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3. Reviews on Linear algebra

• matrices and vectors

• linear equations

• range and nullspace of matrices

• norm and inner product spaces

• matrix factorizations

• function of vectors, gradient and Hessian

• function of matrices
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Vector notation

n-vector x:

x =









x1

x2
...
xn









• also written as x = (x1, x2, . . . , xn)

• set of n-vectors is denoted Rn (Euclidean space)

• xi: ith element or component or entry of x

• x is also called a column vector

• y =
[

y1 y2 · · · yn
]

is called a row vector

unless stated otherwise, a vector typically means a column vector
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Special vectors

zero vectors: x = (0, 0, . . . , 0)

all-ones vectors: x = (1, 1, · · · , 1) (we will denote it by 1)

standard unit vectors: ek has only 1 at the kth entry and zero otherwise

e1 =





1
0
0



 , e2 =





0
1
0



 , e3 =





0
0
1





(standard unit vectors in R3)

unit vectors: any vector u whose norm (magnitude) is 1, i.e.,

‖u‖ ,

√

u2
1 + u2

2 + · · ·+ u2
n = 1

example: u = (1/
√
2, 2/

√
6,−1/

√
2)
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Inner products

definition: the inner product of two n-vectors x, y is

x1y1 + x2y2 + · · ·+ xnyn

also known as the dot product of vectors x, y

notation: xTy

properties ✎

• (αx)Ty = α(xTy) for scalar α

• (x+ y)Tz = xTz + yTz

• xTy = yTx
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Euclidean norm

‖x‖ =
√

x2
1 + x2

2 + · · ·+ x2
n =

√
xTx

properties

• also written ‖x‖2 to distinguish from other norms

• ‖αx‖ = |α|‖x‖ for scalar α

• ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality)

• ‖x‖ ≥ 0 and ‖x‖ = 0 only if x = 0

interpretation

• ‖x‖ measures the magnitude or length of x

• ‖x− y‖ measures the distance between x and y
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Matrix notation

an m× n matrix A is defined as

A =









a11 a12 . . . a1n
a21 a22 . . . a2n
... ... . . . ...

am1 am2 . . . amn









, or A = [aij]m×n

• aij are the elements, or coefficients, or entries of A

• set of m× n-matrices is denoted Rm×n

• A has m rows and n columns (m,n are the dimensions)

• the (i, j) entry of A is also commonly denoted by Aij

• A is called a square matrix if m = n
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Special matrices

zero matrix: A = 0

A =









0 0 · · · 0
0 0 · · · 0
... ... . . . 0
0 0 · · · 0









aij = 0, for i = 1, . . . ,m, j = 1, . . . , n

identity matrix: A = I

A =









1 0 · · · 0
0 1 · · · 0
... ... . . . 0
0 0 · · · 1









a square matrix with aii = 1, aij = 0 for i 6= j
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diagonal matrix: a square matrix with aij = 0 for i 6= j

A =









a1 0 · · · 0
0 a2 · · · 0
... ... . . . ...
0 · · · 0 an









triangular matrix:

a square matrix with zero entries in a triangular part

upper triangular lower triangular

A =









a11 a12 · · · a1n
0 a22 · · · a2n
... ... . . .
0 0 · · · ann









A =









a11 0 · · · 0
a21 a22 · · · 0
... ... . . .

an1 an2 · · · ann









aij = 0 for i ≥ j aij = 0 for i ≤ j
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Block matrix notation

example: 2× 2-block matrix A

A =

[

B C
D E

]

for example, if B,C,D,E are defined as

B =

[

2 1
3 8

]

, C =

[

0 1 7
1 9 1

]

, D =
[

0 1
]

, E =
[

−4 1 −1
]

then A is the matrix

A =





2 1 0 1 7
3 8 1 9 1
0 1 −4 1 −1





note: dimensions of the blocks must be compatible
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Column and Row partitions

write an m× n-matrix A in terms of its columns or its rows

A =
[

a1 a2 · · · an
]

=









bT1
bT2
...
bTm









• aj for j = 1, 2, . . . , n are the columns of A

• bTi for i = 1, 2, . . . ,m are the rows of A

example: A =

[

1 2 1
4 9 0

]

a1 =

[

1
4

]

, a2 =

[

2
9

]

, a3 =

[

1
0

]

, bT1 =
[

1 2 1
]

, bT2 =
[

4 9 0
]
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Matrix-vector product

product of m× n-matrix A with n-vector x

Ax =









a11x1 + a12x2 + . . .+ a1nxn

a21x1 + a22x2 + . . .+ a2nxn
...

am1x1 + am2x2 + . . .+ amnxn









• dimensions must be compatible: # columns in A = # elements in x

if A is partitioned as A =
[

a1 a2 · · · an
]

, then

Ax = a1x1 + a2x2 + · · ·+ anxn

• Ax is a linear combination of the column vectors of A

• the coefficients are the entries of x
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Product with standard unit vectors

post-multiply with a column vector

Aek =









a11 a12 . . . a1n
a21 a22 . . . a2n
... ... . . . ...

am1 am2 . . . amn

























0
0
...
1
...
0

















=









a1k
a2k
...

amk









= the kth column of A

pre-multiply with a row vector

eTkA =
[

0 0 · · · 1 · · · 0
]









a11 a12 . . . a1n
a21 a22 . . . a2n
... ... . . . ...

am1 am2 . . . amn









=
[

ak1 ak2 · · · akn
]

= the kth row of A
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Trace

Definition: trace of a square matrix A is the sum of the diagonal entries in A

tr(A) = a11 + a22 + · · ·+ ann

example:

A =





2 1 4
0 −1 5
3 4 6





trace of A is 2− 1 + 6 = 7

properties ✎

• tr(AT ) = tr(A)

• tr(αA+B) = α tr(A) + tr(B)

• tr(AB) = tr(BA)
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Eigenvalues

λ ∈ C is called an eigenvalue of A ∈ Cn×n if

det(λI −A) = 0

equivalent to:

• there exists nonzero x ∈ Cn s.t. (λI −A)x = 0, i.e.,

Ax = λx

any such x is called an eigenvector of A (associated with eigenvalue λ)

• there exists nonzero w ∈ Cn such that

wTA = λwT

any such w is called a left eigenvector of A
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Computing eigenvalues

• X (λ) = det(λI −A) is called the characteristic polynomial of A

• X (λ) = 0 is called the characteristic equation of A

• eigenvalues of A are the root of characteristic polynomial
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Properties

• if A is n× n then X (λ) is a polynomial of order n

• if A is n× n then there are n eigenvalues of A

• even when A is real, eigenvalues and eigenvectors can be complex, e.g.,

A =

[

2 −1
1 2

]

, A =





−2 0 1
−6 −2 0
19 5 −4





• if A and λ are real, we can choose the associated eigenvector to be real

• if A is real then eigenvalues must occur in complex conjugate pairs

• if x is an eigenvector of A, so is αx for any α ∈ C, α 6= 0

• an eigenvector of A associated with λ lies in N (λI −A)
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Important facts

denote λ(A) an eigenvalue of A

• λ(αA) = αλ(A) for any α ∈ C

• tr(A) is the sum of eigenvalues of A

• det(A) is the product of eigenvalues of A

• A and AT share the same eigenvalues ✎

• λ(AT ) = λ(A) ✎

• λ(ATA) ≥ 0

• λ(Am) = (λ(A))m for any integer m

• A is invertible if and only if λ = 0 is not an eigenvalue of A ✎
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Eigenvalue decomposition

if A is diagonalizable then A admits the decomposition

A = TDT−1

• D is diagonal containing the eigenvalues of A

• columns of T are the corresponding eigenvectors of A

• note that such decomposition is not unique (up to scaling in T )

recall: A is diagonalizable iff all eigenvectors of A are independent
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Inverse of matrices

Definition:

a square matrix A is called invertible or nonsingular if there exists B s.t.

AB = BA = I

• B is called an inverse of A

• it is also true that B is invertible and A is an inverse of B

• if no such B can be found A is said to be singular

assume A is invertible

• an inverse of A is unique

• the inverse of A is denoted by A−1
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assume A,B are invertible

Facts ✎

• (αA)−1 = α−1A−1 for nonzero α

• AT is also invertible and (AT )−1 = (A−1)T

• AB is invertible and (AB)−1 = B−1A−1

• (A+B)−1 6= A−1 +B−1
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Inverse of 2× 2 matrices

the matrix

A =

[

a b
c d

]

is invertible if and only if
ad− bc 6= 0

and its inverse is given by

A−1 =
1

ad− bc

[

d −b
−c a

]

example:

A =

[

2 1
−1 3

]

, A−1 =
1

7

[

3 −1
1 2

]
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Invertible matrices

✌ Theorem: for a square matrix A, the following statements are equivalent

1. A is invertible

2. Ax = 0 has only the trivial solution (x = 0)

3. the reduced echelon form of A is I

4. A is invertible if and only if det(A) 6= 0
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Inverse of special matrices

diagonal matrix

A =









a1 0 · · · 0
0 a2 · · · 0
... ... . . . ...
0 · · · 0 an









a diagonal matrix is invertible iff the diagonal entries are all nonzero

aii 6= 0, i = 1, 2, . . . , n

the inverse of A is given by

A−1 =









1/a1 0 · · · 0
0 1/a2 · · · 0
... ... . . . ...
0 · · · 0 1/an









the diagonal entries in A−1 are the inverse of the diagonal entries in A
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triangular matrix:

upper triangular lower triangular

A =









a11 a12 · · · a1n
0 a22 · · · a2n
... ... . . .
0 0 · · · ann









A =









a11 0 · · · 0
a21 a22 · · · 0
... ... . . .

an1 an2 · · · ann









aij = 0 for i ≥ j aij = 0 for i ≤ j

a triangular matrix is invertible iff the diagonal entries are all nonzero

aii 6= 0, ∀i = 1, 2, . . . , n

• product of lower (upper) triangular matrices is lower (upper) triangular

• the inverse of a lower (upper) triangular matrix is lower (upper) triangular
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symmetric matrix: A = AT

✎

• for any square matrix A, AAT and ATA are always symmetric

• if A is symmetric and invertible, then A−1 is symmetric

• if A is invertible, then AAT and ATA are also invertible
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Symmetric matrix

A ∈ Rn×n is called symmetric if A = AT

Facts: if A is symmetric

• all eigenvalues of A are real

• all eigenvectors of A are orthogonal

• A admits a decomposition
A = UDUT

where UTU = UUT = I (U is unitary) and D is diagonal

(of course, the diagonals of D are eigenvalues of A)
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Unitary matrix

a matrix U ∈ Rn×n is called unitary if

UTU = UUT = I

example: 1√
2

[

1 −1
1 1

]

,

[

cos θ − sin θ
sin θ cos θ

]

Facts:

• a real unitary matrix is also called orthogonal

• a unitary matrix is always invertible and U−1 = UT

• columns vectors of U are mutually orthogonal

• norm is preserved under a unitary transformation:

y = Ux =⇒ ‖y‖ = ‖x‖
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Idempotent Matrix

A ∈ Rn×n is an idempotent (or projection) matrix if

A2 = A

examples: identity matrix

Facts: Let A be an idempotent matrix

• eigenvalues of A are all equal to 0 or 1

• I −A is idempotent

• if A 6= I , then A is singular
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Projection matrix

a square matrix P is a projection matrix if and only if P 2 = P

• P is a linear transformation from Rn to a subspace of Rn, denoted as S

• columns of P are the projections of standard basis vectors

• S is the range of P

• from P 2 = P , it means if P is applied twice on a vector in S, it gives the
same vector

• examples:

P =

[

1 0
0 0

]

, P =

[

1/2 1/2
1/2 1/2

]

Reviews on Linear algebra 3-29



Orthogonal projection matrix

a projection matrix is called orthogonal if and only if P = P T

• P is bounded, i.e., ‖Px‖ ≤ ‖x‖

‖Px‖22 = xTP TPx = xTP 2x = xTPx ≤ ‖Px‖‖x‖

(by Cauchy-Schwarz inequality – more on this later)

• if P is an orthogonal projection onto a line spanned by a unit vector u,

P = uuT

(we see that rank(P ) = 1 as the dimension of a line is 1)

• another example: P = A(ATA)−1AT for any matrix A
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Nilpotent matrix

A ∈ Rn×n is nilpotent if

Ak = 0, for some positive integer k

Example: any triangular matrices with 0’s along the main diagonal

[

0 1
0 0

]

,









0 1 0 · · · 0
0 0 1 · · · 0
... ... ... . . . ...
0 0 0 · · · 1









(shift matrix)

also related to deadbeat control for linear discrete-time systems

Facts:

• the characteristic equation for A is λn = 0

• all eigenvalues are 0
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Positive definite matrix

a symmetric matrix A is positive semidefinite, written as A � 0 if

xTAx ≥ 0, ∀x ∈ Rn

and positive definite, written as A ≻ 0 if

xTAx > 0, for all nonzero x ∈ Rn

Facts: A � 0 if and only if

• all eigenvalues of A are non-negative

• all principle minors of A are non-negative
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example: A =

[

1 −1
−1 2

]

� 0 because

xTAx =
[

x1 x2

]

[

1 −1
−1 2

] [

x1

x2

]

= x2
1 + 2x2

2 − 2x1x2

= (x1 − x2)
2 + x2

2 ≥ 0

or we can check from

• eigenvalues of A are 0.38 and 2.61 (real and positive)

• the principle minors are 1 and

∣

∣

∣

∣

1 −1
−1 2

∣

∣

∣

∣

= 1 (all positive)

note: A � 0 does not mean all entries of A are positive!
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Properties: if A � 0 then

• all the diagonal terms of A are nonnegative

• all the leading blocks of A are positive semidefinite

• BABT � 0 for any B

• if A � 0 and B � 0, then so is A+B

• A has a square root, denoted as a symmetric A1/2 such that

A1/2A1/2 = A
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Schur complement

a consider a symmetric matrix X partitioned as

X =

[

A B
C D

]

• Schur complement of D in X is defined as

S = A−BD−1C, if detD 6= 0

we can show that detX = detD detS

• Schur complement of A in X is defined as

S = D − CA−1B, if detA 6= 0

we can show that detX = detA detS
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Matrix inversion lemma

the inverse of X can be expressed with the terms involving Schur complement

an LDU decomposition is

[

A B
C D

]

=

[

I BD−1

0 I

] [

A−BD−1C 0
0 D

] [

I 0
D−1C I

]

this proves that the inverse of the whole box is det(A−BD−1C) detD

if D and S = A− BD−1C are invertible, the inverse of the whole block is

[

A B
C D

]−1

=

[

I 0
−D−1C I

] [

S−1 0
0 D−1

] [

I −BD−1

0 I

]

=

[

S−1 −S−1BD−1

−D−1CS−1 D−1 +D−1CS−1BD−1

]
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Schur complement of positive semidefinite matrix

X =

[

A B
BT D

]

, S1 = A−BD−1BT , S2 = D − BTA−1B,

Facts:

• X ≻ 0 if and only if D ≻ 0 and S2 ≻ 0

• if D ≻ 0 then X � 0 if and only if S2 � 0

• detX = detD detS1 = detAdetS2

analogous results for S2

• X ≻ 0 if and only if A ≻ 0 and S1 ≻ 0

• if A ≻ 0 then X � 0 if and only if S1 � 0
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Linear equations

a general linear system of m equations with n variables is described by

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
... = ...

am1x1 + am2x2 + · · ·+ amnxn = bm

where aij, bj are constants and x1, x2, . . . , xn are unknowns

• equations are linear in x1, x2, . . . , xn

• existence and uniqueness of a solution depend on aij and bj
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Linear equation in matrix form

the linear system of m equations in n variables

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
... = ...

am1x1 + am2x2 + · · ·+ amnxn = bm

in matrix form: Ax = b where

A =









a11 a12 . . . a1n
a21 a22 . . . a2n
... ... . . . ...

am1 am2 . . . amn









, x =









x1

x2
...
xn









, b =









b1
b2
...
bm
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Three types of linear equations

• square if m = n (A is square)

[

a11 a12
a21 a22

] [

x1

x2

]

=

[

b1
b2

]

• underdetermined if m < n (A is fat)

[

a11 a12 a13
a21 a22 a23

]





x1

x2

x3



 =

[

b1
b2

]

• overdetermined if m > n (A is skinny)





a11 a12
a21 a22
a31 a32





[

x1

x2

]

=





b1
b2
b3
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Existence and uniqueness of solutions

existence:

• no solution

• a solution exists

uniqueness:

– the solution is unique

– there are infinitely many solutions

every system of linear equations has zero, one, or infinitely many solutions

there are no other possibilities
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Nullspace

the nullspace of an m× n matrix is defined as

N (A) = {x ∈ Rn | Ax = 0}

• the set of all vectors that are mapped to zero by f(x) = Ax

• the set of all vectors that are orthogonal to the rows of A

• if Ax = b then A(x+ z) = b for all z ∈ N (A)

• also known as kernel of A

• N (A) is a subspace of Rn
✎
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Zero nullspace matrix

• A has a zero nullspace if N (A) = {0}

• if A has a zero nullspace and Ax = b is solvable, the solution is unique

• columns of A are independent

✌ equivalent conditions: A ∈ Rn×n

• A has a zero nullspace

• A is invertible or nonsingular

• columns of A are a basis for Rn
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Range space

the range of an m× n matrix A is defined as

R(A) = {y ∈ Rm | y = Ax for some x ∈ Rn }

• the set of all m-vectors that can be expressed as Ax

• the set of all linear combinations of the columns of A =
[

a1 · · · an
]

R(A) = {y | y = x1a1 + x2a2 + · · ·+ xnan, x ∈ Rn}

• the set of all vectors b for which Ax = b is solvable

• also known as the column space of A

• R(A) is a subspace of Rm
✎
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Full range matrices

A has a full range if R(A) = Rm

✌ equivalent conditions:

• A has a full range

• columns of A span Rm

• Ax = b is solvable for every b

• N (AT ) = {0}
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Rank and Nullity

rank of a matrix A ∈ Rm×n is defined as

rank(A) = dimR(A)

nullity of a matrix A ∈ Rm×n is

nullity(A) = dimN (A)

Facts ✌

• rank(A) is maximum number of independent columns (or rows) of A

rank(A) ≤ min(m,n)

• rank(A) = rank(AT )
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Full rank matrices

for A ∈ Rm×n we always have rank(A) ≤ min(m,n)

we say A is full rank if rank(A) = min(m,n)

• for square matrices, full rank means nonsingular (invertible)

• for skinny matrices (m ≥ n), full rank means columns are independent

• for fat matrices (m ≤ n), full rank means rows are independent
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Theorems

• Rank-Nullity Theorem: for any A ∈ Rm×n,

rank(A) + dimN (A) = n

• the system Ax = b has a solution if and only if b ∈ R(A)

• the system Ax = b has a unique solution if and only if

b ∈ R(A), and N (A) = {0}
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Vector space

a vector space or linear space (over R) consists of

• a set V

• a vector sum + : V × V → V

• a scalar multiplication : R× V → V

• a distinguished element 0 ∈ V

which satisfy a list of properties
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V is called a vector space over R, denoted by (V ,R)
if elements, called vectors of V satisfy the following main operations:

1. vector addition:
x, y ∈ V ⇒ x+ y ∈ V

2. scalar multiplication:

for any α ∈ R, x ∈ V ⇒ αx ∈ V

• the definition 2 implies that a vector space contains the zero vector

0 ∈ V

• the two conditions can be combined into one operation:

x, y ∈ V , α ∈ R ⇒ αx+ αy ∈ V
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Inner product space

a vector space with an additional structure called inner product

an inner product space is a vector space V over R with a map

〈·, ·〉 : V × V → R

for all x, y, z ∈ V and all scalars a ∈ R, it satisfies

• conjugate symmetry: 〈x, y〉 = 〈y, x〉

• linearity in the first argument:

〈ax, y〉 = a〈x, y〉, 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉

• positive definiteness

〈x, x〉 ≥ 0, and 〈x, x〉 = 0 ⇐⇒ x = 0
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Examples of inner product spaces

• Rn

〈x, y〉 = yTx = x1y1 + x2y2 + · · ·+ xnyn

• Rm×n

〈X,Y 〉 = tr(Y TX)

• L2(a, b): space of real functions defined on (a, b) for which its second-power
of the absolute value is Lebesgue integrable, i.e.,

f ∈ L2(a, b) =⇒
√

∫ b

a

|f(t)|2dt < ∞

the inner product of this space is

〈f, g〉 =
∫ b

a

f(t)g(t)dt
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Orthogonality

let (V ,R) be an inner product space

• x and y are orthogonal:

x ⊥ y ⇐⇒ 〈x, y〉 = 0

• orthogonal complement in V of S ⊂ V , denoted by S⊥, is defined by

S⊥ = {x ∈ V | 〈x, s〉 = 0, ∀s ∈ S}

• V admits the orthogonal decomposition:

V = M⊕M⊥

where M is a subspace of V
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Orthonormal basis

{φn, n ≥ 0} ⊂ V is an orthonormal (ON) set if

〈φi, φj〉 =
{

1, i = j

0, i 6= j

and is called an orthonormal basis for V if

1. {φn, n ≥ 0} is an ON set

2. span{φn, n ≥ 0} = V

we can construct an orthonormal basis from the Gram-Schmidt orthogonalization
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Orthogonal expansion

let {φi}ni=1 be an orthonormal basis for a vector V of dimension n

for any x ∈ V , we have the orthogonal expansion:

x =
n
∑

i=1

〈x, φi〉φi

meaning: we can project x into orthogonal subspaces spanned by each φi

the norm of x is given by

‖x‖2 =
n
∑

i=1

|〈x, φi〉|2

can be easily calculated by the sum square of projection coefficients

Reviews on Linear algebra 3-55



Adjoint of a Linear Transformation

let A : V → W be a linear transformation

the adjoint of A, denoted by A∗ is defined by

〈Ax, y〉W = 〈x,A∗y〉V , ∀x ∈ V , y ∈ W

A∗ is a linear transformation from W to V

one can show that

W = R(A)⊕N (A∗)

V = R(A∗)⊕N (A)
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Example

A : Cn → Cm and denote A = {aij}

for x ∈ Cn and y ∈ Cm, and with the usual inner product in Cm, we have

〈Ax, y〉Cm =
m
∑

i=1

(Ax)i yi =
m
∑

i=1





n
∑

j=1

aijxj



 yi

=
n
∑

j=1

xj

(

m
∑

i=1

aijyi

)

=
n
∑

j=1

xj

(

m
∑

i=1

aijyi

)

=

n
∑

j=1

xj

(

A
T
y
)

j
, 〈x,AT

y〉Cn

hence, A∗ = A
T
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Basic properties of A∗

Let A∗ : W → V be the adjoint of A

facts:

• 〈A∗y, x〉 = 〈y, Ax〉 ⇔ (A∗)∗ = A

• A∗ is a linear transformation

• (αA)∗ = αA∗ for α ∈ C

• let A and B be linear transformations, then

(A+B)∗ = A∗ +B∗ and (AB)∗ = B∗A∗
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Normed vector space

a normed vector space is a vector space V over a R with a map

‖ · ‖ : V → R

called norm that satisfies

• homogenity
‖αx‖ = |α|‖x‖, ∀x ∈ V , ∀α ∈ R

• triangular inequality

‖x+ y‖ ≤ ‖x‖+ ‖y‖, ∀x, y ∈ V

• positive definiteness

‖x‖ ≥ 0, ‖x‖ = 0 ⇐⇒ x = 0, ∀x ∈ V
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Cauchy-Schwarz inequality

for any x, y in an inner product space (V ,R)

|〈x, y〉| ≤ ‖x‖‖y‖

moreover, for y 6= 0,

〈x, y〉 = ‖x‖‖y‖ ⇐⇒ x = αy, ∃α ∈ R

proof. for any scalar α

0 ≤ ‖x+ αy‖2 = ‖x‖2 + α2‖y‖2 + α〈x, y〉+ α〈y, x〉

if y = 0 then the inequality is trivial

if y 6= 0, then we can choose α = −〈x, y〉
‖y‖2

and the C-S inequality follows
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Example of vector and matrix norms

x ∈ Rn and A ∈ Rm×n

• 2-norm

‖x‖2 =
√
xTx =

√

x2
1 + x2

2 + · · ·+ x2
n

‖A‖F =
√

tr(ATA) =

√

√

√

√

m
∑

i=1

n
∑

j=1

|aij|2

• 1-norm

‖x‖1 = |x1|+ |x2|+ · · ·+ |xn|, ‖A‖1 =
∑

ij |aij|

• ∞-norm

‖x‖∞ = max
k

{|x1|, |x2|, . . . , |xn|}, ‖A‖∞ = max
ij

|aij|
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Operator norm

matrix operator norm of A ∈ Rm×n is defined as

‖A‖ = max
‖x‖6=0

‖Ax‖
‖x‖ = max

‖x‖=1
‖Ax‖

also often called induced norm

properties:

1. for any x, ‖Ax‖ ≤ ‖A‖‖x‖

2. ‖aA‖ = |a|‖A‖ (scaling)

3. ‖A+B‖ ≤ ‖A‖+ ‖B‖ (triangle inequality)

4. ‖A‖ = 0 if and only if A = 0 (positiveness)

5. ‖AB‖ ≤ ‖A‖‖B‖ (submultiplicative)
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examples of operator norms

• 2-norm or spectral norm

‖A‖2 , max
‖x‖2=1

‖Ax‖2 =
√

λmax(ATA)

• 1-norm

‖A‖1 , max
‖x‖1=1

‖Ax‖1 = max
j=1,...,n

m
∑

i=1

|aij|

• ∞-norm

‖A‖∞ , max
‖x‖∞=1

‖Ax‖∞ = max
i=1,...,m

n
∑

j=1

|aij|

note that the notation of norms may be duplicative
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Matrix factorizations

• LU factorization

• QR factorization

• singular value decomposition

• Cholesky factorization
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LU factorization

for any n× n matrix A, it admits a decomposition

A = PLU

with row pivoting

• P permutation matrix, L unit lower triangular, U upper triangular

• the decomposition exists if and only if A is nonsingular

• it is obtained from the Gaussian elimination process
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QR factorization

a tall matrix A ∈ Rm×n with m ≥ n is decomposed as

A = QR =
[

Q1 Q2

]

[

R1

0

]

• Q ∈ Rm×n is an orthogonal matrix (QTQ = I)

• R ∈ Rn×n is an upper triangular

• if rank(A) = n, then n columns in Q1 ∈ Rm×n forms an orthonormal basis
for R(A) and that R1 is invertible

• if rank(A) < n then R1 contains a zero in the diagonal

• QR is obtained by many methods, e.g., Gram Schmidt, Householder transform
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Singular value decomposition

ler A ∈ Rm×n with rank(A) = r ≤ min(m,n) then

A = U

[

Σ+ 0
0 0

]

V T , Σ+ =









σ1

σ2
. . .

σr









U =
[

U1 U2

]

, U1 ∈ Rm×r, U2 ∈ Rm×(m−r), UTU = Im

V =
[

V1 V2

]

, V1 ∈ Rn×r, V2 ∈ Rn×(n−r), V TV = In

• the singular values of A:

σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · = σp = 0, p = min(m,n)

are the square root of the eigenvalues of ATA
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• columns of U are the eigenvectors of ATA

• columns of V are the eigenvectors of AAT

• the reduced form of SVD is A = U1Σ+V
T
1

• the Frobenious norm of A is ‖A‖F = tr(Σ+)

• ‖A‖2 is the maximum singular value of A

• rank(A) is the number of nonzero singular value of A
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Cholesky factorization

every positive definite matrix A can be factored as

A = LLT

where L is lower triangular with positive diagonal elements

• L is called the Cholesky factor of A

• can be interpreted as ‘square root’ of a positive define matrix
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Derivative and Gradient

Suppose f : Rn → Rm and x ∈ int dom f

the derivative (or Jacobian) of f at x is the matrix Df(x) ∈ Rm×n:

Df(x)ij =
∂fi(x)

∂xj
, i = 1, . . . ,m, j = 1, . . . , n

• when f is scalar-valued (i.e., f : Rn → R), the derivative Df(x) is a row
vector

• its transpose is called the gradient of the function:

∇f(x) = Df(x)T , ∇f(x)i =
∂f(x)

∂xi
, i = 1, . . . , n

which is a column vector in Rn
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Second Derivative

suppose f is a scalar-valued function (i.e., f : Rn → R)

the second derivative or Hessian matrix of f at x, denoted ∇2f(x) is

∇2f(x)ij =
∂2f(x)

∂xi∂xj
, i = 1, . . . , n, j = 1, . . . , n

example: the quadratic function f : Rn → R

f(x) = (1/2)xTPx+ qTx+ r,

where P ∈ Sn, q ∈ Rn, and r ∈ R

• ∇f(x) = Px+ q

• ∇2f(x) = P
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Chain rule

assumptions:

• f : Rn → Rm is differentiable at x ∈ int dom f

• g : Rm → Rp is differentiable at f(x) ∈ int dom g

• define the composition h : Rn → Rp by

h(z) = g(f(z))

then h is differentiable at x, with derivative

Dh(x) = Dg(f(x))Df(x)

special case: f : Rn → R, g : R → R, and h(x) = g(f(x))

∇h(x) = g′(f(x))∇f(x)
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example: h(x) = f(Ax+ b)

Dh(x) = Df(Ax+ b)A ⇒ ∇h(x) = AT∇f(Ax+ b)

example: h(x) = (1/2)(Ax− b)TP (Ax− b)

∇h(x) = ATP (Ax− b)
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Function of matrices

we typically encounter some scalar-valued functions of matrix X ∈ Rm×n

• f(X) = tr(ATX) (linear in X)

• f(X) = tr(XTAX) (quadratic in X)

definition: the derivative of f (scalar-valued function) with respect to X is

∂f

∂X
=













∂f
∂x11

∂f
∂x12

· · · ∂f
∂x1n

∂f
∂x21

∂f
∂x22

· · · ∂f
∂x2n... . . . ...

∂f
∂xm1

∂f
∂xm2

· · · ∂f
∂xmn













note that the differential of f can be generalized to

f(X + dX)− f(X) = 〈 ∂f
∂X

, dX〉+ higher order term
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Derivative of a trace function

let f(X) = tr(ATX)

f(X) =
∑

i

(ATX)ii =
∑

i

∑

k

(AT )kiXki

=
∑

i

∑

k

AkiXki

then we can read that ∂f
∂X = A (by the definition of derivative)

we can also note that

f(X + dX)− f(X) = tr(AT (X + dX))− tr(ATX) = tr(ATdX) = 〈dX,A〉

then we can read that ∂f
∂X = A
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• f(X) = tr(XTAX)

f(X + dX)− f(X) = tr((X + dX)TA(X + dX))− tr(XTAX)

≈ tr(XTAdX) + tr(dXTAX)

= 〈dX,ATX〉+ 〈AX, dX〉

then we can read that ∂f
∂X = ATX +AX

• f(X) = ‖Y −XH‖2F where Y and H are given

f(X + dX) = tr((Y −XH − dXH)T (Y −XH − dXH))

f(X + dX)− f(X) ≈ − tr(HTdXT (Y −XH))− tr((Y −XH)TdXH)

= − tr((Y −XH)HTdXT )− tr(H(Y −XH)TdX)

= −2〈(Y −XH)HT , dX〉

then we identifiy that ∂f
∂X = −2(Y −XH)HT
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Derivative of a log det function

let f : Sn → R be defined by f(X) = log det(X)

log det(X + dX) = log det(X1/2(I +X−1/2dXX−1/2)X1/2)

= log detX + log det(I +X−1/2dXX−1/2)

= log detX +
n
∑

i=1

log(1 + λi)

where λi is an eigenvalue of X−1/2dXX−1/2

f(X + dX)− f(X) ≈
n
∑

i=1

λi (log(1 + x) ≈ x, x → 0)

= tr(X−1/2dXX−1/2)

= tr(X−1dX)

we identify that ∂f
∂X = X−1
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