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Revisit the LS method

using linear regression in dynamic models (SISO)
Ala y(t) = Bla™u(t) +v(t)
where v(t) denotes the equation error
Al =14+ ag ™ + - +ang ™, Bl@™) =big 4+ byg ™

we can write the dynamic as

where
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the least-squares solution is the value of 0 that minimizes
N
Z Ol
and is given by
1 & AR
5 T T
b, = <NZH(t> H(t)) (NZH(w y(t))
t=1 t=1
to examine if 0 is consistent (§ — 0 as N — c0), note that
A N - N
Os — 0 = ( ZH(t)TH(t)> { > H(t)" < ZH tYTH(t) ) }
t=1 t=1
N -1 N
— ( H(t)TH(t)> < > HH)T )
t=1 t=1
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hence, 0y, iIs consistent if

e E[H(t)T H(t)] is nonsingular
satisfied in most cases, except u is not persistently exciting of order n

e E[Ht)'v(t)] =0
not satisfied in most cases, except v/(t) is white noise

summary:

e LS method for dynamical models is still certainly simple to use

e consistency is not readily obtained since the information matrix (H) is no
longer deterministic

e it gives consistent estimates under restrictive conditions

to obtain consistency of the estimates, we modify the normal equation so that
the output and the disturbance become uncorrelated
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Solutions:

e PEM (Prediction error methods)

— model the noise
— applicable to general model structures
— generally very good properties of the estimates

— computationally quite demanding

e |VM (Instrumental variable methods)

— do not model the noise

— retain the simple LS structure

— simple and computationally efficient approach
— consistent for correlated noise

— less robust and statistically less effective than PEM
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Description of IVM

define Z(t) € R™ with entries uncorrelated with v(t)

NZ Z(t)Tv(t) = %ZZT(t)[y(t) — H(t)0] =0

t=1

The basic IV estimate of 6 is given by

provided that the inverse exists

e /(t) is called the instrument and is up to user’s choice

o if Z(t) = H(t), the IV estimate reduces to the LS estimate
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Choice of instruments

the instruments Z(t) have to be chosen such that

e /(t) is uncorrelated with noise v/(t)

EZ(t) v(t) =0

e the matrix

d Z)"H(t) » EZ(t)"H(t)

1
N

has full rank

in other words, Z(t) and H(t) are correlated
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one possibility is to choose
Zt)=[-nt-1) ... —nt—ng) ult-1)
where the signal 7(¢) is obtained by filtering the input,
Clg)n(t) = D(g)u(t)
Special choices:

e let C, D be a prior estimates of A and B

e simple choice: pick C(¢g7') =1, D(g7') = —¢~™

Z(t)=lut—1) ... u(t—ng—mnp)]

(with a reordering of Z(t))

u(t —np)]

note that u(t) and the noise v(t) are assumed to be independent
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Example via Yule-Walker equations

consider a scalar ARMA process:

Algy(t) = ClaHe(t)
y(t) +ary(t —1)+ ... +apy(t —p) =e(t) +cre(t — 1)+ ...+ cre(t — 1)

where e(t) is white noise with zero mean and variance \?
define Ry, = Ey(t)y(t — k)*, we obtain
Ry +a1Rp_1+...+apRp—p=0, E=r+1,7r+2,...

where we have used EC(¢ De(t)y(t — k)L =0, k>r

this is referred to as Yule-Walker equations
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enumerate from k£ =r+1,...,r +m, where m > p,

the Yule-Walker equations can be fit into a matrix form

R,
Rr—i—l

Rr—l—m—l

Rr—l—m—Q

R'r—l
R,

RT—H—p
RT+2—p

Rr—i—m—p_

R and r are typically replaced by their sample esimates:

>

=i

=i

M= 11

~
I
—_
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y@—f—l)
_y(t — 7"' — m)_
'y@—f—lY
y(t — 7"' — m)_

y(t—1)

y(t)

Rr—i—l |
R?“_“ £ RY
iR
y(t —p)]



hence RO = —7 is equivalent to

1 y(t—r—1) ]
jﬁE: ’ [~y —1) g —y(t —p)]
t=1 \_y(t —r — m)u H(t)
Z()T

y@—f—l)

t=1 |y(t —r —m)
this is the relationship in basic IVM

N N

1 T 1 T
sz(t) H(t)0 = sz(t) y(t)
t=1 t=1
where we use the delayed output as an instrument
T
Z@t)=|—-ylt—r—1) ylt—-r—2) ... ylt—r—m)
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Extended IV methods

The extended |V method is to generalize the basic IV in two directions:

e allow Z(t) to have more elements than 6 (n, > ny)

e use prefiltered data

and the extended |V estimate of 6 is obtained by

N

> Z(t)"Fq ) (y(t) — H(t)9)

t=1

min
0

%4

where ||z]|%, = xT Wz and W = 0 is given

when F(¢ 1) = I,n, = nyg, W = I, we obtain the basic IV estimate
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Define
Ay = %;Z(t)TF(q‘l)H(t)
b = 2 207 F (@)

then @ is obtained by )
0 = argmin ||by — AnO||3
0

this is a weighted least-squares problem

the solution is given by

0= (ATWAN)TAL Wby

note that this expression is only of theoretical interest
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Theoretical analysis

Assumptions:

1. the system is strictly causal and asymptotically stable
2. the input u(t) is persistently exciting of a sufficiently high order

3. the disturbance v(t) is a stationary stochastic process with rational spectral

density,
v(t) = G(g He(t), Ee(t)* = \?

4. the input and the disturbance are independent

5. the model and the true system have the same transfer function if and only if
¢ = 6 (uniqueness)

6. the instruments and the disturbances are uncorrelated
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from the system description

y(t) = H(t)0 + v(t)

we have
by — %;zwmq-l)y(t)
- % ; Z(t)" F(q~ ) H(t)0 + % ; Z(t) F(g )v(t)
— ANQ + gN
thus,

0—0=ATWAN)TAT Wby — 0 = (ALWAN)TALWgN
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as N — oo,
(ANKWAN)TANW gy — (ATWA) AT W ¢

where
A = grgAN:E[Z(t)TF(q_l)H(t)]
q = }\ifrgquE[Z(t)TF(q_l)V(t)]

hence, the IV estimate is consistent (limN%OOHA = 0) if

e A has full rank
o BIZ(t)TF (g ()] = 0
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Numerical example

the true system is given by
(1 —1.5¢" 1 4+0.7¢"*)y(t) = (1.0g~ " +0.5¢ ) u(t) + (1 — 1.0~ + 0.2 %)e(t)

e ARMAX model
e u(t) is from an ARMA process, independent of e(t)
e ¢(t) is white noise withzero mean and variance 1

e N = 250 (number of data points)
estimation

e use ARX model and assume n, = 2, np = 2

e compare the LS method with IVM
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LS fit = 66.97%, IV fit = 77.50%
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Example of MATLAB codes

%/ Generate the data

close all; clear all;

N = 260; Ts = 1;

a=1[1-1.50.7]; b=[01 .5]; ¢c=1[1-10.2];
Au = [1 -0.1 -0.12]; Bu = [0 1 0.2]; Mu = idpoly(Au,Bu,Ts);
u = sim(Mu,randn(2*N,1)); % u is ARMA process
noise_var = 1; e = randn(2xN,1);

M = idpoly(a,b,c,1,1,noise_var,Ts);

y = sim(M, [u el);

uv = u(N+l:end); ev = e(N+l:end); yv = y(N+1l:end);
u=u(l:N); e =e(1:N); y=y(1:N);

DATe = iddata(y,u,Ts); DATv = iddata(yv,uv,Ts);

%/ Identification

na = 2; nb = 2; nc = 2;

theta_iv = iv4(DATe, [na nb 1]); %» ARX using iv4
theta_ls = arx(DATe, [na nb 1]); % ARX using LS
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%/ Compare the measured output and the model output
[yhat2,fit2] = compare(DATv,theta_iv);
[yhat4,fit4] = compare(DATv,theta_ls);

figure;t = 1:N;

plot (t, yhat2{1} y(t),’—=’,t,yhat4{1}.y(t),’-.’,t,yv(L));
legend(’model (iv)’,’model (LS)’,’measured’)
title(’Comparison on validation data set’,’FontSize’,16);
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