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Limit, Continuity, Derivative

Limit of function f at c is defined as

lim f(x) =L

Tr—C

Definition: for any positive €, there exists positive d such that

|f(z) — L| < e whenever |z — ¢| < 6.

if there is no L with this property, the limit of f at ¢ does not exist.

Continuity of function f at c is defined as

lim f(z) = f(c)

Tr—rcC
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Derivative of function f at c is defined as

f/(C) — lim f(ZC) B f(C)

Tr—C Tr — C

if f'(c) exists, f is differentiable at c.

Fact: if f is differentiable at ¢, then f is continuous at c.
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Continuous functions
C(R) = the set of all functions that are continuous on R.
C'(R) = the set of all functions for which f’ is continuous on R.
C"(R) = the set of all functions for which f(") is continuous on R.

C”(R) = the set of all functions each of whose derivatives is continuous
on R.

Fact:
C*(R) Cc --- c C*R) c C'(R) c C(R).

C"([a, b]) = the set of all functions of which (™) is continuous on [a, b).
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Derivative and Gradient

Suppose f : R — R" and z € int dom f

the derivative (or Jacobian) of f at x is the matrix D f(xz) € R™*™:

df;
Df(x)i; = ({;agf)’

1=1,....m, j7=1,....n

e when f is real-valued (i.e., f: R™ — R), the derivative Df(x) is a row
vector

e its transpose is called the gradient of the function:

Vi) =Df@)",  Vi(z); =

1=1,...,n
which is a column vector in R"
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Second Derivative

suppose f is a real-valued function (i.e., f : R" — R)

the second derivative or Hessian matrix of f at x, denoted V?f(x) is

_ Pf()
B 8:62-8:63"

r=1,....n, 7=1,...,n

V2 f ()i
example: the quadratic function f : R" — R
f(z) = (1/2)a" Px +q"z +,
where P € S, g € R", and r € R

e Vf(x) =Px+q
o Vif(z)=P
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Taylor’'s Theorem

if f € C"[a, b] and f("*t1) exists on (a, b) then for any x and c in [a, b]

Fa) =3 2 f PO — o + Bl
k=0

where E,, is Lagrange remainder, £ is between z and c,

1
(n+1)!

En(r) = FFE) (@ — ot

e the first term is polynomial in x

e I, is not a polynomial in & since £ depends on x in a nonpolynomial
way
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Mean-Value Theorem

special case n = 0 of Taylor's Theorem

f(@) = fle)+ f'(§)(z —c)

where £ is between c and .

for example: xt =band c=a

f) = fla) = f(§)(b—a), a<{<b.

Rolle’s Theorem: special case of Mean-value Theorem

if f(a)=0, f(b) =0, then f/(£) =0 for some & € (a, b).

Mathematics Preliminary

1-8



Intermediate Value Theorem

let f € C([a,b]) and assume p is a value between f(a) and f(b), that is

fla) <p < f(b), or [f(b)<p<[f(a)

then there exists a point ¢ € [a, b] for which f(c) =p

e if f(a) and f(b) have different signs, f must cross zero once in [a, b]

e useful for finding the roots of functions; see bisection algorithm
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Extreme Value Theorem

let f € C([a,b]); then there exists a point ¢ € |a, b] such that
fle) < flx)  Vaela,b
and a point d € [a, D] such that

fld) = f(z)  Vzela,b]

basically means

e one can maximize (minimize) a continuous function f over a closed and
bounded interval

e the maximum and minimum values of f are attained (and finite)

e the point for which the extremum occurs is attained
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Contractive Mapping

a mapping (or function) f is said to be contractive on S C dom f if

there exists a scalar A\ < 1 such that

|f(x) = f(y)l < Alx —y]

forall z,y € §

e loosely speaking, a contractive function is a non-expansive map
e every contractive mapping is Lipschitz continuous

e if f is continuously differentiable on [a, b] with

max |f'(z)] <1

x€la,b]
then f is contractive on [a, b] (by Mean-Value Theorem)
examples: f(z) = ||x||,e™*,cosx on [0, 1]
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Contractive Mapping Theorem

if f:5 — S is contractive for all x € §, then

e f has a uniqued fixed point in S

e this fixed point is a limit of every sequence

Tpi1 = f(x,) with zg€ S
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Monotonic sequence

a sequence
a1, A2, ...,0n

of real numbers, denoted by {a,,}

is called monotone increasing if
and is called monotone decreasing if

ani1 < ap, VneN

{ay} is called monotonic or monotone if {a,} is monotone increasing or

monotone decreasing
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Convergent sequence

we say a sequence {a,} of real numbers has a limit a*, denoted by

ay — a”, n — oo
or by
lim a, = a”
n—

if for all € > 0 there exists an integer N such that
la,, —a™| <, Vn > N
sandwich theorem: let {z,},{y.}, and {z,} be sequences in R s.t.
Tn < UYn < 2Zn

if x,, - a and z,, — a, then y,, — a
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Bounded sequence

e a sequence {a,} is bounded above if there exists M € R such that

an, < M Vn e N

e a sequence {a,} is bounded below if there exists m € R such that

Ay > M Vn € N

e {a,} is a bounded sequence if it is bounded below and bounded above:

M > 0, a,| < M Vn € N

Monotone Convergence Theorem:

a monotone sequence of real numbers has a finite limit if and only if the
sequence is bounded
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Order of Convergence for sequences

let {,,} be a sequence of real numbers converging to =*, such that

for some nonzero C' and some p
then p is called the order of convergence for the sequence {x,}
linear convergence: p = 1 and requires that |C| < 1

1\" _
xn=(1+—) ; lim x,, =e€

mn n—oo

example:

we can show that
ZTny1 — €l

|5En — €|
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quadratic convergence: p = 2

example 1:

1 1
T1 = 2;Tp+1 :§xn—|—x—,n2 1

example 2: the Newton's method to find a root of a function f(x)

LIn4+l = Ln —
f’(wn)
if the convergence occurs in the Newton's method, one can show that

e =] )

oo |@, —a? 2f/(a)
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superlinear convergence: faster than linear but not as fast as quadratic

i.e., when the sequence satisfies

lim CRE ki

=0
n— 00 ‘an — ;zj*|
but )
lim Ty = ] = 00
n— 0o ‘an — ;zj*|2
example:

2 (xn o xn—l)
Tpi1 = Ty — (27 —2)
" . " (23 — 25 _1)

Ty, — V2 as n — oo and we can show that

|5Cn—|—1 - \/§|
|$n _ \/§|1.62

» 0.77
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Big O notation

for a given function g(x) and a point ¢, define O(g(x)) as
O(g(x)) = {f(x) | 36,C >0, [f(z)] < Clg(z)], for |z —c| <d}

e O(g(x)) is pronounced as 'big-oh of ¢’
e set of all functions that is bounded by g(x) when x — ¢
e set of all functions with a smaller or the same rate of growth as g

e the constant C is nonzero and independent of x

with an abuse of notation, the expression

flx) =0(g(x)), =—c

means that function f belongs to the set O(g(x))

(= does not really mean 'equal’ or 'symmetry’)
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examples

> = O(x), x—0; r = O?), z— o0
e = 0(1), x—o0; 2x+xsin(x) = Ox), z—x
the formula
flz) = h(z) + O(g(z))
means

f(x) = h(x) + w(x) where  w(x) € O(g(x))
examples:

20 +3x +4 = 22° + O(x), = — oo; " =1+z+0(%), -0
if g and h are two functions such that g(z) = O(h(z))
if f(x)=0(g(x)), then obviously f(x) = O(h(x))
the upper bound provided by (O-notation may or may not be tight
as x — oo, 4z° = O(x®) (tight) 4 = O(x®) (not tight)
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in many computations, it is of interest to consider
computation time VS problem size

denote t(n) a computation time as a function of problem size n
one would like to estimate the computational efficiency for large n

example: running time for an algorithm is t(n) = 2n® + 6n + 1

e t(n) = O(n?)
e we say the algorithm has the order of n? time complexity

e note that t(n) = O(n?3) is also correct but we would want to express the
worst-case running time to be as smallest as possible

some common running time complexities
O(1), O(log(n)), O(n), On*), OF2")
as n grows, which one refers to the fastest algorithm 7
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Computational time versus n

n | log(n) n n? 2"

10 1 10 100 1024
100 2 100 10000 1267650600228229401496703205376
1000 3 1000 1000000 1.0715e+301
10000 410000 100000000 Inf

1.0715e 4 301 = 1071508607186267320948425049060001810561404811705533
6074437503883703510511249361224931983788156958581275946729175531468
2518714528569231404359845775746985748039345677748242309854210746050
6237114187795418215304647498358194126739876755916554394607706291457
1196477686542167660429831652624386837205668069376

how many digits does it have ?
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Little o notation

for a given function g(x) and a point ¢, define o(g(x)) as
o(g(x)) ={f(x) |36 > 0,YC >0, [f(z)] < Clg(x)| for |z —c| <o}
equivalent condition: a function f is in o(g(x))) if

(@)

=0
e |g(x)

e 0(g(x)) is pronounced as 'little-oh of ¢'
e set of all functions with a smaller rate of growth than ¢

e [ becomes insignificant relative to g as ¢ — ¢

the expression f(x) =o(g(x)), = —c

means f belongs to the set o(g(x))
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examples:

1 1
cos(z) — 1 =o(x), x— 0, =o(—), n—ox
nlog(n) n

e 0(g(x)) excludes all functions that have the same rate of growth as ¢

e c.g.., 3n = o(n?) but 3n? # o(n?) as n — oo
Big O and Little o

e when f(x) = O(g(x)), the bound |f(x)| < C|g(x)| holds for some
constant C' > 0

e when f(x) = o(g(x)), the bound |f(x)| < Clg(x)| holds for all
constant C' > 0

e hence, if f(z) € o(g(x)) then f(x) € O(g(x))
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Vector norms

a vector norm on R™ is a mapping || - || : R™ — [0, 00) that satisfies
L. ||az| = |a|||z|| for any a € R (homogeneity)
2. |l +y| < ||zl + ||y (triangle inequality)
3. |lz|| =0if and only if z =0 (definiteness)
2-norm

|z]]2 = ZC%Jr:C%Jr---JrZC,,%: xlx
I-norm

[zlli = |z1] + 22| + - + |2
ooO-norm
H'CCHOO :m]?X{‘ZCﬂale‘a“'alxn‘}
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Matrix norms

matrix norm of A € R™*" is defined as

A
|All = max Azl _ | Az|]
lzllz0 ||zl lel=1

also often called operator norm or induced norm

properties:

L. for any z, [[Az]| < [[Allf|=]]

2. ||aA]l = [al|| Al (scaling)
3. |[A+ B| < ||A]l +||B] (triangle inequality)
4. ||A|l =0 if and only if A =0 (positiveness)
5. [|[AB]| < ||A]|||B|| (submultiplicative)
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2-norm or spectral norm

[Al2 2 max [[Azllz =/ Amax(ATA)

|z]|2=1
1-norm
m
|A[l1 & max |[Az|, = ;Inax > aijl
|z]|1=1 NN
co-norm
mn
|Alloo £ max [[Azllee = max ) lag]
2][oo=1 i=1,.eesm £

other definitions of matrix norm also exist

Frobenius norm:

1/2

JAllr = Jor(a72) = [ 323 Jay

=1 7=1
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