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12. Statistical Estimation

e conditional expectation

e mean square estimation (MSE)

e maximum likelihood estimation (MLE)
e maximum a posteriori estimation (MAP)
e Cramér-Rao inequality

e properties of MLE

e linear model with additive noise
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Conditional expectation

let z,y be random variables with a joint density function f(x,y)

the conditional expectation of x given y is

Eloly] = [ of(aly)dz
where f(x|y) is the conditional density: f(z|y) = f(x,y)/f(y)
Facts:

e E[z|y| is a function of y
e E[E[z]y]] = Elz]

e for any scalar function g(y) such that E[|g(y)|?] < oo

E|(z — Elz|y|)g(y)] =0
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Mean square estimation

suppose x,y are random with a joint distribution

problem: find an estimate h(y) that minimizes the mean square error:
Ellz — h(y)’

result: the optimal estimate in the mean square is the conditional mean:
h(y) = Elzly

Proof. use the fact that x — E|x|y| is uncorrelated with any function of y

E|lz — h(y)||° = E ||z — E[z|y] + E[z|y] — h(y)|’
=E ||z — E[z|y]||” + E |E[z|y] — h(y)|’

hence, the error is minimized only when h(y) = E|[x|y]

Statistical Estimation 12-3



Gaussian case: x,y are jointly Gaussian: (z,y) ~ N (u, ) where
Y= , L= [
[:“y] Egy Ly
the conditional density function of x given y is also Gaussian with conditional mean

Haly = Mo + SaySy (Y — py),

and conditional covariance matrix

Saly = Sz — SoySay Day

rly — y
hence, for Gaussian distribution, the optimal mean square estimate is
—1
E[£E|y] = o T nyzyy (y — My):
the optimal estimate is linear in y
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conclusions:

o E[x|y| is called the minimum mean square error (MMSE) estimator
e the MMSE estimator is typically nonlinear in ¢ and is obtained from f(z,y)
e for Gaussian case, the MMSE estimator is linear in y

e the MMSE estimator must satisfy the orthogonal principle:

E[(z — Zumse)g(y)] = 0
where g is any function of y such that E[|g(y)|?] < oo

e MMSE estimator can be difficult to evaluate, so one can consider a linear MMSE
estimator
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Linear MMSE estimator

the linear unbiased MMSE estimator takes the affine form:

hy) = Ky + Elz],  (with g =y — Ely])
important results: define £ = x — E|x]
e the linear MMSE estimator minimizes

Ellz — h(y)|I* = E[z — Ky’

e the linear MMSE estimator is

hy) = SeySy, (y — Ely]) + Elx]

e the form of linear MMSE requires just covariance matrices of z, y

e it coincides with the optimal mean square estimate for Gaussian RVs

Statistical Estimation

12-6



Wiener-Hopf equation
the optimal condition for linear MMSE estimator
Loy = K2y,
e obtained by differentiating MSE w.r.t. K

MSE = Etr(i — K§)(# — K9)! =tr(X.p — Zoy KT — KXy + KX, K1)
OMSE

2 = Ty~ Dye 2%, K1 =0

e also obtained from the condition
E[(z—h(y)y']=0 = E[Z-Kgy]=0

(the optimal residual is uncorrelated with the observation y)
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Minimum variance unbiased estimator (MVUE)
for any estimate h(y), the covariance matrix of the corresponding error is
C=E[(z — h(y)(x — h(y))"]

e different choices of h lead to different covariances, say C, Cs

® we can compare two matrices in matrix sense by saying

Cy = Cy if Cy—Cy>=0 (the difference is positive semidefinite)

o if C; = () then tr(Ch) > tr(Cs) (MSE 1 is is bigger than MSE 2)
problem: restrict h(y) to the linear case:
h(y) = Ky +c

and choose h(y) to yield the minimum covariance (instead of minimum MSE)
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the covariance matrix can be written as
(Ha — (K py + ¢))(pa (K,UyJFC)) Zx_KZyx_nyKTJFKZyKT
the objective is minimized with respect to ¢ when
C= Mg — K:uy

(same as the best unbiased linear estimate of the mean square error)

the covariance matrix of the error can be expressed as a quadratic function in K

Yigx 2 —1
T T _ x

let K be a solution to the Wiener-Hopf equation: >, = KX, we can write

f(K> = f(K()) + (K - KO)Zyy<K — KO>T
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so f(K) is minimized when K = K
the miminum covariance matrix is

F(Ko) = Yaw — SayS, ) Sa,

Yy

for 3 = [2‘%{” ny] note that
Zwy Zyy

e the minimum covariance matrix is the Schur complement of >, in X
e it is exactly a conditional covariance matrix for Gaussian variables

e in conclusion, the linear MVUE estimate is given by

B(y) = p + Sy S (4 — 1)

(same as linear MMSE estimator and MMSE estimator in Gaussian case)

e note: in order to compute the estimate, we only need up to second-moment of x
and y (no distribution is assumed)
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Maximum likelihood estimation

e log-likelihood function
e maximum likelihood principle
e models with and without predictors

e dynamical models, linear regression models
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Log-likelihood function
setting: let (y1,...,yn) be i.i.d. observations of random variable Y with pdf

f(y;0%), and 6" is unknown

likelihood function: the joint pdf of ¥y = (y1, 2, ..., yN)

N
U0:y) = Fr vz, - yn:0) = | | fi:0)
1=1

o f(y1,y2,.-.,yN;0) is a function of data and parametrized by 6

e view / as function of 6, giving a likelihood of 6 that fits well with data

log-likelihood function: take the logarithmic function of ¢

N
L(0:y) = log f(y:: 0)
=1
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Maximum likelihood principle

the distribution of data, f(y;#), is known but € is to be estimated

MLE principle: choose 6 that the observed data becomes as likely as possible

0 = argmax L(0;y) Zlogf Yi; 0

04 r
data histogram
0.35 - —pdf of A/(0,1) ) .
pdfof (12 MLE estimate must satisfy the
0.3 - —pdf of N(2,3) ) .
zero-gradient condition:
0.25 -
T 0.2+ u
] F VoL(0:y) =0
0.15 -
™~
0.1+ 1 ' | |
0.05 - \ N(2,3) is more likely to explain
0 \M\_ | ~data better than other Gaussians
-10 -5 0 5 10
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example 1: estimate the mean and covariance matrix of Gaussian RVs

e observe a sequence of i.i.d. random variables: y1,ys,...,yn
e cach yy is an n-dimensional Gaussian: yx ~ N (u, ), but p, ¥ are unknown

e the likelihood function of y1,...,yxN for given u, X is

O, 25y) = f(y1, y2, - - YN |, )

N
1 1 1 S
— . . _Z _ )Ty _
e e
e the log-likelihood function is (up to a constant)

N  «

L, ) =logl(p,X;y) = ?log det X7 — 5 Z(yk — )P Ny — p)
k=1
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o the log-likelihood is concave in 71, 11, so the ML estimate satisfies the zero
gradient conditions:

Iy — = (e — w)(yr — )" =0

oL NY 1&
2 9
k=1

ZZ yk_ —O
k=1

e we obtain the ML estimate of p, . as

1 N 1 m
VaS - - _ _ A T
fmt = — 5_1 Vs = kE_ Yk — o)) (Yk — fml)

— [l is the sample mean and X, is a (biased) sample covariance matrix

— in this example, MLE estimate is obtained in closed-form
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Models with predictors
assume RVs X (predictor) and Y (response) with joint pdf
fay(x,y;0%), and 6% is unknown
let 2 = {(z;,v;)}, be i.id. observations of (X,Y), we can write

Uy, z;0) = fy,x;0) = f(y|lx;0)f(x;0)

in regression, we aim to explain y when x is given

MLE problem is then to maximize the conditional log-likelihood of y given x

N
L(0) = Zlogf(yi | z4;0)
i=1

(though x is random, its values are given beforehand)
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example 2: we aim to explain the number of car accidents (y) from

x = number of junctions, populations, sold liquor, and incoming cars (x € R4)

o {(z;,9:)}Y, are i.i.d. observations collected from several cities

e 1 should be modeled as Poisson(\)

e we model \ = e* ? to link the mean of y with predictors

from the assumed model, the likelihood function of ¢th sample is
Flilwi; 0) = e~ Dexp(aT o) /y,

the conditional log-likelihood function of y given x is

N
L) =" —e" % + 2T — log(y,)

1=1
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the

the log-likelihood function is concave (use a numerical method to fine é)

zero gradient condition is Vo L(0) = Zi\il (
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Linear model with additive noise
when y and x have a linear relationship with i.i.d. corrupted noise, e; ~ f.(e)

yi:aﬁ;fp5+e7;, 1=1,2,...,N

settings: i.i.d. observations {(z;,v;)}, are given and 3 is to be estimated

unlike the least-squares apporach, we can use statistical info of noise in estimation

e when x; is given, the variable y;|z; is an affine transformation of e;
filzi; B) = felyi — 33?5)

e since data are i.i.d., and ¢;’s are all distributed by f.

L(Bryle) = log felyi — i B)
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MLE as minimizing MSE

2 2

. . . . . . —u” /20
estimate (3 in a linear model with Gaussian noise f.(u) = em
™o

N

N
2 B 5 1 T o2
L(B,0%y|lx) = —310g(27m ) — 52 ;1 (y; — x; B)

2 _(N/2)log(2m0?) — (1/20%) |y — X 5|3

e maximizing £(3,0°; y|z) over 3 is equivalent to minimizing ||y — X 3]

e from the zero gradient condition, the estimate of noise variance is

G = (1/N)lly — XBII3

mle —

e ML estimation of linear model with additive Gaussian noise is equivalent to a
least-squares problem
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MLE as minimizing MAE

estimate /3 in a linear model with Laplacian noise f.(u) = (1/2\)e~ul/*

N
1
L(B, A ylz) = —Nlog(2A) — ¢ > lyi—alB
=1

£ —Nlog(2\) — (1/N)]ly — X8|I

e maximizing L(3, \; y|x) over [3 is equivalent to minimizing ||y — X 3|1

e from the zero gradient condition, the ML estimate of noise variance is

5\mle — (1/N>Hy o XﬁAHl

e ML estimation of linear model with additive Laplacian noise is equivalent to an
/1-norm estimation
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Maximum a posteriori (MAP) estimation

assumption: 6 is a random variable and jointly distributed with f(y, )

the MAP estimate of @ is to maximize the posterior density (after observing )
0 = argmax foy(0]y)

from Bayes' rule

0) fo(0
Fory(Oly) = fy}jéa)@) _ fy|e(2<;{e( )

since fy(y) is not a function of §, MAP estimation is equivalent to

Ormap = ATgmax fy10(yl0) - fo(0) = Argmax log fyl0(y]0) + log fo(0)

we give a varying weight of f,9(y|0) for each 0 given by the prior density of 0, fq(6)
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e the only difference between ML and MAP estimate is the term fy(6)

e fy provides a prior knowledge about ; hence, log fy(6) penalizes choices of  that
are unlikely to happen

o (left.) from prior density, # = 2 is most likely to occur

e (right.) MLE gives § = 0.5 but MAP estimate is < 0.5 as fy(0.5) is very small

under what condition on fy is the MAP estimate identical to the ML estimate 7
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MAP estimation of linear model

consider a linear model with i.i.d. additive Gaussian noise: 1; = wz-TB + e;

when assuming [ is random with a prior density f3(3), MAP estimation is

N
maX|m|ze —QL; —$T5 )+ log f5(8)

e Gaussian prior: 8 ~ N(0,al) (¢o-regularized least-squares)

o1 o Lo
mlnlﬁmlze ;HZJ_X6H2+EHBHQ

e Laplacian prior: f5(3) = (1/2a)e I8/« (£1-regularized least-squares)

1 1
. . . _X 2_|__
mlnlﬂmlze —J2Hy 5“2 oz”ﬁHl
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ML regularity conditions

let {(z;,7:)}Y, bei.i.d. samples according to MLE problem

Olog f(yilri,0) 1
00 fyilzi, 0)

is called score of the loglikelihood

si(0) = Vo f(yi|zi, o)

ML regularity conditions are

1. expected score is zero
B, (Volog f(y]2:0)) = [ Valog f(yle:0) (sle: 0)dy =0

2. expected outer product of score is the negative expected Hessian of score

—E, . [Valog f(ylz;0)] = Ey. [(Velog f(y|z;0))(Velog f(ylz; 0))"]
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Cramér-Rao inequality

for any unbiased estimator 6 with the error covariance

AN

cov() = E(0 — 0)(6 — 0)T

AN

we always have a lower bound on cov(f):

cov(f) = [E(Vglog f(y|z;0))" (Vg log f(y|z; 9))}—1 = — (E [Vilog f(ylxz; 0)])

1

e the RHS is called the Cramér-Rao lower bound where two equal terms obtained
by ML regularity condition

e provide the minimal covariance matrix over all possible estimators 6

e 7(0) = —E[V2log f(y|r;0)] is called the Fisher information matrix
(nOte: lOg f<y|x7 0) = 1ng<y17 s 7yN‘£U17 ce oy UN, 9))

e an estimator for which the C-R equality holds is called efficient
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Cramér Rao bound for linear model estimate
revisit a linear model with correlated Gaussian noise:
y=XB+e, XecRN*" e~ N0,

the density function f(y|X; 3) is given by f.(y — X 3) which is Gaussian

N
o8 f(y1X: 8) = 3y~ XB)TE(y — XB) - log(2m) — S logdet
Volog f(y|X:8) = X'S7'(y—Xp)
Vilog f(y|X;8) = —X'S7'X

hence, for any unbiased estimate B
cov(f) = (XTu=1x)™!

compare this LB with covariance of estimators you have seen ?
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Linear models with additive noise

estimate parameters in a linear model with additive noise:
y=XPB+e, e~N(0Y), X isknown
and we explore several estimates from the following approaches

e no use of noise information
— least-squares estimate (LS)

e use information about the noise (e.g., Gaussian distribution, )

assume (3 is a fixed parameter assume 3 ~ N(0,A)

weighted least-squares (WLS)  minimum mean square (MMSE)
best linear unbiased (BLUE) ~ maximum a posteriori (MAP)
maximum likelihood (ML)
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least-squares: [, = (X7 X)~'XTy and is unbiased
cov(B) = cov((XTX) "' XTe) = (XTX) X TEX(XTX)

we can verifty that cov(8) = (XTE1X)~!

it is bigger than the CR bound but the inequality is tight when 3 = o*I (the noise
e;'s are uncorrelated)

generalized LS estimate (or BLUE): . = (X7 X)"1XTR 1y
(obtained from the normalized model by ¥ 71/2)

coV(Bpe) = (XTET1X) !

(the covariance matrix achieves the CR bound)
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weighted least-squares: for a given weight matrix W > 0
Byis = (XTWX)'XTWy and is unbiased
it follows that the covariance of estimator is

cov(fyis) = cov((XTW X)L XTWe)
= (X'WX)T' XTWEWX(XTWX)™!

cov(Byis) attains the minimum (the CR bound) when W = £~!
Bwls _ (XTZ_1X>_1XTZ_1y
interpretation:

e large >;; means the ¢th measurement is highly uncertain

e should put less weight on the corresponding ith entry of the residual
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maximum likelihood: from f(y|X;3) = f.(y — X3),

N 1

o8 £ (y]X:8) = % log(2m) — S logdet ¥ — - (y — XB)TE(y — X0

the zero gradient condition gives
Velog f(y|X; ) = X'27 y — XB) =0
Bml _ (XTZ_lX)_lXTZ_ly
Bui is also efficient (achieves the minimum covariance matrix)

as this point, three types of estimators (for linear model) are identical

Bml — Bwls — Bblue
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minimum mean square estimate:

e (3 is random and independent of e

o 5~ N(0,A)
hence, y and (3 are jointly Gaussian with zero mean and the covariance:

oG8 Cay| _[A AXT
|Ch, Cyyl [ XA XAXT 4+ Y

Bumse is essentially the conditional mean (readily computed for Gaussian)
Bumse = BBly] = CpyCply = AXT(XAXT + %)y
alternatively, we claim that E|[S|y] is linear in y (because 3,y are Gaussian)
Brmse = Bims = Ky
and K can be computed from the Wiener-Hopf equation
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Maximum a posteriori:

e (3 is random and independent of e

e 5~ N(0,A)

the MAP estimate can be found by solving

A

Ornap = arggnax log f(Bly) = arggnax log f(y|B) + log f(B)

without having to solve this problem, it is immediate that

Bmap — 6mmse

since for Gaussian density function, E[S|y] maximizes f(8|y)
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nevertheless, we can write down the posteriori density function (up to a constant)

log f(y18) = —(1/2) log det X — (1/2)(y — XB)"S ™ (y — X B)
log f(8) = —(1/2)logdet A — (1/2)8TA~18

the MAP estimate satisfies the zero gradient (w.r.t. [3) condition:
X'y Yy - XB)+A1B=0
that gives the form similar to MLE except the extra term A~
By = (XTE7LX + A1 ~LX Ty 1y

when A = oo or maximum ignorance, it reduces to ML estimate

it is a fact that Bmmse — Bmap, so it is interesting to verify
AXT(XAXT +0) ly = (XTI X + A7) IXTe
(the two terms are equivalent — proved by some algebratic operations)
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pI’OOfI Bmmse — Bmap

define H = (XAXT + )71y and we have
XAXTH+YH =y
we start with the expression of Bmmse

ﬁAmmse — AXT<XAXT + Z)_ly = /\XTH
X Bumse = XAXTH =y —XH
AXTZ_lXﬁmmse — /\XTZ_ly — AXTH
— AXTZ_ly T Bmmse
(I +AXTS 7 X) Bumse = AX TSy
(A_l - XTZ_lX)Bmmse — XTZ_ly
Bomse = (A H+ XTo7IX)7IXTy "1y 2 3
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covariance of MAP estimate: we use Bmap = E|5|y]

cov(Bmap) =E (8- E[B|y])(B — E[ﬁlyDT]

use the fact that the optimal residual is uncorrelated with y

oV (Buap) = E [(8 — E[Bly))8”]

next, use the fact that B, = E[S|y] is a linear function in y

coV(Buap) = Cs — KCyg = A — (XTU7IX + A1) IXTy1XA
= (X' X +ATH T (XTSI ATHA = XTETIXA]
= (XS X AT 2 (x0T

Bmap yields a smaller covariance matrix than that of Sy

(because ML does not use a prior knowledge about ()
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Summary

e estimate methods in this section require statistical properties of random entities in
the model

e minimum-mean-square estimate is the conditional mean and typically a nonlinear
function in the measurement data

e a maximum-likelihood estimation is a nonlinear optimization problem; it can reduce
to have a closed-form solution in some special case of noise distribution (e.g.
Gaussian)

e a maximum a posteriori estimation takes model parameters as random variables; it
requires a prior distribution of these parameters

Statistical Estimation 12-37



References

Appendix B in
T. Soderstrom and P. Stoica, System Identification, Prentice Hall, 1989

Chapter 2-3 in
T. Kailath, A. Sayed, and B. Hassibi, Linear Estimation, Prentice Hall, 2000

Chapter 9 in

A. V. Balakrishnan, Introduction to Random Processes in Engineering, John Wiley &
Sons, Inc., 1995

Chapter 7 in
S. Boyd, and L. Vandenberghe, Convex Optimization, Cambridge press, 2004

Statistical Estimation 12-38



