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12. Statistical Estimation

• conditional expectation

• mean square estimation (MSE)

• maximum likelihood estimation (MLE)

• maximum a posteriori estimation (MAP)

• Cramér-Rao inequality

• properties of MLE

• linear model with additive noise
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Conditional expectation

let x, y be random variables with a joint density function f (x, y)

the conditional expectation of x given y is

E[x|y] =
∫

xf (x|y)dx

where f (x|y) is the conditional density: f (x|y) = f (x, y)/f (y)

Facts:

• E[x|y] is a function of y
• E[E[x|y]] = E[x]

• for any scalar function g(y) such that E[|g(y)|2] < ∞

E [(x− E[x|y])g(y)] = 0
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Mean square estimation

suppose x, y are random with a joint distribution

problem: find an estimate h(y) that minimizes the mean square error:

E∥x− h(y)∥2

result: the optimal estimate in the mean square is the conditional mean:

h(y) = E[x|y]

Proof. use the fact that x− E[x|y] is uncorrelated with any function of y

E∥x− h(y)∥2 = E ∥x− E[x|y] + E[x|y]− h(y)∥2

= E ∥x− E[x|y]∥2 + E ∥E[x|y]− h(y)∥2

hence, the error is minimized only when h(y) = E[x|y]
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Gaussian case: x, y are jointly Gaussian: (x, y) ∼ N (µ,Σ) where

µ =

[
µx

µy

]
, Σ =

[
Σxx Σxy

ΣT
xy Σyy

]
the conditional density function of x given y is also Gaussian with conditional mean

µx|y = µx + ΣxyΣ
−1
y (y − µy),

and conditional covariance matrix

Σx|y = Σxx − ΣxyΣ
−1
yyΣ

T
xy

hence, for Gaussian distribution, the optimal mean square estimate is

E[x|y] = µx + ΣxyΣ
−1
yy (y − µy),

the optimal estimate is linear in y
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conclusions:

• E[x|y] is called the minimum mean square error (MMSE) estimator

• the MMSE estimator is typically nonlinear in y and is obtained from f (x, y)

• for Gaussian case, the MMSE estimator is linear in y

• the MMSE estimator must satisfy the orthogonal principle:

E[(x− x̂mmse)g(y)] = 0

where g is any function of y such that E[|g(y)|2] < ∞

• MMSE estimator can be difficult to evaluate, so one can consider a linear MMSE
estimator
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Linear MMSE estimator

the linear unbiased MMSE estimator takes the affine form:

h(y) = Kỹ + E[x], (with ỹ = y − E[y])

important results: define x̃ = x− E[x]

• the linear MMSE estimator minimizes

E∥x− h(y)∥2 = E∥x̃−Kỹ∥2

• the linear MMSE estimator is

h(y) = ΣxyΣ
−1
yy (y − E[y]) + E[x]

• the form of linear MMSE requires just covariance matrices of x, y
• it coincides with the optimal mean square estimate for Gaussian RVs
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Wiener-Hopf equation

the optimal condition for linear MMSE estimator

Σxy = KΣyy

• obtained by differentiating MSE w.r.t. K

MSE = E tr(x̃−Kỹ)(x̃−Kỹ)T = tr(Σxx − ΣxyK
T −KΣyx +KΣyK

T )

∂MSE
∂K

= −Σyx − Σyx + 2ΣyyK
T = 0

• also obtained from the condition

E[(x− h(y))yT ] = 0 ⇒ E[(x̃−Kỹ)ỹT ] = 0

(the optimal residual is uncorrelated with the observation y)
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Minimum variance unbiased estimator (MVUE)

for any estimate h(y), the covariance matrix of the corresponding error is

C = E
[
(x− h(y))(x− h(y))T

]
• different choices of h lead to different covariances, say C1, C2

• we can compare two matrices in matrix sense by saying

C1 ⪰ C2 if C1 − C2 ⪰ 0 (the difference is positive semidefinite)

• if C1 ⪰ C2 then tr(C1) ≥ tr(C2) (MSE 1 is is bigger than MSE 2)

problem: restrict h(y) to the linear case:

h(y) = Ky + c

and choose h(y) to yield the minimum covariance (instead of minimum MSE)
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the covariance matrix can be written as

(µx − (Kµy + c))(µx − (Kµy + c))T + Σx −KΣyx − ΣxyK
T +KΣyK

T

the objective is minimized with respect to c when

c = µx −Kµy

(same as the best unbiased linear estimate of the mean square error)

the covariance matrix of the error can be expressed as a quadratic function in K

f (K) = Σxx −KΣyx − ΣxyK
T +KΣyK

T =
[
−I K

] [Σxx Σxy

ΣT
xy Σyy

] [
−I
KT

]
⪰ 0

let K0 be a solution to the Wiener-Hopf equation: Σxy = K0Σyy, we can write

f (K) = f (K0) + (K −K0)Σyy(K −K0)
T
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so f (K) is minimized when K = K0

the miminum covariance matrix is

f (K0) = Σxx − ΣxyΣ
−1
yyΣ

T
xy

for Σ =

[
Σxx Σxy

ΣT
xy Σyy

]
, note that

• the minimum covariance matrix is the Schur complement of Σxx in Σ

• it is exactly a conditional covariance matrix for Gaussian variables
• in conclusion, the linear MVUE estimate is given by

h(y) = µx + ΣxyΣ
−1
yy (y − µy)

(same as linear MMSE estimator and MMSE estimator in Gaussian case)
• note: in order to compute the estimate, we only need up to second-moment of x

and y (no distribution is assumed)
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Maximum likelihood estimation

• log-likelihood function

• maximum likelihood principle

• models with and without predictors

• dynamical models, linear regression models
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Log-likelihood function

setting: let (y1, . . . , yN) be i.i.d. observations of random variable Y with pdf

f (y; θ⋆), and θ⋆ is unknown

likelihood function: the joint pdf of y = (y1, y2, . . . , yN)

ℓ(θ; y) = f (y1, y2, . . . , yN ; θ) =

N∏
i=1

f (yi; θ)

• f (y1, y2, . . . , yN ; θ) is a function of data and parametrized by θ

• view ℓ as function of θ, giving a likelihood of θ that fits well with data

log-likelihood function: take the logarithmic function of ℓ

L(θ; y) =
N∑
i=1

log f (yi; θ)
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Maximum likelihood principle

the distribution of data, f (y; θ), is known but θ is to be estimated

MLE principle: choose θ that the observed data becomes as likely as possible

θ̂ = argmax
θ

L(θ; y) :=
N∑
i=1

log f (yi; θ)
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MLE estimate must satisfy the
zero-gradient condition:

∇θL(θ; y) = 0

N (2, 3) is more likely to explain
data better than other Gaussians
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example 1: estimate the mean and covariance matrix of Gaussian RVs

• observe a sequence of i.i.d. random variables: y1, y2, . . . , yN
• each yk is an n-dimensional Gaussian: yk ∼ N (µ,Σ), but µ,Σ are unknown

• the likelihood function of y1, . . . , yN for given µ,Σ is

ℓ(µ,Σ; y) = f (y1, y2, . . . , yN |µ,Σ)

=
1

(2π)Nn/2
· 1

|Σ|N/2
· exp − 1

2

N∑
k=1

(yk − µ)TΣ−1(yk − µ)

• the log-likelihood function is (up to a constant)

L(µ,Σ) = log ℓ(µ,Σ; y) = N

2
log detΣ−1 − 1

2

N∑
k=1

(yk − µ)TΣ−1(yk − µ)
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• the log-likelihood is concave in Σ−1, µ, so the ML estimate satisfies the zero
gradient conditions:

∂L

∂Σ−1
=

NΣ

2
− 1

2

N∑
k=1

(yk − µ)(yk − µ)T = 0

∂L

∂µ
=

N∑
k=1

Σ−1(yk − µ) = 0

• we obtain the ML estimate of µ,Σ as

µ̂ml =
1

N

N∑
k=1

yk, Σ̂ml =
1

m

m∑
k=1

(yk − µ̂ml)(yk − µ̂ml)
T

– µ̂ml is the sample mean and Σ̂ml is a (biased) sample covariance matrix

– in this example, MLE estimate is obtained in closed-form
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Models with predictors

assume RVs X (predictor) and Y (response) with joint pdf

fxy(x, y; θ
⋆), and θ⋆ is unknown

let z = {(xi, yi)}Ni=1 be i.i.d. observations of (X,Y ), we can write

ℓ(y, x; θ) = f (y, x; θ) = f (y|x; θ)f (x; θ)

in regression, we aim to explain y when x is given

MLE problem is then to maximize the conditional log-likelihood of y given x

L(θ) =
N∑
i=1

log f (yi | xi; θ)

(though x is random, its values are given beforehand)
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example 2: we aim to explain the number of car accidents (y) from

x = number of junctions, populations, sold liquor, and incoming cars (x ∈ R4)

• {(xi, yi)}Ni=1 are i.i.d. observations collected from several cities
• y should be modeled as Poisson(λ)

• we model λ = ex
Tθ to link the mean of y with predictors

from the assumed model, the likelihood function of ith sample is

f (yi|xi; θ) = e−exp(xT
i θ)exp(xT

i θ)
yi/yi!

the conditional log-likelihood function of y given x is

L(θ) =
N∑
i=1

−ex
T
i θ + yix

T
i θ − log(yi!)
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the zero gradient condition is ∇θL(θ) =
∑N

i=1

(
−xie

xT
i θ + yixi

)
= 0
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Poisson regression

the log-likelihood function is concave (use a numerical method to fine θ̂)
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Linear model with additive noise

when y and x have a linear relationship with i.i.d. corrupted noise, ei ∼ fe(e)

yi = xT
i β + ei, i = 1, 2, . . . , N

settings: i.i.d. observations {(xi, yi)}Ni=1 are given and β is to be estimated
unlike the least-squares apporach, we can use statistical info of noise in estimation

• when xi is given, the variable yi|xi is an affine transformation of ei

f (yi|xi;β) = fe(yi − xT
i β)

• since data are i.i.d., and ei’s are all distributed by fe

L(β; y|x) =
N∑
i=1

log fe(yi − xT
i β)
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MLE as minimizing MSE

estimate β in a linear model with Gaussian noise fe(u) =
e−u2/2σ2

√
2πσ2

L(β, σ2; y|x) = −N

2
log(2πσ2)− 1

2σ2

N∑
i=1

(yi − xT
i β)

2

≜ −(N/2) log(2πσ2)− (1/2σ2)∥y −Xβ∥22

• maximizing L(β, σ2; y|x) over β is equivalent to minimizing ∥y −Xβ∥2

• from the zero gradient condition, the estimate of noise variance is

σ̂2
mle = (1/N )∥y −Xβ̂∥22

• ML estimation of linear model with additive Gaussian noise is equivalent to a
least-squares problem
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MLE as minimizing MAE

estimate β in a linear model with Laplacian noise fe(u) = (1/2λ)e−|u|/λ

L(β, λ; y|x) = −N log(2λ)− 1

λ

N∑
i=1

|yi − xT
i β|

≜ −N log(2λ)− (1/λ)∥y −Xβ∥1

• maximizing L(β, λ; y|x) over β is equivalent to minimizing ∥y −Xβ∥1

• from the zero gradient condition, the ML estimate of noise variance is

λ̂mle = (1/N )∥y −Xβ̂∥1

• ML estimation of linear model with additive Laplacian noise is equivalent to an
ℓ1-norm estimation
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Maximum a posteriori (MAP) estimation

assumption: θ is a random variable and jointly distributed with f (y, θ)

the MAP estimate of θ is to maximize the posterior density (after observing y)

θ̂ = argmax
θ

fθ|y(θ|y)

from Bayes’ rule
fθ|y(θ|y) =

fy,θ(y, θ)

fy(y)
=

fy|θ(y|θ)fθ(θ)
fy(y)

since fy(y) is not a function of θ, MAP estimation is equivalent to

θ̂map = argmax
θ

fy|θ(y|θ) · fθ(θ) = argmax
θ

log fy|θ(y|θ) + log fθ(θ)

we give a varying weight of fy|θ(y|θ) for each θ given by the prior density of θ, fθ(θ)
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• the only difference between ML and MAP estimate is the term fθ(θ)

• fθ provides a prior knowledge about θ; hence, log fθ(θ) penalizes choices of θ that
are unlikely to happen

• (left.) from prior density, θ = 2 is most likely to occur
• (right.) MLE gives θ̂ = 0.5 but MAP estimate is < 0.5 as fθ(0.5) is very small

under what condition on fθ is the MAP estimate identical to the ML estimate ?
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MAP estimation of linear model

consider a linear model with i.i.d. additive Gaussian noise: yi = xT
i β + ei

when assuming β is random with a prior density fβ(β), MAP estimation is

maximize
β

− 1

2σ2

N∑
k=1

(yi − xT
i β)

2 + log fβ(β)

• Gaussian prior: β ∼ N (0, αI) (ℓ2-regularized least-squares)

minimize
β

1

σ2
∥y −Xβ∥22 +

1

α
∥β∥22

• Laplacian prior: fβ(β) = (1/2α)e−∥β∥1/α (ℓ1-regularized least-squares)

minimize
β

1

σ2
∥y −Xβ∥22 +

1

α
∥β∥1
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ML regularity conditions

let {(xi, yi)}Ni=1 be i.i.d. samples according to MLE problem

si(θ) =
∂ log f (yi|xi, θ)

∂θ
=

1

f (yi|xi, θ)
∇θf (yi|xi, θ)

is called score of the loglikelihood
ML regularity conditions are

1. expected score is zero

Ey|x [∇θ log f (y|x; θ)] =
∫

∇θ log f (y|x; θ)f (y|x; θ)dy = 0

2. expected outer product of score is the negative expected Hessian of score

−Ey|x
[
∇2

θ log f (y|x; θ)
]
= Ey|x

[
(∇θ log f (y|x; θ))(∇θ log f (y|x; θ))T

]
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Cramér-Rao inequality

for any unbiased estimator θ̂ with the error covariance

cov(θ̂) = E(θ − θ̂)(θ − θ̂)T

we always have a lower bound on cov(θ̂):

cov(θ̂) ⪰
[
E(∇θ log f (y|x; θ))T (∇θ log f (y|x; θ))

]−1
= −

(
E
[
∇2

θ log f (y|x; θ)
])−1

• the RHS is called the Cramér-Rao lower bound where two equal terms obtained
by ML regularity condition

• provide the minimal covariance matrix over all possible estimators θ̂
• I(θ) ≜ −E[∇2

θ log f (y|x; θ)] is called the Fisher information matrix
(note: log f (y|x; θ) := log f (y1, . . . , yN |x1, . . . , xN ; θ))

• an estimator for which the C-R equality holds is called efficient
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Cramér Rao bound for linear model estimate

revisit a linear model with correlated Gaussian noise:

y = Xβ + e, X ∈ RN×n, e ∼ N (0,Σ)

the density function f (y|X ;β) is given by fe(y −Xβ) which is Gaussian

log f (y|X ;β) = −1

2
(y −Xβ)TΣ−1(y −Xβ)− N

2
log(2π)− 1

2
log detΣ

∇θ log f (y|X ;β) = XTΣ−1(y −Xβ)

∇2
θ log f (y|X ;β) = −XTΣ−1X

hence, for any unbiased estimate β̂,

cov(β̂) ⪰ (XTΣ−1X)−1

compare this LB with covariance of estimators you have seen ?
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Linear models with additive noise

estimate parameters in a linear model with additive noise:

y = Xβ + e, e ∼ N (0,Σ), Σ is known

and we explore several estimates from the following approaches

• no use of noise information

– least-squares estimate (LS)

• use information about the noise (e.g., Gaussian distribution, Σ)

assume β is a fixed parameter assume β ∼ N (0,Λ)
weighted least-squares (WLS) minimum mean square (MMSE)
best linear unbiased (BLUE) maximum a posteriori (MAP)
maximum likelihood (ML)
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least-squares: β̂ls = (XTX)−1XTy and is unbiased

cov(β̂ls) = cov((XTX)−1XTe) = (XTX)−1XTΣX(XTX)−1

we can verifty that cov(β̂ls) ⪰ (XTΣ−1X)−1

it is bigger than the CR bound but the inequality is tight when Σ = σ2I (the noise
ei’s are uncorrelated)

generalized LS estimate (or BLUE): β̂blue = (XTΣX)−1XTΣ−1y

(obtained from the normalized model by Σ−1/2)

cov(β̂blue) = (XTΣ−1X)−1

(the covariance matrix achieves the CR bound)
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weighted least-squares: for a given weight matrix W ≻ 0

β̂wls = (XTWX)−1XTWy and is unbiased

it follows that the covariance of estimator is

cov(β̂wls) = cov((XTWX)−1XTWe)

= (XTWX)−1XTWΣWX(XTWX)−1

cov(β̂wls) attains the minimum (the CR bound) when W = Σ−1

β̂wls = (XTΣ−1X)−1XTΣ−1y

interpretation:

• large Σii means the ith measurement is highly uncertain

• should put less weight on the corresponding ith entry of the residual
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maximum likelihood: from f (y|X ;β) = fe(y −Xβ),

log f (y|X ;β) = −N

2
log(2π)− 1

2
log detΣ− 1

2
(y −Xβ)TΣ−1(y −Xβ)

the zero gradient condition gives

∇β log f (y|X ;β) = XTΣ−1(y −Xβ) = 0

β̂ml = (XTΣ−1X)−1XTΣ−1y

β̂ml is also efficient (achieves the minimum covariance matrix)

as this point, three types of estimators (for linear model) are identical

β̂ml = β̂wls = β̂blue
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minimum mean square estimate:

• β is random and independent of e
• β ∼ N (0,Λ)

hence, y and β are jointly Gaussian with zero mean and the covariance:

C =

[
Cβ Cβy

CT
βy Cyy

]
=

[
Λ ΛXT

XΛ XΛXT + Σ

]
β̂mmse is essentially the conditional mean (readily computed for Gaussian)

β̂mmse = E[β|y] = CβyC
−1
yy y = ΛXT (XΛXT + Σ)−1y

alternatively, we claim that E[β|y] is linear in y (because β, y are Gaussian)

β̂mmse = β̂lms = Ky

and K can be computed from the Wiener-Hopf equation
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Maximum a posteriori:

• β is random and independent of e

• β ∼ N (0,Λ)

the MAP estimate can be found by solving

θ̂map = argmax
β

log f (β|y) = argmax
β

log f (y|β) + log f (β)

without having to solve this problem, it is immediate that

β̂map = β̂mmse

since for Gaussian density function, E[β|y] maximizes f (β|y)
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nevertheless, we can write down the posteriori density function (up to a constant)

log f (y|β) = −(1/2) log detΣ− (1/2)(y −Xβ)TΣ−1(y −Xβ)

log f (β) = −(1/2) log detΛ− (1/2)βTΛ−1β

the MAP estimate satisfies the zero gradient (w.r.t. β) condition:

−XTΣ−1(y −Xβ) + Λ−1β = 0

that gives the form similar to MLE except the extra term Λ−1

β̂map = (XTΣ−1X + Λ−1)−1XTΣ−1y

when Λ = ∞ or maximum ignorance, it reduces to ML estimate
it is a fact that β̂mmse = β̂map, so it is interesting to verify

ΛXT (XΛXT + Σ)−1y = (XTΣ−1X + Λ−1)−1XTΣ−1y

(the two terms are equivalent – proved by some algebratic operations)
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proof: β̂mmse = β̂map

define H = (XΛXT + Σ)−1y and we have

XΛXTH + ΣH = y

we start with the expression of β̂mmse

β̂mmse = ΛXT (XΛXT + Σ)−1y = ΛXTH

Xβ̂mmse = XΛXTH = y − ΣH

ΛXTΣ−1Xβmmse = ΛXTΣ−1y − ΛXTH

= ΛXTΣ−1y − β̂mmse

(I + ΛXTΣ−1X)β̂mmse = ΛXTΣ−1y

(Λ−1 +XTΣ−1X)β̂mmse = XTΣ−1y

β̂mmse = (Λ−1 +XTΣ−1X)−1XTΣ−1y ≜ β̂map
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covariance of MAP estimate: we use β̂map = E[β|y]

cov(β̂map) = E
[
(β − E[β|y])(β − E[β|y])T

]
use the fact that the optimal residual is uncorrelated with y

cov(β̂map) = E
[
(β − E[β|y])βT

]
next, use the fact that β̂map = E[β|y] is a linear function in y

cov(β̂map) = Cβ −KCyβ = Λ− (XTΣ−1X + Λ−1)−1XTΣ−1XΛ

= (XTΣ−1X + Λ−1)−1
[
(XTΣ−1X + Λ−1)Λ−XTΣ−1XΛ

]
= (XTΣ−1X + Λ−1)−1 ⪯ (XTΣ−1X)−1

β̂map yields a smaller covariance matrix than that of β̂ml

(because ML does not use a prior knowledge about β)
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Summary

• estimate methods in this section require statistical properties of random entities in
the model

• minimum-mean-square estimate is the conditional mean and typically a nonlinear
function in the measurement data

• a maximum-likelihood estimation is a nonlinear optimization problem; it can reduce
to have a closed-form solution in some special case of noise distribution (e.g.
Gaussian)

• a maximum a posteriori estimation takes model parameters as random variables; it
requires a prior distribution of these parameters
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