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1. Mathematics Preliminary

• limit, continuity, and derivative

• sets of continuous functions

• Taylor’s Theorem

• orders of Convergence

• big O and little o

• vector and matrix norms
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Limit, Continuity, Derivative

Limit of function f at c is defined as

lim
x→c

f(x) = L

Definition: for any positive ǫ, there exists positive δ such that

|f(x)− L| < ǫ whenever |x− c| < δ.

if there is no L with this property, the limit of f at c does not exist.

Continuity of function f at c is defined as

lim
x→c

f(x) = f(c)
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Derivative of function f at c is defined as

f ′(c) = lim
x→c

f(x)− f(c)

x− c
.

if f ′(c) exists, f is differentiable at c.

Fact: if f is differentiable at c, then f is continuous at c.
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Continuous functions

C(R) = the set of all functions that are continuous on R.

C1(R) = the set of all functions for which f ′ is continuous on R.

Cn(R) = the set of all functions for which f (n) is continuous on R.

C∞(R) = the set of all functions each of whose derivatives is continuous
on R.

Fact:
C∞(R) ⊂ · · · ⊂ C2(R) ⊂ C1(R) ⊂ C(R).

Cn([a, b]) = the set of all functions of which f (n) is continuous on [a, b].
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Derivative and Gradient

Suppose f : Rn → Rm and x ∈ int dom f

the derivative (or Jacobian) of f at x is the matrix Df(x) ∈ Rm×n:

Df(x)ij =
∂fi(x)

∂xj
, i = 1, . . . ,m, j = 1, . . . , n

• when f is real-valued (i.e., f : Rn → R), the derivative Df(x) is a row
vector

• its transpose is called the gradient of the function:

∇f(x) = Df(x)T , ∇f(x)i =
∂f(x)

∂xi
, i = 1, . . . , n

which is a column vector in Rn
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Second Derivative

suppose f is a real-valued function (i.e., f : Rn → R)

the second derivative or Hessian matrix of f at x, denoted ∇2f(x) is

∇2f(x)ij =
∂2f(x)

∂xi∂xj
, i = 1, . . . , n, j = 1, . . . , n

example: the quadratic function f : Rn → R

f(x) = (1/2)xTPx+ qTx+ r,

where P ∈ Sn, q ∈ Rn, and r ∈ R

• ∇f(x) = Px+ q

• ∇2f(x) = P
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Taylor’s Theorem

if f ∈ Cn[a, b] and f (n+1) exists on (a, b) then for any x and c in [a, b]

f(x) =
n
∑

k=0

1

k!
f (k)(c)(x− c)k + En(x)

where En is Lagrange remainder, ξ is between x and c,

En(x) =
1

(n+ 1)!
f (n+1)(ξ)(x− c)n+1.

• the first term is polynomial in x

• En is not a polynomial in x since ξ depends on x in a nonpolynomial
way
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Mean-Value Theorem

special case n = 0 of Taylor’s Theorem

f(x) = f(c) + f ′(ξ)(x− c)

where ξ is between c and x.

for example: x = b and c = a

f(b)− f(a) = f ′(ξ)(b− a), a < ξ < b.

Rolle’s Theorem: special case of Mean-value Theorem

if f(a) = 0, f(b) = 0, then f ′(ξ) = 0 for some ξ ∈ (a, b).
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Intermediate Value Theorem

let f ∈ C([a, b]) and assume p is a value between f(a) and f(b), that is

f(a) ≤ p ≤ f(b), or f(b) ≤ p ≤ f(a)

then there exists a point c ∈ [a, b] for which f(c) = p

• if f(a) and f(b) have different signs, f must cross zero once in [a, b]

• useful for finding the roots of functions; see bisection algorithm
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Extreme Value Theorem

let f ∈ C([a, b]); then there exists a point c ∈ [a, b] such that

f(c) ≤ f(x) ∀x ∈ [a, b]

and a point d ∈ [a, b] such that

f(d) ≥ f(x) ∀x ∈ [a, b]

basically means

• one can maximize (minimize) a continuous function f over a closed and
bounded interval

• the maximum and minimum values of f are attained (and finite)

• the point for which the extremum occurs is attained
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Contractive Mapping

a mapping (or function) f is said to be contractive on S ⊆ dom f if

there exists a scalar λ < 1 such that

|f(x)− f(y)| ≤ λ|x− y|

for all x, y ∈ S

• loosely speaking, a contractive function is a non-expansive map

• every contractive mapping is Lipschitz continuous

• if f is continuously differentiable on [a, b] with

max
x∈[a,b]

|f ′(x)| < 1

then f is contractive on [a, b] (by Mean-Value Theorem)

examples: f(x) = ‖x‖, e−x, cosx on [0, 1]

Mathematics Preliminary 1-11



Contractive Mapping Theorem

if f : S → S is contractive for all x ∈ S, then

• f has a uniqued fixed point in S

• this fixed point is a limit of every sequence

xn+1 = f(xn) with x0 ∈ S
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Monotonic sequence

a sequence
a1, a2, . . . , an

of real numbers, denoted by {an}

is called monotone increasing if

an+1 ≥ an, ∀n ∈ N

and is called monotone decreasing if

an+1 ≤ an, ∀n ∈ N

{an} is called monotonic or monotone if {an} is monotone increasing or
monotone decreasing
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Convergent sequence

we say a sequence {an} of real numbers has a limit a⋆, denoted by

an → a⋆, n → ∞

or by
lim
n→

an = a⋆

if for all ǫ > 0 there exists an integer N such that

|an − a⋆| < ǫ, ∀n > N

sandwich theorem: let {xn}, {yn}, and {zn} be sequences in R s.t.

xn ≤ yn ≤ zn

if xn → a and zn → a, then yn → a
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Bounded sequence

• a sequence {an} is bounded above if there exists M ∈ R such that

an ≤ M ∀n ∈ N

• a sequence {an} is bounded below if there exists m ∈ R such that

an ≥ m ∀n ∈ N

• {an} is a bounded sequence if it is bounded below and bounded above:

∃M > 0, |an| ≤ M ∀n ∈ N

Monotone Convergence Theorem:

a monotone sequence of real numbers has a finite limit if and only if the
sequence is bounded
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Order of Convergence for sequences

let {xn} be a sequence of real numbers converging to x∗, such that

lim
n→∞

|xn+1 − x∗|
|xn − x∗|p = C

for some nonzero C and some p

then p is called the order of convergence for the sequence {xn}

linear convergence: p = 1 and requires that |C| < 1

example:

xn =

(

1 +
1

n

)n

; lim
n→∞

xn = e

we can show that
|xn+1 − e|
|xn − e| → 1
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quadratic convergence: p = 2

example 1:

x1 = 2;xn+1 =
1

2
xn +

1

xn
, n ≥ 1

example 2: the Newton’s method to find a root of a function f(x)

xn+1 = xn − f(xn)

f ′(xn)

if the convergence occurs in the Newton’s method, one can show that

lim
n→∞

|xn+1 − x∗|
|xn − x∗|2 =

f ′′(x∗)

2f ′(x∗)
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superlinear convergence: faster than linear but not as fast as quadratic

i.e., when the sequence satisfies

lim
n→∞

|xn+1 − x∗|
|xn − x∗| = 0

but

lim
n→∞

|xn+1 − x∗|
|xn − x∗|2 = ∞

example:

xn+1 = xn − (x2
n − 2)

(xn − xn−1)

(x2
n − x2

n−1)

xn →
√
2 as n → ∞ and we can show that

|xn+1 −
√
2|

|xn −
√
2|1.62

→ 0.77
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Big O notation

for a given function g(x) and a point c, define O(g(x)) as

O(g(x)) = {f(x) | ∃δ,C > 0, |f(x)| ≤ C|g(x)|, for |x− c| < δ}

• O(g(x)) is pronounced as ’big-oh of g’

• set of all functions that is bounded by g(x) when x → c

• set of all functions with a smaller or the same rate of growth as g

• the constant C is nonzero and independent of x

with an abuse of notation, the expression

f(x) = O(g(x)), x → c

means that function f belongs to the set O(g(x))

(= does not really mean ’equal’ or ’symmetry’)
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examples

x2 = O(x), x → 0; x = O(x2), x → ∞
e−x = O(1), x → ∞; 2x+ x sin(x) = O(x), x → ∞

the formula
f(x) = h(x) +O(g(x))

means
f(x) = h(x) + w(x) where w(x) ∈ O(g(x))

examples:

2x2 + 3x+ 4 = 2x2 +O(x), x → ∞; ex = 1 + x+O(x2), x → 0

if g and h are two functions such that g(x) = O(h(x))

if f(x) = O(g(x)), then obviously f(x) = O(h(x))

the upper bound provided by O-notation may or may not be tight

as x → ∞, 4x3 = O(x3) (tight) 4x = O(x3) (not tight)
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in many computations, it is of interest to consider

computation time VS problem size

denote t(n) a computation time as a function of problem size n

one would like to estimate the computational efficiency for large n

example: running time for an algorithm is t(n) = 2n2 + 6n+ 1

• t(n) = O(n2)

• we say the algorithm has the order of n2 time complexity

• note that t(n) = O(n3) is also correct but we would want to express the
worst-case running time to be as smallest as possible

some common running time complexities

O(1), O(log(n)), O(n), O(n2), O(2n)

as n grows, which one refers to the fastest algorithm ?
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Computational time versus n

n log(n) n n2 2n

10 1 10 100 1024
100 2 100 10000 1267650600228229401496703205376
1000 3 1000 1000000 1.0715e+301
10000 4 10000 100000000 Inf

1.0715e+ 301 = 1071508607186267320948425049060001810561404811705533

6074437503883703510511249361224931983788156958581275946729175531468

2518714528569231404359845775746985748039345677748242309854210746050

6237114187795418215304647498358194126739876755916554394607706291457

1196477686542167660429831652624386837205668069376

how many digits does it have ?
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Little o notation

for a given function g(x) and a point c, define o(g(x)) as

o(g(x)) = {f(x) | ∃δ > 0,∀C > 0, |f(x)| ≤ C|g(x)| for |x− c| < δ}

equivalent condition: a function f is in o(g(x))) if

lim
x→c

|f(x)|
|g(x)| = 0

• o(g(x)) is pronounced as ’little-oh of g’

• set of all functions with a smaller rate of growth than g

• f becomes insignificant relative to g as x → c

the expression f(x) = o(g(x)), x → c

means f belongs to the set o(g(x))
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examples:

cos(x)− 1 = o(x), x → 0,
1

n log(n)
= o

(

1

n

)

, n → ∞

• o(g(x)) excludes all functions that have the same rate of growth as g

• e.g.., 3n = o(n2) but 3n2 6= o(n2) as n → ∞

Big O and Little o

• when f(x) = O(g(x)), the bound |f(x)| ≤ C|g(x)| holds for some

constant C > 0

• when f(x) = o(g(x)), the bound |f(x)| ≤ C|g(x)| holds for all
constant C > 0

• hence, if f(x) ∈ o(g(x)) then f(x) ∈ O(g(x))
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Vector norms

a vector norm on Rn is a mapping ‖ · ‖ : Rn → [0,∞) that satisfies

1. ‖αx‖ = |α|‖x‖ for any α ∈ R (homogeneity)

2. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality)

3. ‖x‖ = 0 if and only if x = 0 (definiteness)

2-norm

‖x‖2 =
√

x2
1 + x2

2 + · · ·+ x2
n =

√
xTx

1-norm
‖x‖1 = |x1|+ |x2|+ · · ·+ |xn|

∞-norm

‖x‖∞ = max
k

{|x1|, |x2|, . . . , |xn|}
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Matrix norms

matrix norm of A ∈ Rm×n is defined as

‖A‖ = max
‖x‖6=0

‖Ax‖
‖x‖ = max

‖x‖=1
‖Ax‖

also often called operator norm or induced norm

properties:

1. for any x, ‖Ax‖ ≤ ‖A‖‖x‖

2. ‖aA‖ = |a|‖A‖ (scaling)

3. ‖A+B‖ ≤ ‖A‖+ ‖B‖ (triangle inequality)

4. ‖A‖ = 0 if and only if A = 0 (positiveness)

5. ‖AB‖ ≤ ‖A‖‖B‖ (submultiplicative)
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2-norm or spectral norm

‖A‖2 , max
‖x‖2=1

‖Ax‖2 =
√

λmax(ATA)

1-norm

‖A‖1 , max
‖x‖1=1

‖Ax‖1 = max
j=1,...,n

m
∑

i=1

|aij|

∞-norm

‖A‖∞ , max
‖x‖∞=1

‖Ax‖∞ = max
i=1,...,m

n
∑

j=1

|aij|

other definitions of matrix norm also exist

Frobenius norm:

‖A‖F =
√

tr(ATA) =





m
∑

i=1

n
∑

j=1

|aij|2




1/2
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