1. Introduction

- *•* basic concept
- *•* system identification methods
- *•* procedures in system identification
- *•* examples

Basic concept

objective: how to build a system description from experimental data

when we talk about a model

- a dynamical model with input u and output $y: y = Gu$
- a statistical model with predictor x and response $y: y = f(x)$

due to uncertainty of measurement or unexplained phenomenon

the output is assumed to be corrupted by noise

Model usages

estimation of system description can serve for many purposes:

- *•* obtain a mathematical model for controller design
- *•* explain/understand observed phenomena (e.g., machine learning)
- *•* forecast events in the future (e.g., time series analysis in econometrics)
- *•* obtain a model of signal in filter design (e.g., signal processing)
- *•* model inference

System Identification for controller design

- *•* for controller design, the plant is assumed known
- *•* in system identification, we aim to estimate the parameters in a model

System Identification for prediction

• left: estimate generated solar power from measurements of solar irradiance

 ${\rm solar\ power} = f({\rm solar\ irradiance}) \approx \beta_0 + \beta_1 I + \beta_2 I^2 + \cdots + \beta_n I^n$

• right: forecast the Thai Baht in Apr, May,...? need a model for prediction

$$
\hat{x}_{\rm Apr} = a_1 x_{\rm Mar} + a_2 x_{\rm Feb}
$$

Model inference

model parameters (or its function) can *infer* some pattern of data

- *•* interconnection structure between (*y, u*) or among the variables
- *•* relevancy of using a set of features to explain the response variables

Essential elements

users develop a math model to explain data using prior knowledge of applications

- *•* applicable estimation techniques depend on a selected model
- *•* most model estimation problems require numerical methods to get a numerical solution

Models

a description of the system, or a relationshop among observed signals

a model should capture the essential information about the system

types of models

- *•* graph and tables, e.g., bode plots and step response
- *•* mathematical models, e.g., differential and difference equations
- *•* probablilistic models, e.g, probability density function

System identification is a process of obtaining models based on a data set collected from experiments

input and output signals from the system are recorded and analyzed to infer a model

Introduction 1-8

System identification methods

• **Nonparametric approach**

- **–** aim at determining a (time/frequency) response directly without first selecting a possible set of models
- **–** gives basic information about the sytsem and is useful for validation
- **–** examples are transient analysis, frequency analysis, correlation analysis, and spectral analysis

• **Parametric approach**

- **–** require assumptions on a model class/structure
- **–** the search for the best model within the candidate set becomes a problem of determining the model parameters
- **–** typically more complicated than the nonparametric approach
- **–** results can be further used for controller design, simulation, etc.

Prior knowledge about uncertainty

noise characteristic is one prior assumption that users can exploit in estimation

Procedures in System Identification

Parametric estimation

• model class:

SISO/MIMO, linear/nonlinear, time-invariant/time varying, discrete/continuous

- *•* searching the best model within a candidate set becomes a problem of determining the model parameters
- *•* the selected parameter *x*ˆ from a model class *M* is optimal in some sense, i.e.,

 $\hat{x} = \text{argmin}$ *x∈M f*(*x, D*)*,*

where *f* is a measure of goodness of fit (or loss function) and is a function of information data (*D*)

• examples of *f* are quadratic loss, likelihood, entropy function, etc.

Estimation methods

• linear least-squares method (LS)

simple to compute, no assumption on noise model

- *•* statistical estimation methods, e.g., maximum likelihood, Bayes use prior knowledge about noise
- *•* instrumental-variable method

a modification of the LS method for correlated noise

• subspace methods

LS and projection framework of estimating state-space models

• prediction-error method

model the noise, applicable to a broad range of models

Model selection

• **Principle of parsimony:**

one should pick a model with the smallest possible number of parameters that can adequately explain the data

• one can trade off between

Goodness of fit vs **Complexity**

- related to the concept of bias VS variance in statistics
- *•* examples of model selection criterions are FPE, AIC, BIC, etc.

Example: Polynomial fitting

20 50 data poly(1) fit 15 40 poly(3) fit poly(10) fit estimation error 10 30 \mathcal{C} 5 20 $\overline{0}$ 10 -5 -2 $\overline{0}$ 1 2 3 4 5 6 7 8 9 10 -2 -1 0 1 2 polynomial order polynomial order

curve fitting problem of polynomial of order *n* (true order is $n = 3$)

- *•* the error begins to decrease as the model picks up the relevant features
- *•* as the model order increases, the model tends to *over fit* the data

Model validation

- *•* a parametric estimation procedure picks out the *best* model
- a problem of model validation is to verify whether this best model is "good enough"
- *•* test the estimated model (obtained from training data), with a new set of data (validation set)
- the tests verify whether the dynamic from the input and the noise model are adequate

Numerical Example

- *•* feed a known input to the system and measure the output
- *•* the input should contain rich information to excite the system

• fit the measured output to the model

$$
(1 + a_1 q^{-1} + \dots + a_n q^{-n})y(t) =
$$

$$
(b_1 q^{-1} + \dots + b_n q^{-n})u(t) + (1 + c_1 q^{-1} + \dots + c_n q^{-n})e(t)
$$

with unknown parameters $a_1, \ldots, a_n, b_1, \ldots, b_n, c_1, \ldots, c_n$

- *•* this model is known as **Autoregressive Moving Average with Exogenous input (ARMAX)**
- *• e*(*t*) represents the noise that enters to the system
- *• n* is the model order, which is selected via *model selection*
- *•* the parameters are estimated by the *prediction-error method (PEM)*

Example of output prediction

$n=2$ $n=6$ 1 1 0.8 0.8 0.6 0.6 0.4 0.4 ¥ $\boldsymbol{\mathsf{x}}$ 0.2 0.2 0_o O O α 0 0 -0.2 -0.2 \bm{x} × -0.4 -0.4 -0.6 -0.6 **S** -0.8 -0.8 -1 -1 -1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

Example of zero-pole location

• ◦: zeros, *×*: poles

- red: true system, blue: estimated models
- *•* chance of zero-pole cancellation at higher order

Skills needed for system identification

one should have

- concepts of dynamical systems (description, how to analyze their properties)
- *•* probability and statistics (to understand probablilistic models, estimation methods, to statistically interpret results)
- *•* linear algebra (many linear models involve matrix analysis)
- *•* optimization (most model estimations are optimization problems)
- *•* programming (for numerical methods to solve estimation problems)

References

Chapter 1,2 in L. Ljung, *System Identification: Theory for the User*, Prentice Hall, Second edition, 1999

Chapter 1-3 in T. Söderström and P. Stoica, *System Identification*, Prentice Hall, 1989

L. Ljung, *Perspective on System Identification*, http://www.control.isy.liu.se/ljung/