4. Correlation Analysis

- analysis on LTI systems
- finite impulse response (FIR) model

Correlation analysis

consider a discrete LTI system with a disturbance v(t)

$$y(t) = \sum_{k=0}^{\infty} h(k)u(t-k) + v(t)$$

assume u,v have zero mean and $\mathbf{E}\,u(t)v(s)^*=0, \forall t,s.$ the correlation function is given by

$$R_{yu}(\tau) = \mathbf{E} y(t+\tau)u(t)^* = \sum_{k=0}^{\infty} h(k)R_u(\tau-k)$$

If u(t) is white noise $(R_u(\tau) = 0, \tau \neq 0)$, it is simplified to

$$R_{yu}(k) = h(k)R_u(0)$$

use finite approximation of $R_{yu}(k)$ and $R_u(0)$ to solve for h(k)

. .

$$\hat{R}_{yu}(\tau) = \frac{1}{N} \sum_{t=1}^{N-\tau} y(t+\tau)u(t)^*, \quad \tau = 0, 1, 2, \dots$$
$$\hat{R}_{uu}(\tau) = \frac{1}{N} \sum_{t=1}^{N-\tau} u(t+\tau)u(t)^*, \quad \tau = 0, 1, 2, \dots$$

when u(t) is not exactly white

- filter both inputs and outputs that makes the input as white as possible
- truncate the impulse response at a certain order

Finite Impulse Response (FIR) Models

assume that

 $h(k) = 0, \quad k > M$

this is called a finite impulse respose (FIR) or a truncated weighting function

the correlation equation becomes

$$R_{yu}(\tau) = \sum_{k=0}^{M} h(k)R_u(\tau - k)$$

Writing out this equation for $\tau = 0, 1, \ldots, M$ gives a linear equation:

$$\begin{bmatrix} R_{yu}^*(0) \\ R_{yu}^*(1) \\ \vdots \\ R_{yu}^*(M) \end{bmatrix} = \begin{bmatrix} R_u(0) & R_u(1) & \cdots & R_u(M) \\ R_u(-1) & R_u(0) & \cdots & R_u(M-1) \\ \vdots & \vdots & \ddots & \vdots \\ R_u(-M) & R_u(-M+1) & \cdots & R_u(0) \end{bmatrix} \begin{bmatrix} h^*(0) \\ h^*(1) \\ \vdots \\ h^*(M) \end{bmatrix}$$

Example with white noise input

consider a scalar system

$$x(t) + ax(t-1) = bu(t-1), \quad |a| < 1$$

 $y(t) = x(t) + v(t)$

with a = 0.5, b = 5

assume that u(t) and v(t) are independent white noise with variances $\sigma_u^2=\sigma_v^2=0.1$

The transfer function is

$$H(z) = \frac{bz^{-1}}{1 + az^{-1}} = b(z^{-1} - az^{-2} + a^2z^{-3} - a^3z^{-4} + \dots)$$

The impulse response is therefore given by

$$h(0) = 0, \quad h(k) = b(-a)^{k-1}, k \ge 1$$

Example with white noise input

the estimate of the impulse response is

$$\hat{h}(k) = \hat{R}_{yu}(k) / \hat{\sigma}_u^2$$

References

Chapter 6 in L. Ljung, *System Identification: Theory for the User*, Prentice Hall, Second edition, 1999

Chapter 3 in

T. Söderström and P. Stoica, System Identification, Prentice Hall, 1989