x \to \infty
$$

the formula

$$
f(x) = h(x) + \mathcal{O}(g(x))
$$

means

$$
f(x) = h(x) + w(x) \qquad \text{where} \quad w(x) \in \mathcal{O}(g(x))
$$

examples:

$$
2x^2 + 3x + 4 = 2x^2 + \mathcal{O}(x), \quad x \to \infty; \qquad e^x = 1 + x + \mathcal{O}(x^2), \quad x \to 0
$$

if g and h are two functions such that $g(x) = \mathcal{O}(h(x))$

if $f(x) = \mathcal{O}(g(x))$, then obviously $f(x) = \mathcal{O}(h(x))$

the upper bound provided by \mathcal{O} -notation may or may not be tight

as
$$
x \to \infty
$$
, $4x^3 = \mathcal{O}(x^3)$ (tight) $4x = \mathcal{O}(x^3)$ (not tight)

in many computations, it is of interest to consider

computation time VS problem size

denote $t(n)$ a computation time as a function of problem size n one would like to estimate the computational efficiency for large $\it n$ **example:** running time for an algorithm is $t(n) = 2n^2 + 6n + 1$

•
$$
t(n) = \mathcal{O}(n^2)
$$

- $\bullet\,$ we say the algorithm has the order of n^2 time complexity
- $\bullet\,$ note that $t(n) = \mathcal{O}(n^3)$ worst-case running time to be as smallest as possible (3) is also correct but we would want to express the

some common running time complexities

$$
\mathcal{O}(1), \quad \mathcal{O}(\log(n)), \quad \mathcal{O}(n), \quad \mathcal{O}(n^2), \quad \mathcal{O}(2^n)
$$

as n grows, which one refers to the fastest algorithm ?

Computational time versus $\it n$

 $1.0715e + 301 = 1071508607186267320948425049060001810561404811705533$ 6074437503883703510511249361224931983788156958581275946729175531468251871452856923140435984577574698574803934567774824230985421074605062371141877954182153046474983581941267398767559165543946077062914571196477686542167660429831652624386837205668069376

how many digits does it have ?

Little o notation

for a given function $g(x)$ and a point c , define $o(g(x))$ as

 $o(g(x)) = \{f(x) | \exists \delta > 0, \forall C > 0, |f(x)| \le C|g(x)| \text{ for } |x-c| < \delta\}$

equivalent condition: a function f is in $o(g(x)))$ if

$$
\lim_{x \to c} \frac{|f(x)|}{|g(x)|} = 0
$$

- $\bullet\hspace{1mm} o(g(x))$ is pronounced as 'little-oh of g^{\prime}
- $\bullet\,$ set of all functions with a *smaller* rate of growth than g
- \bullet f becomes insignificant relative to g as $x \to c$

the expression $f(x) = o(g(x)), \quad x \to c$

means f belongs to the set $o(g(x))$

examples:

$$
\cos(x) - 1 = o(x), \quad x \to 0, \qquad \frac{1}{n \log(n)} = o\left(\frac{1}{n}\right), \quad n \to \infty
$$

- $\bullet \hspace{1mm} o(g(x))$ excludes all functions that have the *same* rate of growth as g
- $e.g., 3n = o(n^2)$ but $3n^2 \neq o(n^2)$ as $n \to \infty$

Big ${ \mathcal{O} }$ and Little o

- when $f(x) = \mathcal{O}(g(x))$, the bound $|f(x)| \leq C|g(x)|$ holds for some constant $C>0$
- when $f(x) = o(g(x))$, the bound $|f(x)| \le C|g(x)|$ holds for all constant $C>0$
- hence, if $f(x) \in o(g(x))$ then $f(x) \in \mathcal{O}(g(x))$

Vector norms

a vector norm on \textbf{R}^n is a mapping $\|\cdot\|: \textbf{R}^n \rightarrow [0,\infty)$ that satisfies

- 1. $\|\alpha x\| = |\alpha| \|x\|$ for any $\alpha \in \mathbf{R}$ (homogeneity) 2. $\|x +$ (triangle inequality)
- 3. $\|x\| = 0$ if and only if x

(definiteness)

2-norm

$$
||x||_2 = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} = \sqrt{x^T x}
$$

1-norm

$$
||x||_1 = |x_1| + |x_2| + \cdots + |x_n|
$$

∞-norm

$$
||x||_{\infty} = \max_{k} \{ |x_1|, |x_2|, \dots, |x_n| \}
$$

Matrix norms

matrix norm of $A \in \mathbf{R}^{m \times n}$ is defined as

$$
||A|| = \max_{||x|| \neq 0} \frac{||Ax||}{||x||} = \max_{||x||=1} ||Ax||
$$

also often called **operator norm** or **induced norm** properties:

- 1. for any x, $||Ax|| \le ||A|| ||x||$
- 2. $\|aA\| =$ $=|a|\|A\|$ (scaling)
- 3. $||A + B|| \le ||A|| + ||B||$ (triangle inequality)
- 4. $||A|| = 0$ if and only if A
- 5. $||AB|| \le ||A|| ||B||$ (submultiplicative)

(positiveness)

2-norm or spectral norm

$$
||A||_2 \triangleq \max_{||x||_2=1} ||Ax||_2 = \sqrt{\lambda_{\max}(A^T A)}
$$

1-norm

$$
||A||_1 \triangleq \max_{||x||_1=1} ||Ax||_1 = \max_{j=1,\dots,n} \sum_{i=1}^m |a_{ij}|
$$

∞-norm

$$
||A||_{\infty} \triangleq \max_{||x||_{\infty}=1} ||Ax||_{\infty} = \max_{i=1,...,m} \sum_{j=1}^{n} |a_{ij}|
$$

other definitions of matrix norm also exist

Frobenius norm:

$$
||A||_F = \sqrt{\text{tr}(A^T A)} = \left(\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2\right)^{1/2}
$$

References

Chapter ¹ in

D. Kincaid and W. Cheney, Numerical Analysis: Mathematics of Scientific Computing, 3rd edition, Brooks & Cole, ²⁰⁰²

Section 1.1 in

J. F. Epperson, An Introduction to Numerical Methods and Analysis, JohnWiley & Sons, ²⁰⁰⁷

Chapter ¹ in

N. G. De Bruijn, Asymptotic Methods in Analysis, Dover, ¹⁹⁵⁸

Chapter ³ in

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 2nd edition, MIT Press, ²⁰⁰¹