- limit, continuity, and derivative
- sets of continuous functions
- Taylor's Theorem
- orders of Convergence
- big ${\mathcal O}$ and little o
- vector and matrix norms

Limit, Continuity, Derivative

Limit of function f at c is defined as

$$\lim_{x \to c} f(x) = L$$

Definition: for any positive ϵ , there exists positive δ such that

$$|f(x) - L| < \epsilon$$
 whenever $|x - c| < \delta$.

if there is no L with this property, the limit of f at c does not exist.

Continuity of function f at c is defined as

$$\lim_{x \to c} f(x) = f(c)$$

Derivative of function f at c is defined as

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

if f'(c) exists, f is differentiable at c.

Fact: if f is differentiable at c, then f is continuous at c.

Continuous functions

C(R) = the set of all functions that are continuous on R.

 $C^{1}(R)$ = the set of all functions for which f' is continuous on R.

 $\mathbf{C}^{n}(\mathbf{R})$ = the set of all functions for which $f^{(n)}$ is continuous on \mathbf{R} .

 $\mathbf{C}^{\infty}(\mathbf{R})$ = the set of all functions each of whose derivatives is continuous on \mathbf{R} .

Fact:

$$\mathbf{C}^{\infty}(\mathbf{R}) \subset \cdots \subset \mathbf{C}^{2}(\mathbf{R}) \subset \mathbf{C}^{1}(\mathbf{R}) \subset \mathbf{C}(\mathbf{R}).$$

 $\mathbf{C}^{n}([a, b]) = \text{the set of all functions of which } f^{(n)} \text{ is continuous on } [a, b].$

Derivative and Gradient

Suppose $f : \mathbf{R}^n \to \mathbf{R}^m$ and $x \in \mathbf{int} \operatorname{\mathbf{dom}} f$

the **derivative** (or **Jacobian**) of f at x is the matrix $Df(x) \in \mathbf{R}^{m \times n}$:

$$Df(x)_{ij} = \frac{\partial f_i(x)}{\partial x_j}, \quad i = 1, \dots, m, \quad j = 1, \dots, n$$

- when f is real-valued (*i.e.*, $f : \mathbf{R}^n \to \mathbf{R}$), the derivative Df(x) is a row vector
- its transpose is called the **gradient** of the function:

$$\nabla f(x) = Df(x)^T, \qquad \nabla f(x)_i = \frac{\partial f(x)}{\partial x_i}, \quad i = 1, \dots, n$$

which is a column vector in \mathbf{R}^n

Second Derivative

suppose f is a real-valued function (*i.e.*, $f : \mathbf{R}^n \to \mathbf{R}$)

the second derivative or Hessian matrix of f at x, denoted $\nabla^2 f(x)$ is

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \quad i = 1, \dots, n, \quad j = 1, \dots, n$$

example: the quadratic function $f : \mathbf{R}^n \to \mathbf{R}$

$$f(x) = (1/2)x^T P x + q^T x + r,$$

where $P \in \mathbf{S}^n, q \in \mathbf{R}^n$, and $r \in \mathbf{R}$

•
$$\nabla f(x) = Px + q$$

•
$$\nabla^2 f(x) = P$$

Taylor's Theorem

if $f \in \mathbf{C}^{n}[a, b]$ and $f^{(n+1)}$ exists on (a, b) then for any x and c in [a, b]

$$f(x) = \sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(c) (x-c)^{k} + E_{n}(x)$$

where E_n is Lagrange remainder, ξ is between x and c,

$$E_n(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi) (x-c)^{n+1}.$$

- the first term is polynomial in \boldsymbol{x}
- E_n is not a polynomial in x since ξ depends on x in a nonpolynomial way

Mean-Value Theorem

special case n = 0 of Taylor's Theorem

$$f(x) = f(c) + f'(\xi)(x - c)$$

where ξ is between c and x.

for example: x = b and c = a

$$f(b) - f(a) = f'(\xi)(b - a), \quad a < \xi < b.$$

Rolle's Theorem: special case of Mean-value Theorem if f(a) = 0, f(b) = 0, then $f'(\xi) = 0$ for some $\xi \in (a, b)$.

Intermediate Value Theorem

let $f \in \mathbf{C}([a, b])$ and assume p is a value between f(a) and f(b), that is

$$f(a) \le p \le f(b)$$
, or $f(b) \le p \le f(a)$

then there exists a point $c \in [a, b]$ for which f(c) = p

- if f(a) and f(b) have different signs, f must cross zero once in [a, b]
- useful for finding the roots of functions; see bisection algorithm

Extreme Value Theorem

let $f \in \mathbf{C}([a, b])$; then there exists a point $c \in [a, b]$ such that

$$f(c) \le f(x) \qquad \forall x \in [a, b]$$

and a point $d \in [a,b]$ such that

$$f(d) \ge f(x) \qquad \forall x \in [a, b]$$

basically means

- one can maximize (minimize) a *continuous* function *f* over a closed and bounded interval
- the maximum and minimum values of f are attained (and finite)
- the point for which the extremum occurs is attained

Contractive Mapping

a mapping (or function) f is said to be *contractive* on $S \subseteq \text{dom } f$ if there exists a scalar $\lambda < 1$ such that

$$|f(x) - f(y)| \le \lambda |x - y|$$

for all $x, y \in S$

- loosely speaking, a contractive function is a *non-expansive* map
- every contractive mapping is Lipschitz continuous
- if f is continuously differentiable on [a, b] with

$$\max_{x \in [a,b]} |f'(x)| < 1$$

then f is contractive on [a, b] (by Mean-Value Theorem)

examples: $f(x) = ||x||, e^{-x}, \cos x$ on [0, 1]

Contractive Mapping Theorem

if $f: S \to S$ is contractive for all $x \in S$, then

- f has a *uniqued* fixed point in S
- this fixed point is a limit of every sequence

$$x_{n+1} = f(x_n)$$
 with $x_0 \in S$

Monotonic sequence

a sequence

$$a_1, a_2, \ldots, a_n$$

of real numbers, denoted by $\{a_n\}$

is called monotone increasing if

$$a_{n+1} \ge a_n, \quad \forall n \in \mathbb{N}$$

and is called monotone decreasing if

$$a_{n+1} \le a_n, \quad \forall n \in \mathbb{N}$$

 $\{a_n\}$ is called *monotonic* or *monotone* if $\{a_n\}$ is monotone increasing or monotone decreasing

Convergent sequence

we say a sequence $\{a_n\}$ of real numbers has a limit a^* , denoted by

$$a_n \to a^\star, \qquad n \to \infty$$

or by

$$\lim_{n \to a_n} a_n = a^\star$$

if for all $\epsilon > 0$ there exists an integer N such that

$$|a_n - a^\star| < \epsilon, \qquad \forall n > N$$

sandwich theorem: let $\{x_n\}, \{y_n\}$, and $\{z_n\}$ be sequences in **R** s.t.

 $x_n \le y_n \le z_n$

if $x_n \to a$ and $z_n \to a$, then $y_n \to a$

Bounded sequence

• a sequence $\{a_n\}$ is bounded above if there exists $M \in \mathbf{R}$ such that

 $a_n \leq M \qquad \forall n \in \mathbb{N}$

• a sequence $\{a_n\}$ is bounded below if there exists $m \in \mathbf{R}$ such that

 $a_n \ge m \qquad \forall n \in \mathbb{N}$

• $\{a_n\}$ is a *bounded sequence* if it is bounded below and bounded above:

 $\exists M > 0, \qquad |a_n| \le M \qquad \forall n \in \mathbb{N}$

Monotone Convergence Theorem:

a monotone sequence of real numbers has a finite limit if and only if the sequence is bounded

Order of Convergence for sequences

let $\{x_n\}$ be a sequence of real numbers converging to x^* , such that

$$\lim_{n \to \infty} \frac{|x_{n+1} - x^*|}{|x_n - x^*|^p} = C$$

for some nonzero C and some p

then p is called the **order of convergence** for the sequence $\{x_n\}$

linear convergence: p = 1 and requires that |C| < 1

example:

$$x_n = \left(1 + \frac{1}{n}\right)^n; \quad \lim_{n \to \infty} x_n = e$$

we can show that

$$\frac{|x_{n+1} - e|}{|x_n - e|} \to 1$$

quadratic convergence: p = 2

example 1:

$$x_1 = 2; x_{n+1} = \frac{1}{2}x_n + \frac{1}{x_n}, n \ge 1$$

example 2: the Newton's method to find a root of a function f(x)

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

if the convergence occurs in the Newton's method, one can show that

$$\lim_{n \to \infty} \frac{|x_{n+1} - x^*|}{|x_n - x^*|^2} = \frac{f''(x^*)}{2f'(x^*)}$$

superlinear convergence: faster than linear but not as fast as quadratic

i.e., when the sequence satisfies

$$\lim_{n \to \infty} \frac{|x_{n+1} - x^*|}{|x_n - x^*|} = 0$$

but

$$\lim_{n \to \infty} \frac{|x_{n+1} - x^*|}{|x_n - x^*|^2} = \infty$$

example:

$$x_{n+1} = x_n - (x_n^2 - 2)\frac{(x_n - x_{n-1})}{(x_n^2 - x_{n-1}^2)}$$

 $x_n \to \sqrt{2}$ as $n \to \infty$ and we can show that

$$\frac{|x_{n+1} - \sqrt{2}|}{|x_n - \sqrt{2}|^{1.62}} \to 0.77$$

Big ${\mathcal O}$ notation

for a given function g(x) and a point c, define $\mathcal{O}(g(x))$ as

 $\mathcal{O}(g(x)) = \{ f(x) \mid \exists \delta, C > 0, \ |f(x)| \le C |g(x)|, \ \text{ for } |x - c| < \delta \}$

- $\mathcal{O}(g(x))$ is pronounced as 'big-oh of g'
- set of all functions that is bounded by g(x) when $x \to c$
- set of all functions with a *smaller* or the *same* rate of growth as g
- the constant ${\cal C}$ is nonzero and independent of x

with an abuse of notation, the expression

$$f(x) = \mathcal{O}(g(x)), \quad x \to c$$

means that function f belongs to the set $\mathcal{O}(g(x))$

$$(=$$
 does not really mean 'equal' or 'symmetry')

examples

$$\begin{array}{rclrcl} x^2 & = & \mathcal{O}(x), & x \to 0; & x & = & \mathcal{O}(x^2), & x \to \infty \\ e^{-x} & = & \mathcal{O}(1), & x \to \infty; & 2x + x \sin(x) & = & \mathcal{O}(x), & x \to \infty \end{array}$$

the formula

$$f(x) = h(x) + \mathcal{O}(g(x))$$

means

$$f(x) = h(x) + w(x) \qquad \text{where} \quad w(x) \in \mathcal{O}(g(x))$$
 examples:

$$2x^{2} + 3x + 4 = 2x^{2} + \mathcal{O}(x), \quad x \to \infty; \qquad e^{x} = 1 + x + \mathcal{O}(x^{2}), \quad x \to 0$$

if g and h are two functions such that $g(x) = \mathcal{O}(h(x))$

 $\text{if } f(x) = \mathcal{O}(g(x)), \qquad \text{then obviously} \qquad f(x) = \mathcal{O}(h(x)) \\$

the upper bound provided by \mathcal{O} -notation may or may not be tight

as
$$x \to \infty$$
, $4x^3 = \mathcal{O}(x^3)$ (tight) $4x = \mathcal{O}(x^3)$ (not tight)

in many computations, it is of interest to consider

computation time VS problem size

denote t(n) a computation time as a function of problem size none would like to estimate the computational efficiency for large n**example:** running time for an algorithm is $t(n) = 2n^2 + 6n + 1$

•
$$t(n) = \mathcal{O}(n^2)$$

- we say the algorithm has the order of n^2 time complexity
- note that $t(n) = O(n^3)$ is also correct but we would want to express the worst-case running time to be as smallest as possible

some common running time complexities

$$\mathcal{O}(1), \quad \mathcal{O}(\log(n)), \quad \mathcal{O}(n), \quad \mathcal{O}(n^2), \quad \mathcal{O}(2^n)$$

as \boldsymbol{n} grows, which one refers to the fastest algorithm ?

Computational time versus n

n	$\log(n)$	n	n^2	2^n
10	1	10	100	1024
100	2	100	10000	1267650600228229401496703205376
1000	3	1000	1000000	1.0715e+301
10000	4	10000	100000000	Inf

$$\begin{split} 1.0715e + 301 &= 1071508607186267320948425049060001810561404811705533 \\ 6074437503883703510511249361224931983788156958581275946729175531468 \\ 2518714528569231404359845775746985748039345677748242309854210746050 \\ 6237114187795418215304647498358194126739876755916554394607706291457 \\ & 1196477686542167660429831652624386837205668069376 \end{split}$$

how many digits does it have ?

Little *o* notation

for a given function $g(\boldsymbol{x})$ and a point c, define $o(g(\boldsymbol{x}))$ as

$$o(g(x)) = \{ f(x) \mid \exists \delta > 0, \forall C > 0, \ |f(x)| \le C |g(x)| \ \text{ for } \ |x - c| < \delta \}$$

equivalent condition: a function f is in o(g(x))) if

$$\lim_{x \to c} \frac{|f(x)|}{|g(x)|} = 0$$

- o(g(x)) is pronounced as 'little-oh of g'
- set of all functions with a *smaller* rate of growth than g
- f becomes insignificant relative to g as $x \to c$

the expression $f(x) = o(g(x)), \quad x \to c$

means f belongs to the set o(g(x))

examples:

$$\cos(x) - 1 = o(x), \quad x \to 0, \qquad \frac{1}{n\log(n)} = o\left(\frac{1}{n}\right), \quad n \to \infty$$

- o(g(x)) excludes all functions that have the same rate of growth as g
- $e.g..,\; 3n=o(n^2)$ but $3n^2\neq o(n^2)$ as $n\rightarrow\infty$

Big \mathcal{O} and Little o

- when $f(x) = \mathcal{O}(g(x))$, the bound $|f(x)| \le C|g(x)|$ holds for some constant C > 0
- when f(x) = o(g(x)), the bound $|f(x)| \le C|g(x)|$ holds for all constant C > 0
- hence, if $f(x) \in o(g(x))$ then $f(x) \in \mathcal{O}(g(x))$

Vector norms

a vector norm on \mathbf{R}^n is a mapping $\|\cdot\|: \mathbf{R}^n \to [0,\infty)$ that satisfies

- 1. $\|\alpha x\| = |\alpha| \|x\|$ for any $\alpha \in \mathbf{R}$ (homogeneity) 2. $\|x + y\| \le \|x\| + \|y\|$ (triangle inequality)
- 3. ||x|| = 0 if and only if x = 0

(definiteness)

2-norm

$$x\|_{2} = \sqrt{x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2}} = \sqrt{x^{T}x}$$

1-norm

$$||x||_1 = |x_1| + |x_2| + \dots + |x_n|$$

 $\infty ext{-norm}$

$$||x||_{\infty} = \max_{k} \{|x_1|, |x_2|, \dots, |x_n|\}$$

Matrix norms

matrix norm of $A \in \mathbf{R}^{m \times n}$ is defined as

$$|A|| = \max_{\|x\|\neq 0} \frac{\|Ax\|}{\|x\|} = \max_{\|x\|=1} \|Ax\|$$

also often called **operator norm** or **induced norm properties:**

- 1. for any x, $||Ax|| \le ||A|| ||x||$
- 2. ||aA|| = |a|||A|| (scaling)
- 3. $||A + B|| \le ||A|| + ||B||$
- 4. ||A|| = 0 if and only if A = 0
- 5. $||AB|| \le ||A|| ||B||$

(triangle inequality)

(positiveness)

(submultiplicative)

2-norm or spectral norm

$$||A||_2 \triangleq \max_{||x||_2=1} ||Ax||_2 = \sqrt{\lambda_{\max}(A^T A)}$$

1-norm

$$||A||_1 \triangleq \max_{\|x\|_1=1} ||Ax||_1 = \max_{j=1,\dots,n} \sum_{i=1}^m |a_{ij}|_{i=1}$$

 ∞ -norm

$$||A||_{\infty} \triangleq \max_{||x||_{\infty}=1} ||Ax||_{\infty} = \max_{i=1,...,m} \sum_{j=1}^{n} |a_{ij}|$$

other definitions of matrix norm also exist

Frobenius norm:

$$||A||_F = \sqrt{\operatorname{tr}(A^T A)} = \left(\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2\right)^{1/2}$$

References

Chapter 1 in

D. Kincaid and W. Cheney, *Numerical Analysis: Mathematics of Scientific Computing*, 3rd edition, Brooks & Cole, 2002

Section 1.1 in

J. F. Epperson, An Introduction to Numerical Methods and Analysis, John Wiley & Sons, 2007

Chapter 1 in

N. G. De Bruijn, Asymptotic Methods in Analysis, Dover, 1958

Chapter 3 in

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, *Introduction to Algorithms*, 2nd edition, MIT Press, 2001