7. Significance tests for linear regression

- reviews on hypothesis testing
- regression coefficient test

Hypothesis tests

elements of statistical tests

- null hypothesis, alternative hypothesis
- test statistics
- rejection region
- type of errors: type ^I and type II errors
- $\bullet\,$ confidence intervals, $\emph{p}\text{-}\mathsf{values}$

examples of hypothesis tests:

- hypothesis tests for the mean, and for comparing the means
- hypothesis tests for the variance, and for comparing variances

Testing procedures

^a test consists of

- $\bullet\,$ providing a statement of the hypotheses $(H_0$ (null) and H_1 (alternative))
- $\bullet\,$ giving a rule that dictates if H_0 should be rejected or not

the decision rule involves ^a test statistic calculated on observed data

the Neyman-Pearson methodology partitions the sample space into two regions

the set of values of the test statistic for which:

the null hypothesis is rejected rejection regionacceptance region we fail to reject the null hypothesis

Test errors

since ^a test statistic is random, the same test can lead to different conclusions

- $\bullet\,$ type $\,$ error: the test leads to *reject* H_0 when it is *true*
- type II error: the test *fails* to reject H_0 when it is *false*; sometimes called false alarm

probabilities of the errors:

- $\bullet\,$ let β be the probability of type II error
- $\bullet\,$ the $\rm\textbf{size}$ of a test is the probability of a type $\sf I$ error and denoted by α
- $\bullet\,$ the $\,$ power of a test is the probability of rejecting a false H_0 or $(1-\beta)$

 α is known as $\sf{significance}$ level and typically controlled by an analyst for a given α , we would like β to be as small as possible

Some common tests

- normal test
- \bullet t-test
- F -test
- Chi-square test

e.g. a test is called a t -test if the test statistic follows t -distribution

two approaches of hypothesis test

- critical value approach
- $\bullet\,$ p -value approach

Critical value approach

 $\mathop{\mathsf{Definition:}}$ the critical value (associated with a significance level $\alpha)$ is the value of the known distribution of the test statistic such that the probability of type ^I error is α

steps involved this test

- 1. define the null and alternative hypotheses.
- 2. assume the null hypothesis is true and calculate the value of the test statistic
- 3. set a small significance level (typically $\alpha=0.01,0.05$, or $0.10)$ and determine the corresponding critical value
- 4. compare the test statistic to the critical value

example: hypothesis test on the population mean

- samples $N=15, \ \alpha=0.05$
- the test statistic is $t^* = \frac{\bar{x} \mu}{s / \sqrt{N}}$ and has *t*-distribution with $N 1$ df

p -value approach

Definition: the p -value is the probability of observing a more extreme test statistic in the direction of H_1 than the one observed, by assuming that H_0 were true

steps involved this test

- 1. define the null and alternative hypotheses.
- 2. assume the null hypothesis is true and calculate the value of the test statistic
- 3. calculate the p -value using the known distribution of the test statistic
- 4. set a significance level α (small value such as $0.01, 0.05)$
- 5. compare the *p*-value to α

example: hypothesis test on the population mean (same as on page 7-7)

- $\bullet\,$ samples $N=15,\ \alpha=0.01$ (have only a 1% chance of making a Type I error)
- $\bullet\,$ suppose the test statistic (calculated from data) is $t^*=2$

right-tail/left-tail tests: reject H_0 , two-tail test: accept H_0

the two approaches assume H_0 were true and determine

the null hypothesis is rejected if

Significance tests for linear regression

- reviews on hypothesis testing
- regression coefficient test

Recap of linear regression

^a linear regression model is

$$
y = X\beta + u, \quad X \in \mathbf{R}^{N \times n}
$$

homoskedasticity assumption: u_i has the same variance for all i , given by σ^2

- $\bullet\,$ prediction (fitted) error: $\hat{u}:=\hat{y}$ $-\,y=X\hat{\beta}$ $-y$
- $\bullet\,$ residual sum of squares: $\text{RSS} = \|\hat{u}\|_2^2$ 2
- a consistent estimate of σ^2 2: $s^2 = \text{RSS}/(N-n)$:
- $\bullet\,\, (N-n)s^2$ $\tau \sim \chi$ 2 $^{2}(N-n)$
- square root of s^2 is called standard error of the regression
- $Avar(\hat{\beta}) =$ s^2 $^{2}(X^{T}%)^{2}=\left\{ \begin{array}{cc} X^{T} & X^{T}% \end{array} \right.$ $^T X)^{-1}$ (estimated asymptotic covariance)

Common tests for linear regression

• testing ^a hypothesis about ^a coefficient

$$
H_0: \beta_k = 0 \quad \text{VS} \quad H_1: \beta_k \neq 0
$$

we can use both t and F statistics

• testing using the fit of the regression

 H_0 : reduced model $\;\;\nabla{\rm S}\;\;\;H_1$: full model

if H_0 were true, the reduced model (β_k) error than that of the full model $(\beta_k\neq0)$ $\epsilon_k = 0)$ would lead to smaller prediction

Testing ^a hypothesis about ^a coefficient

statistics for testing hypotheses:

$$
H_0: \beta_k = 0 \quad \text{VS} \quad H_1: \beta_k \neq 0
$$

$$
\bullet \frac{\hat{\beta}_k}{\sqrt{s^2((X^TX)^{-1})_{kk}}} \sim t_{N-n}
$$

•
$$
\frac{(\hat{\beta}_k)^2}{\sqrt{s^2((X^TX)^{-1})_{kk}}} \sim F_{1,N-n}
$$

the above statistics are Wald statistics (see derivations in Greene book)

- \bullet the term $\sqrt{s^2((X^TX)^{-1})}$ $^{1})_{kk}$ is referred to standard error of the coefficient
- the expression of SE can be simplified or derived in many ways (please check)
- $\bullet\,$ e.g. $\,$ R use $\,t$ -statistic (two-tail test)

Testing using the fit of the regression

hypotheses are based on the fitting quality of reduced/full models

 H_0 : reduced model $\;\;\nabla{\rm S}\quad H_1$ \mathfrak{f}_1 : full model

reduced model: $\beta_k=0$ and full model: $\beta_k\neq0$

the $F\text{-}$ statistic used in this test

$$
\frac{(\text{RSS}_R - \text{RSS}_F)}{\text{RSS}_F/(N-n)} \sim F(1, N-n)
$$

- \bullet RSS_{R} and RSS_{F} are the residual sum squares of reduced and full models
- \bullet RSS_{R} cannot be smaller than RSS_{F} , so if H_{0} were true, then the F statistic would be zero
- \bullet e.g. fitlm in MATLAB use this F statistic, or in ANOVA table

MATLAB example

perform t -test using $\alpha=0.05$ and the true parameter is $\beta=(1,0,-1,0.5)$

realization 1: $N = 100$

>> [btrue ^b SE pvalue2side] ⁼ 1.0000 1.0172 0.1087 0.0000 ⁰ 0.1675 0.0906 0.0675 -1.0000 -1.0701 0.1046 0.0000 0.5000 0.5328 0.1007 0.0000

- \bullet $\hat{\beta}$ is close to β
- $\bullet\,$ it's not clear if $\hat{\beta}$ 2 $_2$ is zero but the test decides $\hat{\beta}$ $z = 0$
- note that all coefficients have pretty much the same SE

realization 2: $N = 10$

realization 3: $N = 10$

- $\bullet\,$ some of $\hat{\beta}$ is close to the true value but some is not
- $\bullet\,$ the test 2 decides $\hat{\beta}$ z and $\hat{\beta}$ 4 are zero while the test 3 decides all β are zero
- the sample size N affects type II error (fails to reject H_0) and we get different results from different data sets

Summary

- common tests are available in many statistical softwares, e.g, minitab, lm in R, fitlm in MATLAB,
- one should use with care and interpret results correctly
- an estimator is random; one cannot trust its value calculated based on ^a data set
- examining statistical properties of an estimator is preferred

References

W.H. Greene, Econometric Analysis, Prentice Hall, 2008 Review of Basic Statistics (online course) https://onlinecourses.science.psu.edu/statprogramStat ⁵⁰¹ (online course)

https://onlinecourses.science.psu.edu/stat501