15. Identification of closed loop systems

- Introduction
- Identifiability
- Direct identification
- Indirect identification
- Joint input-output identification

Introduction

- Many systems have to be run under feedback control
	- The plant is unstable
	- The plant has to be controlled for production, economic, or safety reasons
	- $-$ The plant contains inherent feedback mechanisms $(\emph{e.g., biological})$ systems)
- How the open loop system can be identified when it must operate under feedback control?

Identifiability considerations

We will use the following model in the analysis

$$
y(t) = G(q^{-1})u(t) + H(q^{-1})e(t), \quad \mathbf{E} e(t)e(t)^* = \Lambda \delta_{t,s}
$$

$$
u(t) = -F(q^{-1})y(t) + L(q^{-1})\nu(t)
$$

- $\bullet \hspace{0.1cm} \nu(t)$ can be a reference, a setpoint, or noise entering the regulator
- \bullet The input $u(t)$ depends on $y(t)$ (hence, dependence between $u(t)$ and $e(t))$
- $\bullet\,$ The aim with control is to minimize the deviation between $y(t)$ and the reference signal $\nu(t)$. Good control implies a small value of $u(t)$
- System identification requires good excitation, implying large variations in $u(t)$. Hence, there is a conflict with the previous aspect
- The frequency contents of the input is limited by the true system

Assumptions

- $\bullet\,$ The open loop system is strictly proper $(G(0)=0)$. Otherwise, an algebraic loop occurs
- The subsystems from ν and e to y of the closed loop system are asymptotically stable and has no unstable hidden mode:

 $L(q^{-1}), H(q^{-1}),$ and $[I + G(q^{-1})F(q^{-1})]^{-1}$ are asymptotically stable

- $\bullet \;\nu(t)$ is stationary and persistently exciting of a sufficient order
- $\bullet \hspace{0.1cm} \nu(t)$ and $e(s)$ are independent for all t and s

Some fallacies with closed loop identification

- The closed loop experiment maybe non-informative even if the input is persistently exciting
- Spectral analysis applied in ^a straightforward fashion will ^give erroneous results
- Correlation analysis will ^give ^a biased estimate of the impulse response, since $u(t)$ and $H(q^{-1}% \theta)$ $\Gamma(e(t))$ are no longer uncorrelated

Example ¹

Consider the first-order model structure

$$
y(t) + ay(t-1) = bu(t-1) + e(t)
$$

$$
u(t) = -fy(t)
$$

The closed loop system appears to be

$$
y(t) + (a + bf)y(t - 1) = e(t)
$$

We conclude that *all models* (\hat{a}, \hat{b}) subject to

$$
\hat{a} = a + \gamma f, \quad \hat{b} = b - \gamma
$$

with γ an arbitrary scalar, give the same IO description as the model (a,b) The parameters are not consistently estimated, though $u(t)$ is persistenly exciting

Example ²

This example will show that spectral analysis may not ^give identifiability Closed loop behaviour: by omitting q^{-1}

$$
y = [I + GF]^{-1}(GL\nu + He)
$$

$$
u = [L - F(I + GF)^{-1}GL]\nu - F(I + GF)^{-1}He
$$

Assume that $L(q^{-1}) = 1$ and introduce the signal

$$
z(t) = F(q^{-1})H(q^{-1})e(t)
$$

We obtain the input and output in the following forms

$$
y(t) = \frac{1}{1 + G(q^{-1})F(q^{-1})} \left[G(q^{-1})\nu(t) + \frac{1}{F(q^{-1})} z(t) \right]
$$

$$
u(t) = \frac{1}{1 + G(q^{-1})F(q^{-1})} [\nu(t) - z(t)]
$$

Therefore, the spectral densities are ^given by

$$
S_u(\omega) = \frac{1}{|1 + G(\omega)F(\omega)|^2} [S_{\nu}(\omega) + S_z(\omega)]
$$

$$
S_{yu}(\omega) = \frac{1}{|1 + G(\omega)F(\omega)|^2} \left[G(\omega)S_{\nu}(\omega) - \frac{1}{F(\omega)}S_z(\omega) \right]
$$

The estimate of $G(\omega)$ is given by

$$
\hat{G}(\omega) = \frac{S_{yu}(\omega)}{S_u(\omega)} = \frac{G(\omega)S_{\nu}(\omega) - S_z(\omega)/F(\omega)}{S_{\nu}(\omega) + S_z(\omega)}
$$

 $\bullet\,$ If there is no disturbances $(e=0)$ then $z(t)=0$ and \hat{G} is simplified to

$$
\hat{G}(\omega)=G(\omega)
$$

It is possible to identify the true system dynamics

Identification of closed loop systems 15-8

• If $\nu(t) = 0$

$$
\hat{G}(\omega)=-\frac{1}{F(\omega)}
$$

The result is the negative inverse of the feedback

 $\bullet\,$ In general case, the deviation of \hat{G} from G is given by

$$
\hat{G}(\omega) - G(\omega) = -\frac{1 + G(\omega)F(\omega)}{F(\omega)} \frac{S_z(\omega)}{S_\nu(\omega) + S_z(\omega)}
$$

The spectral analysis applied in the usualy way gives *biased* estimates if there is ^a feedback acting on the system

Approaches to closed loop identification

Assume that PEM is used for parameter estimation for all approaches

1. Direct approach

The existence of feedback is neglected and the recorded data are treated as if the system were operating in open loop, and not using the reference signal ν

2. Indirect approach

Identify the closed loop system from the reference input ν to output y and retrieve from that the open loop system, making use of the knownfeedback law

3. Joint input-output approach

Consider y and u as outputs of a system driven by ν (if measured) and noise. Recover the knowledge of the system and the regulator from this joint model

Direct identification

- ^a natural approach to closed loop data analysis
- works regardless of the complexity of the regulator
- requires no knowledge about the character of the feedback
- no special algorithms and software are required
- consistency and optimal accuracy are obtained if the model structure contains the true system
- unstable systems can be handled without problems as long as the closedloop is stable and the predictor is stable
- need good noise models

Model used for prediction:

$$
y(t) = Gu(t) + H\nu(t), \quad \mathbf{E}\,\nu^2(t) = \lambda^2
$$

Data used: $\{y(t),u(t)\}_{t=1}^N$ $t{=}1$

Goal: Estimate (SISO-case)

$$
\hat{\theta} = \underset{\theta}{\operatorname{argmin}} f(\theta)
$$

$$
f(\theta) = \frac{1}{N} \sum_{t=1}^{N} e^{2}(t, \theta)
$$

$$
e(t, \theta) = H^{-1}(y(t) - Gu(t))
$$

Question: Identifiability ? desired solution:

$$
\hat{G} = G, \quad \hat{H} = H
$$

Consistency

Analyze the asymptotic cost function:

$$
\bar{f}(\theta) = \lim_{N \to \infty} f(\theta) = \mathbf{E} e^2(t, \theta)
$$

• System identifiable:

Will \hat{G} $=G$ and \hat{H} $= H$ be a global minimum to $\bar{f}(\theta)$?

• Consistency:

Is the solution \hat{G} $=G$ and \hat{H} $= H$ unique?

Example

Consider ^a first-order system

$$
y(t) + ay(t-1) = bu(t-1) + \nu(t), \quad \mathbf{E}\,\nu(t)\nu(s) = \lambda^2 \delta_{t,s}
$$

The model structure is

$$
y(t) + \hat{a}y(t-1) = \hat{b}u(t-1) + e(t)
$$

The input is assumed to come from ^a time-varying proportional regulator:

$$
u(t) = \begin{cases} -f_1y(t), & \text{for a proportion } \gamma_1 \text{ of the total time} \\ -f_2y(t), & \text{for a proportion } \gamma_2 \text{ of the total time} \end{cases}
$$

Then the closed loop system is ^given by

$$
y_i(t) + (a + bf_i)y_i(t-1) = \nu(t)
$$

$$
e_i(t) = y_i(t) + (\hat{a} + \hat{b}f_i)y_i(t-1)
$$

The loss function is

$$
\bar{f}(\hat{a}, \hat{b}) = \gamma_1 \mathbf{E} e_1^2(t) + \gamma_2 \mathbf{E} e_2^2(t)
$$

= $\lambda^2 + \gamma_1 \lambda^2 \left(\frac{(\hat{a} + \hat{b}f_1 - a - bf_1)^2}{1 - (a + bf_1)^2} \right) + \gamma_2 \lambda^2 \left(\frac{(\hat{a} + \hat{b}f_2 - a - bf_2)^2}{1 - (a + bf_2)^2} \right)$

We can show that $\ddot{}$

$$
\bar{f}(\hat{a}, \hat{b}) \ge \lambda^2 = \bar{f}(a, b)
$$

- $\bullet\,$ We obtain that $\hat{a}=a$ and $\hat{b}=b$ is a global minimum
- •• Solve $\bar{f}(\hat{a}, \hat{b}) = \lambda^2$ $\begin{bmatrix} 1 & f_1 \ 1 & f_2 \end{bmatrix} \begin{bmatrix} \hat{a} \ \hat{b} \end{bmatrix} = \begin{bmatrix} a + bf_1 \ a + bf_2 \end{bmatrix}$
- $\bullet\,$ We obtain a unique solution *iff* $f_1\neq f_2$
- The use of two different regulators is sufficient to ^give parameter identifiability

General case

- The desired solutions \hat{H} $= H$ and \hat{G} The desired solutions $H=H$ and $G=G$ will be a global minimum of $\bar{f}(\theta)$
- Unique ^global minimum is necessary for parameter identifiability (consistency)
- Consistency is assured by
	- $-$ Using an external input $\nu(t)$
	- $-$ Using a regulator $F(q^{-1})$ that shifts between different settings

Indirect identification

The closed loop system is ^given by

$$
y(t) = G_c(q^{-1})\nu(t) + H_c(q^{-1})e(t)
$$

$$
G_c \triangleq (I + GF)^{-1}GL, \quad H_c \triangleq (I + GF)^{-1}H
$$

The indirect approach contains two steps:

- $\bullet\,$ Step 1: Identify the closed loop using $\nu(t)$ as input and $y(t)$ as output Estimate \hat{G} $_c$ and \hat{H} c from $y(t), \nu(t)$ using PEM
- Step 2: Determine the open loop from the estimated closed loop systemForm the estimates $\hat{G},\hat{H},$ using the knowledge of the feedback F,L

Joint input-output identification

Consider $y(t)$ and $u(t)$ as outputs from a multivariable system:

$$
\begin{bmatrix} y(t) \\ u(t) \end{bmatrix} = \begin{bmatrix} \mathcal{H}_{11}(q^{-1};\theta) & \mathcal{H}_{12}(q^{-1};\theta) \\ \mathcal{H}_{12}(q^{-1};\theta) & \mathcal{H}_{22}(q^{-1};\theta) \end{bmatrix} \begin{bmatrix} e(t) \\ \nu(t) \end{bmatrix}
$$

• Use innovation model: $z(t) = (y(t), u(t))^T$

$$
z(t) = \mathcal{H}(q^{-1}; \theta)\bar{e}(t), \quad \mathbf{E}\,\bar{e}(t)\bar{e}(s)^* = \Omega(\theta)\delta_{t,s}
$$

 \bullet Use PEM to identify ${\mathcal H}$ and Ω where

 \mathcal{H}^{-1} is asymptotically stable and $\ \mathcal{H}(0;\theta) = I$

Example

Consider the system

$$
y(t) + ay(t-1) = bu(t-1) + e(t) + ce(t-1)
$$

where $|c| < 1$, $e(t)$ is white noise with $\mathbf{E} e^{2}(t) = \lambda^{2}$, and the feedback is

$$
u(t) = -fy(t) + \nu(t)
$$

where $\nu(t)$ is white noise with variance σ^2 and independent of $e(s)$

The closed loop system is ^given by

$$
(1 + \alpha q^{-1})y(t) = bq^{-1}\nu(t) + (1 + cq^{-1})e(t)
$$

where $\alpha = a + bf$ and we assume that $|\alpha| < 1$

We can write $z(t) = (y(t), u(t))^T$ as

$$
z(t) = \frac{1}{1 + \alpha q^{-1}} \begin{bmatrix} 1 + cq^{-1} & bq^{-1} \\ -f(1 + cq^{-1}) & 1 + aq^{-1} \end{bmatrix} \begin{bmatrix} e(t) \\ \nu(t) \end{bmatrix}
$$

 $\bullet \,\mathcal{H}^{-1}$ has a denominator containing $(1+cq^{-1})(1+\alpha q^{-1})$ which is stable

• However,
$$
\mathcal{H}(0; \theta) = \begin{bmatrix} 1 & 0 \\ f & 1 \end{bmatrix}
$$

To obtain the innovation form, we can modify $z(t)$ as

$$
z(t) = \frac{1}{1 + \alpha q^{-1}} \begin{bmatrix} 1 + cq^{-1} & bq^{-1} \\ -f(1 + cq^{-1}) & 1 + aq^{-1} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ f & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -f & 1 \end{bmatrix} \begin{bmatrix} e(t) \\ \nu(t) \end{bmatrix}
$$

=
$$
\frac{1}{1 + \alpha q^{-1}} \begin{bmatrix} 1 + (c + bf)q^{-1} & bq^{-1} \\ f(a - c)q^{-1} & 1 + aq^{-1} \end{bmatrix} \begin{bmatrix} e(t) \\ -fe(t) + \nu(t) \end{bmatrix}
$$

We can conclude that

$$
\mathcal{H}(q^{-1};\theta) = \frac{1}{1+\alpha q^{-1}} \begin{bmatrix} 1+(c+bf)q^{-1} & bq^{-1} \\ f(a-c)q^{-1} & 1+aq^{-1} \end{bmatrix}
$$

$$
\Omega(\theta) = \mathbf{E} \begin{bmatrix} e(t) \\ -fe(t)+\nu(t) \end{bmatrix} \begin{bmatrix} e(t) \\ -fe(t)+\nu(t) \end{bmatrix}^* = \begin{bmatrix} \lambda^2 & -f\lambda^2 \\ -f\lambda^2 & f^2\lambda^2 + \sigma^2 \end{bmatrix}
$$

- $\bullet\,$ Use PEM to fit a first-order ARMA model $\hat{\cal H}$ to $z(t)$
- From the consistency of PEM, we can identify the parameters from

$$
\hat{\mathcal{H}} = \mathcal{H}, \quad \hat{\Omega} = \Omega
$$

References

Chapter ¹⁰ inT. Söderström and P. Stoica, *System Identification*, Prentice Hall, 1989

Chapter ¹³ inL. Ljung, *System Identification: Theory for the User*, 2nd edition, Prentice Hall, ¹⁹⁹⁹

Lecture on Identification of Closed Loop Systems, System Identification (1TT875), Uppsala University, http://www.it.uu.se/edu/course/homepage/systemid/vt05