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3. Reviews on Linear algebra

e matrices and vectors

e linear equations

e range and nullspace of matrices

e norm and inner product spaces

e matrix factorizations

e function of vectors, gradient and Hessian

e function of matrices
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Vector notation

n-vector x: L
L1
L2
x=|"
Ln
e also written as x = (x1,x2,...,%y)

e set of n-vectors is denoted R™ (Euclidean space)
e z,;. ith element or component or entry of x
e z is also called a column vector

e y=1|y1 Y2 - Y| is called a row vector

unless stated otherwise, a vector typically means a column vector
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Special vectors

zero vectors: x = (0,0,...,0)
all-ones vectors: x = (1,1,---,1) (we will denote it by 1)

standard unit vectors: e; has only 1 at the £th entry and zero otherwise

1 0 0
€1 — 0 , €y — 1 , €3 — 0
0] 0] 1]

(standard unit vectors in R?)

unit vectors: any vector u whose norm (magnitude) is 1, i.e.,

Jull £ \fu2 + g+ u2 =1

example: u = (1/v/2,2/v6,—1/v/2)
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Inner products

definition: the inner product of two n-vectors x,y is

T1Y1 + L2Y2 + -+ Tnln
also known as the dot product of vectors x, y
notation: =’y

properties ©

Ty = a(zty) for scalar

* (o)
o (x+y)lz=alz+yl2
o vly=yla
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Euclidean norm

|z]] = /2T + 234 + 22 = VaTa
properties
e also written ||x||2 to distinguish from other norms

o ||azx| = |al||x| for scalar «

o |z +y| <|lz|| + ||yl (triangle inequality)

e ||z]| >0and ||z]| =0onlyif x =0
interpretation

e ||x|| measures the magnitude or length of x

e ||x — y|| measures the distance between x and y
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Matrix notation

an m X n matrix A is defined as

a1 ai2 .. A1n
a1 a9 .. aon
A= _ _ _ , or A= [aij]an
_aml Am2 - .. amn_

a;; are the elements, or coefficients, or entries of A
set of m X m-matrices is denoted R"**"
A has m rows and n columns (m,n are the dimensions)

the (7,7) entry of A is also commonly denoted by A;;

A is called a square matrix if m =n
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Special matrices

zero matrix: A =0

0 0 0
0 0 0
A= S 0
0 0 0
a,ij:O, fOFiZl,...,m,jZL...,n
identity matrix: A =1 i )
1 0 0
0 1 0
A= : : 0
0 0 1]

a square matrix with a;; = 1,a,; =0 for 7 # j
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diagonal matrix: a square matrix with a;; = 0 for 7 # j

ai 0 0
0 0 ap]

triangular matrix:

a square matrix with zero entries in a triangular part

upper triangular lower triangular
a1l @12ttt Gip a;pr O -+ 0
0 ax --- a a1 a2 -+ 0
A= A= .
i 0 0 e afnn_ _afnl aAp2 - afnn_
az-j:OforiZj CLij:OfOFiéj
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Block matrix notation

example: 2 x 2-block matrix A

=b %

for example, if B,C, D, E are defined as

B:E é] C:[(l) é ﬂ D=0 1, E=[-4 1 -1

then A is the matrix

2 1 0 1 7
A=13 8 1 9 1
01 -4 1 -1

note: dimensions of the blocks must be compatible
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Column and Row partitions

write an m X n-matrix A in terms of its columns or its rows

A:[al as - an]:
e a; for j =1,2,...,n are the columns of A
e bl fori=1,2,...,m are the rows of A
1 2 1
example.A—[4 9 O]
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Matrix-vector product

product of m x n-matrix A with n-vector x

a11T1 —+ a12I92 + ...+ A1nTn
AZC . a21I1 + a22I9 + ...+ Ao2nTn

| Am171 + Q2T + ...+ AmnTn,_
e dimensions must be compatible: # columns in A = # elements in x
if A is partitioned as A = [al ay - an}, then

Ar = a1x1 + asxo + - - + anTy

e Ax is a linear combination of the column vectors of A

e the coefficients are the entries of &
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Product with standard unit vectors

post-multiply with a column vector

0
a1 a2 ain | |0 a1k
a a .. a : a
Aep = | 24 72 2n | = 2k = the kth column of A
_aml Am?2 amn_ : _amk_
0
pre-multiply with a row vector
aijp a2 ... din
a a . a
etA = [0 0 - 1 - 0 ab e an
_CLml Am,2 Cl,mn_
= [am Lo akn} — the kth row of A
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Trace

Definition: trace of a square matrix A is the sum of the diagonal entries in A

tr(A) =ai1 + a2+ -+ ap,

example: i i
2 1 4

A=10 -1 5

3 4 6

traceof Ais2—14+6=7

properties ©

o tr(Al) = tr(A)
o tr(aA+ B) =atr(A) + tr(B)
e tr(AB) =tr(BA)
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Eigenvalues
A\ € C is called an eigenvalue of A € C™"*" if
det(A\l — A) =0
equivalent to:
e there exists nonzero x € C" s.t. (M — A)x =0, i.e.,
Ax = \x
any such x is called an eigenvector of A (associated with eigenvalue \)
e there exists nonzero w € C" such that
wl' A = w?

any such w is called a left eigenvector of A
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Computing eigenvalues

e X(\) =det(A — A) is called the characteristic polynomial of A
e X ()\) =0 is called the characteristic equation of A

e cigenvalues of A are the root of characteristic polynomial
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Properties

e if Aisn xn then X()\) is a polynomial of order n

o if Aisn X n then there are n eigenvalues of A

e even when A is real, eigenvalues and eigenvectors can be complex, e.g.,

2
A:F _1], A= |—6
19

e if A and X are real, we can choose the associated eigenvector to be real

e if A is real then eigenvalues must occur in complex conjugate pairs

0
—2
D

1
0
—4

e if x is an eigenvector of A, so is ax for any a € C, a # 0

e an eigenvector of A associated with A lies in N(AI — A)
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Important facts
denote A(A) an eigenvalue of A
o \(aA)=aA(A) forany a € C
e tr(A) is the sum of eigenvalues of A
e det(A) is the product of eigenvalues of A

e A and A’ share the same eigenvalues

o \(AT) =)\(A)
o )\(ATA) >0
o \(A™) = (A(A))™ for any integer m

e A is invertible if and only if A = 0 is not an eigenvalue of A S
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Eigenvalue decomposition

if A is diagonalizable then A admits the decomposition
A=TDT!

e D is diagonal containing the eigenvalues of A
e columns of T' are the corresponding eigenvectors of A

e note that such decomposition is not unique (up to scaling in T)

recall: A is diagonalizable iff all eigenvectors of A are independent
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Inverse of matrices

Definition:

a square matrix A is called invertible or nonsingular if there exists B s.t.
AB=BA=1

e B is called an inverse of A
e it is also true that B is invertible and A is an inverse of B

e if no such B can be found A is said to be singular
assume A is invertible

e an inverse of A is unique

e the inverse of A is denoted by A1
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assume A, B are invertible

Facts &

o (aA)™t =atA~! for nonzero «

e Al is also invertible and (A1)t = (A~1)T
e AB is invertible and (AB)™! = B~1A~1

e (A+B) £ A4 B!
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Inverse of 2 x 2 matrices

the matrix

is invertible if and only if

and its inverse is given by

example:

Reviews on Linear algebra
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Invertible matrices

¥ Theorem: for a square matrix A, the following statements are equivalent

1. A is invertible
2. Ax = 0 has only the trivial solution (z = 0)

3. the reduced echelon form of A is [

4. A is invertible if and only if det(A) # 0
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Inverse of special matrices

diagonal matrix

aq 0 0
] 0 0 A,

a diagonal matrix is invertible iff the diagonal entries are all nonzero
am;é(), i:1,2,...,n

the inverse of A is given by

1/a; O -+ 0
g1 | 0 Lay oo 0
0 - 0 1/ay]

the diagonal entries in A~! are the inverse of the diagonal entries in A
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triangular matrix:

upper triangular lower triangular
a1 a1z - Aig aigz 0 -+ 0
O a o o o a a/ a o o o O
A — 22 2n | 4 _ |[@21 422
i 0 0 T afnn_ _afnl Ap2 - afnn_
CLij:OfOFiZj aij:OforiSj

a triangular matrix is invertible iff the diagonal entries are all nonzero
aii#(), Vizl,Z,...,n

e product of lower (upper) triangular matrices is lower (upper) triangular

e the inverse of a lower (upper) triangular matrix is lower (upper) triangular
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symmetric matrix: A = A’

ES

e for any square matrix A, AAT and AT A are always symmetric

o if A is symmetric and invertible, then A1 is symmetric

e if A is invertible, then AAT and AT A are also invertible
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Symmetric matrix

A € R™™"™ is called symmetric if A = AT

Facts: if A is symmetric

e all eigenvalues of A are real
e all eigenvectors of A are orthogonal
e A admits a decomposition
A=UDU"
where UTU = UU? = I (U is unitary) and D is diagonal

(of course, the diagonals of D are eigenvalues of A)

Reviews on Linear algebra
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Unitary matrix

a matrix U € R"*" is called unitary if

Ul =v0U" =1

examble: 1 —1| |cosf® —sinf
pie: 1 1| |sinf@ cosé

N

Facts:

e a real unitary matrix is also called orthogonal
e a unitary matrix is always invertible and U~! = U?
e columns vectors of U are mutually orthogonal

e norm is preserved under a unitary transformation:

y=Uz = |yl ==
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Idempotent Matrix

A € R"" is an idempotent (or projection) matrix if

A=A

examples: identity matrix

Facts: Let A be an idempotent matrix

e cigenvalues of A are all equal to 0 or 1
e [ — A is idempotent

o if A=+ 1, then A is singular

Reviews on Linear algebra
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Projection matrix

a square matrix P is a projection matrix if and only if P? = P

e P is a linear transformation from R" to a subspace of R", denoted as S
e columns of P are the projections of standard basis vectors
e S is the range of P

e from P? = P, it means if P is applied twice on a vector in S, it gives the
same vector

e examples:

I
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Orthogonal projection matrix

a projection matrix is called orthogonal if and only if P = P*
e P is bounded, i.e., | Px|| < ||z
|Px||5 = 2t PT Py = o' Pz = o' Px < || Pzx|||| ||

(by Cauchy-Schwarz inequality — more on this later)

e if P is an orthogonal projection onto a line spanned by a unit vector u,
P =uu
(we see that rank(P) = 1 as the dimension of a line is 1)

e another example: P = A(ATA)7t AT for any matrix A
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Nilpotent matrix

A € R"™ " is nilpotent if
A¥ =0, for some positive integer k

Example: any triangular matrices with 0's along the main diagonal

o 1 0 --- 0
0100 O e
000 - 1

also related to deadbeat control for linear discrete-time systems

Facts:

e the characteristic equation for A is A\ =0

e all eigenvalues are 0
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Positive definite matrix

a symmetric matrix A is positive semidefinite, written as A > 0 if
et Az >0, VzeR"
and positive definite, written as A = 0 if

z!' Az > 0, for all nonzero x € R"

Facts: A > 0 if and only if

e all eigenvalues of A are non-negative

e all principle minors of A are non-negative
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I -1

example: A = [_1 9

] > 0 because

vl Az =[xy o] [_11 _21] [ij

= 27 + 225 — 22179

= (21 — x2)* + 25 >0
or we can check from

e cigenvalues of A are 0.38 and 2.61 (real and positive)

= 1 (all positive)

I -1
-1 2

e the principle minors are 1 and ‘

note: A > 0 does not mean all entries of A are positive!

Reviews on Linear algebra
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Properties: if A > 0 then

e all the diagonal terms of A are nonnegative

e all the leading blocks of A are positive semidefinite
e BAB' =0 for any B

o if A>0and B> 0, thensois A+ B

e A has a square root, denoted as a symmetric A'/2 such that

A1/2A1/2 — A
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Schur complement

a consider a symmetric matrix X partitioned as

el

e Schur complement of D in X is defined as
S=A—-BD'C, if detD#0
we can show that det X = det Ddet S
e Schur complement of A in X is defined as
S=D—-CA'B, if detA#0

we can show that det X = det Adet S
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Matrix inversion lemma

the inverse of X can be expressed with the terms involving Schur complement

an LDU decomposition is

A B| |I BD'||A-BD'C 0 1 0
C D| |0 I 0 D| |D7C I
this proves that the inverse of the whole box is det(A — BD~1C) det D

if Dand S = A — BD~1C are invertible, the inverse of the whole block is

A Bl7" [ 1 0][st o0][1 -BD!
c p| “|-p'c 1[0 Do I

st ~S~1BD!
—D-'cS™! D4+ D 'CS'BD!
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Schur complement of positive semidefinite matrix

BT D

X:[A B], Si=A—-BD'BY S,=D-BY'A™'B,

Facts:

e X >=0ifandonlyif D> 0and Sy >0
o if D> 0then X >0 if and only if So > 0
e det X = det Ddet S; = det Adet S5

analogous results for S5

e X >=0ifandonlyif A>=0and S; =0
o if A>0then X >0 if and only if S; = 0
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Linear equations

a general linear system of m equations with n variables is described by

a11r1 + a12r2 + -+ a1, = by

a2171 + a22T2 + - - + a2pxTy, = b2

Am1T1 + AmaT2 + -+ + ATy = bm

where a;;, b; are constants and xy, zo,...,x, are unknowns
e equations are linear in x1, 29, ..., T,

e existence and uniqueness of a solution depend on a;; and b;
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Linear equation in matrix form

the linear system of m equations in n variables

a1121 + a12T2 + -+ a1y, = b0y
21T, + a92To + - -+ + a9pT, = bo
Am1T1 + Am2T2 + -+ Amnln — bm

in matrix form: Ax = b where

a1 a2 .. A1n L1 bl

a1 a9 ce as iy b2

A — . . -n ) r = . ’ b — .
_Cl/ml Cl/m2 PR a/mn_ _xrn/— _bm_
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Three types of linear equations

e square if m=n

aii
a1

e underdetermined if m < n
ali
a21

e overdetermined if m > n

aii
a1
asi
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a2
a2

ais
a23

(A is square)

(A is fat)

(A is skinny)

3-40



Existence and uniqueness of solutions

existence:

e no solution

e a solution exists

uniqueness:

— the solution is unique
— there are infinitely many solutions

every system of linear equations has zero, one, or infinitely many solutions

there are no other possibilities
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Nullspace

the nullspace of an m x n matrix is defined as

N(A) ={x € R" | Az = 0}

e the set of all vectors that are mapped to zero by f(x) = Ax
e the set of all vectors that are orthogonal to the rows of A

o if Ax =0bthen A(x + 2) =0b for all z € N(A)

e also known as kernel of A

e N(A) is a subspace of R" SN
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Zero nullspace matrix

e A has a zero nullspace if N(A) = {0}
e if A has a zero nullspace and Ax = b is solvable, the solution is unique

e columns of A are independent

¥ equivalent conditions: A € R"*"

e A has a zero nullspace
e A is invertible or nonsingular

e columns of A are a basis for R"
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Range space
the range of an m X n matrix A is defined as
R(A) ={y € R" | y = Ax for some z € R" }

e the set of all m-vectors that can be expressed as Ax

e the set of all linear combinations of the columns of A = [al fe an]

R(A) ={y |y =z1a1 + 2202+ - - + Tpa,, x€R"}

e the set of all vectors b for which Az = b is solvable

e also known as the column space of A

e R(A) is a subspace of R™ SN
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Full range matrices

A has a full range if R(A) = R™

¥ equivalent conditions:

e A has a full range
e columns of A span R™

e Ax = b is solvable for every b

e N(AT) = {0}
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Rank and Nullity

Ran

rank of a matrix A € is defined as

rank(A) = dimR(A)
nullity of a matrix A € R™*" is

nullity (A) = dim N (A)

Facts ¥

e rank(A) is maximum number of independent columns (or rows) of A

rank(A) < min(m,n)
e rank(A) = rank(AT)
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Full rank matrices

for A € R™*™ we always have rank(A) < min(m,n)

we say A is full rank if rank(A) = min(m,n)

e for square matrices, full rank means nonsingular (invertible)
e for skinny matrices (m > n), full rank means columns are independent

e for fat matrices (m < n), full rank means rows are independent
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Theorems

e Rank-Nullity Theorem: for any A € R™*",

rank(A) + dim N (A) =n

e the system Az = b has a solution if and only if b € R(A)

e the system Axz = b has a unique solution if and only if

beR(A), and N(A) = {0}
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Vector space

a vector space or linear space (over R) consists of

e aset)V
e avectorsum +: VxV =V
e a scalar multiplication : Rx VYV — V

e a distinguished element 0 € V

which satisfy a list of properties
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V is called a vector space over R, denoted by (), R)

if elements, called vectors of V satisfy the following main operations:

1. vector addition:
z,yeV = x+yecV

2. scalar multiplication:

forany a€e Rjx €V = axeV

e the definition 2 implies that a vector space contains the zero vector

0eV

e the two conditions can be combined into one operation:

r,yelV, a€eR = ar+ayecV
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Inner product space

a vector space with an additional structure called inner product

an inner product space is a vector space )V over R with a map
(w):VxV—=>R

for all z,y,z € V and all scalars a € R, it satisfies

e conjugate symmetry: (x,y) = (y, )
e linearity in the first argument:

(ax,y) = alz,y), (r+y,2) = (7,2)+(y,2)

e positive definiteness

(x,x) >0, and (zr,x)=0<=x =
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Examples of inner product spaces

o R"
(z,y) = mi = T1Y1 + T2Yy2 + - + TpYn

° Ran

(X,Y) =tr(Y'TX)

e L5(a,b): space of real functions defined on (a,b) for which its second-power
of the absolute value is Lebesgue integrable, i.e.,

b
f e Ly(a,b) = \// | f(t)]2dt < o0

the inner product of this space is

b
(fg) = / F(t)g(t)dt
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Orthogonality
let (V,R) be an inner product space
e = and y are orthogonal:

rly <= (xr,y)=0

e orthogonal complement in V of S C V, denoted by S+, is defined by

St={zecV|(x,s)=0, Vse S}

e ) admits the orthogonal decomposition:
V=MeoM"

where M is a subspace of V
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Orthonormal basis

{¢n,n >0} CV is an orthonormal (ON) set if

1, i=j

and is called an orthonormal basis for V if

1. {¢n,n >0} is an ON set
2. span{¢,,n >0} =V

we can construct an orthonormal basis from the Gram-Schmidt orthogonalization
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Orthogonal expansion
let {¢;}I_; be an orthonormal basis for a vector V of dimension n

for any = € V), we have the orthogonal expansion:

1=1

meaning: we can project x into orthogonal subspaces spanned by each ¢,

the norm of x is given by
mn
|zl =) [, o)
i=1

can be easily calculated by the sum square of projection coefficients
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Adjoint of a Linear Transformation

let A:) — VW be a linear transformation

the adjoint of A, denoted by A* is defined by

(Az,y)w = (x, A%y)y, VeeV,yeW

A* is a linear transformation from YV to V

one can show that

W = R(A) & N(A¥)
R(A™) & N(A)

<
I

Reviews on Linear algebra

3-56



Example

A:C" — C™ and denote A = {a;;}

for x € C" and y € C™, and with the usual inner product in C™, we have

(Az,y)cm

hence, A* = A
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Z(Aac)z Yi = ) y:az‘jxj Y,
i=1 i=1 \ j=1

ZZCJ (Z a’ijz'> — ij <Z azg.%)
=1 i=1 =1 i=1

- —T —T
>ori(dy) & @Ay

=1
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Basic properties of A*

Let A* : W — V be the adjoint of A

facts:

o (A'y,x) = (y,Azr) & (A*)* = A
e A* is a linear transformation
o (tA)* =aA* foraeC

e let A and B be linear transformations, then

(A+B) = A*+ B* and (AB)* = B*A"
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Normed vector space

a normed vector space is a vector space V) over a R with a map

|-|:V—R

called norm that satisfies
e homogenity

|ax|| = |a|||z]|, Ve e V,Va € R
e triangular inequality

lz+yll < llzll +llyll,  Vz,yeV
e positive definiteness

|z|]] >0, Jz||=0<«= =0, Ve eV

Reviews on Linear algebra 3-59



Cauchy-Schwarz inequality
for any z,y in an inner product space (V,R)
[z, )| < =]yl
moreover, for y #~ 0,
(z,y) = lzlllyl <= z=ay, JaeR
proof. for any scalar «
0 < lz+ ayl® = [lzl* + &*lyl* + alz, y) + aly, z)

if y = 0 then the inequality is trivial

Az y)
lyll?

if y # 0, then we can choose o =

and the C-S inequality follows
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Example of vector and matrix norms

r €R"and A € R™*"

e 2-norm
H$H2 —Valy = \/x%+x%_|_..._|_$%
|AllF = \/tr(ATA) = 375 a2
\ i=1 j=1
e l-norm
|||y = 21| + Jwo] 4+ -+ zal, (Al = 2255 lag]
® OO-norm

|70 = max{|as], |22, [@nl}, (| Alle = max]ai;|
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Operator norm

matrix operator norm of A € R™*" is defined as
A
|All = max Azl _ | Az|
lzliz0 [lz]  l=li=1

also often called induced norm

properties:

1. for any z, [[Az|| < [|A]/||<]]
2. ||aA]l = [al|| Al

3. [A+ B < [[All + B

4. ||A|| =0 if and only if A =0

5. [[AB|| < [[Alll|B]

Reviews on Linear algebra
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examples of operator norms

e 2-norm or spectral norm

[All2 2 max [[Az]2 = 1/ Amax(AT4)

[z ll2=1

e 1-norm
m
Al 2 max [ Ac] = max Y oyl
N

[zll1=1

® OO-norm

n
|Allo & max [|Azllo = max  ayl
2] oo=1 i=1,..im

note that the notation of norms may be duplicative
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Matrix factorizations

e LU factorization
e QR factorization
e singular value decomposition

e Cholesky factorization
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LU factorization

for any n x n matrix A, it admits a decomposition
A=PLU
with row pivoting

e P permutation matrix, L unit lower triangular, U upper triangular
e the decomposition exists if and only if A is nonsingular

e it is obtained from the Gaussian elimination process
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QR factorization

Rm><n

a tall matrix A € with m > n is decomposed as

a-or=[Qr @ |

e (Q € R™*" is an orthogonal matrix (Q1Q = I)
o R c R" "™ is an upper triangular

e if rank(A) = n, then n columns in Q1 € R™™" forms an orthonormal basis
for R(A) and that R; is invertible

e if rank(A) < n then R; contains a zero in the diagonal

e QR is obtained by many methods, e.g., Gram Schmidt, Householder transform
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Singular value decomposition

ler A € R™*" with rank(A) = r < min(m,n) then

- _
. 0
0 O

g2

A:U[ ]VT, E+:

Or

U=[U, U], U €R™" UyeR™ ™" yTy=rp,
V=[W Vo, VieR™ V,eR>*" " vy =g,
e the singular values of A:
01 >002> - 2>20,>0,41=---=0,=0, p=min(m,n)

are the square root of the eigenvalues of A7 A
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e columns of U are the eigenvectors of AT A

e columns of V are the eigenvectors of AAT

e the reduced form of SVD is A = U1 X V{1

e the Frobenious norm of A is ||A||r = tr(X4)
e ||A]|2 is the maximum singular value of A

e rank(A) is the number of nonzero singular value of A
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Cholesky factorization

every positive definite matrix A can be factored as
A=LL"
where L is lower triangular with positive diagonal elements

e L is called the Cholesky factor of A

e can be interpreted as ‘square root’ of a positive define matrix
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Derivative and Gradient

Suppose f : R" — R" and z € int dom f

the derivative (or Jacobian) of f at x is the matrix D f(z) € R™*™:

df;
Df(x)ij = (rj;afjx)a

1=1,....m, j7=1,....n

e when f is scalar-valued (i.e., f: R™ — R), the derivative D f(x) is a row
vector

e its transpose is called the gradient of the function:

which is a column vector in R"
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Second Derivative

suppose f is a scalar-valued function (i.e., f : R" — R)

the second derivative or Hessian matrix of f at x, denoted V*f(x) is

_ Pf(=)
B 0:1:1-8:53-’

V2 f ()i

1=1,....,n, 7=1,...,n

example: the quadratic function f : R" — R
f(z) = (1/2)27 Pz + T2 + 1,
where P € S, g € R", and r € R

e Vf(z) = Pr+q
e Vif(x) =P
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Chain rule

assumptions:

e f:R" — R"™ is differentiable at x € int dom f
e g: R" — R? is differentiable at f(z) € intdom g

e define the composition h : R — R? by

then h is differentiable at z, with derivative

Dh(z) = Dg(f(z))Df(z)

special case: f:R" = R, g: R — R, and h(z) = g(f(x))

Vh(z) = g'(f(x))V[(z)
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example: h(x) = f(Ax + b)
Dh(z) = Df(Az +b)A = Vh(z) = A'Vf(Azx +b)
example: h(z) = (1/2)(Az — b)) P(Ax —b)

Vh(z) = A*P(Axz —b)
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Function of matrices

we typically encounter some scalar-valued functions of matrix X € R

tr(AT X) (linear in X)
e f(X)=tr(XTAX) (quadratic in X)

o
g
s

||

definition: the derivative of f (scalar-valued function) with respect to X is

[ Of of L of
6:1:11 6:1:12 8x1n
of _ |2 o . of
—_ - — 21 22 L2n
0X 5 T
of of ... _9f
_axml 0T 2 axmn_

note that the differential of f can be generalized to

f(X+dX)— f(X) = <§—)J2, dX) 4 higher order term
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Derivative of a trace function
let f(X) = tr(ATX)
f(X) = Z(ATXM = ZE};(AT)MXM
= 22 AniXi
ik

then we can read that af = A (by the definition of derivative)

we can also note that
f(X+dX) - f(X)=tr(A"(X +dX)) — tr(A" X) = tr(A'dX) = (dX, A)

of
then we can read that o5 = A
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o f(X)=tr(XTAX)

FX+dX)— f(X) = tr((X+dX)TAX +dX)) —tr(XTAX)
~ tr(X1TAdX) +tr(dXTAX)
= (dX,A"X)+ (AX,dX)

then we can read that g—X —ATX + AX

e f(X)=|Y — XH|% where Y and H are given

f(X+dX) = tr((Y —XH —-dXH)'(Y - XH —dXH))
fIX+dX) - f(X) ~ —tr(HYdX'(Y —XH))—tr(Y — XH)'dXH)
= —tr((Y - XH)H"dX") —tr(H(Y — XH)"dX)
= 2((Y —= XH)H",dX)
then we identifiy that oL = —2(Y — XH)H”
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Derivative of a logdet function
let f:S"™ — R be defined by f(X) = logdet(X)
logdet(X +dX) = logdet(XV2(I+ X 124X X123 x1/2)
= logdet X + logdet(] + X ~*/2dXx X ~1/?)

= logdet X + > "log(1+ \;)

1=1

where )\; is an eigenvalue of X ~1/2dX X ~1/2

(X +dX) = f(X)

Q
[
>

i (log(l+x)=xz, ©—0)
i=1

= tr(X Y2dx X2
= tr(X 'dX)

we identify that 9% = X 1
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