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4. Linear least-squares

• linear regression

• engineering applications

• solving linear least-squares

• numerical computation

• weighted linear least-squares

• properties of LS estimates
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Linear regression

• a linear relationship between variables y and xk using a linear function:

y = β1x1 + β2x2 + · · · + βnxn ≜ xTβ

where y ∈ Rm, x ∈ Rm×n, β ∈ Rn

• y contains the measurement variables and is often called the
regressed/response/explained/dependent variable

• xk’s are the input variables that explain the behavior of y; called the
predictor/explanatory/independent variables

• β is the regression coefficient
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• given a data set: {(xi, yi)}mi=1 we can form a matrix form
y1
y2...
ym

 =


x11 x12 · · · x1n

x21 x22 · · · x2n... ... ...
xm1 xm2 · · · xmn



β1

β2...
βn

 ≜ y = Xβ

• the matrix X is sometimes called the design/regressor matrix

• given y and X , one would like to estimate β that gives the linear model output
match best with y

• in practice, in the presence of noise and disturbance, more data should be collected
in order to get a better estimate – leading to overdetermined linear equations

• an exact solution to y = Xβ does not usually exist; however, it can be solved by
linear least-squares formulation
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Problem statement

overdetermined linear equations:

Xβ = y, X is m× n with m > n

for most y cannot solve for β

linear least-squares formulation:

minimize
β

∥y −Xβ∥2 =

 m∑
i=1

(

n∑
j=1

Xijβj − yi)
2

1/2

• r = y −Xβ is called the residual error

• β with smallest residual norm ∥r∥ is called the least-squares solution

• equivalent to minimizing ∥y −Xβ∥2
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Fitting linear least-squares

left: explain the sale amount by advertising on TV
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• left: sum squared distance of data points to the line is minimum (this line fits best)

• right: for two predictors, LS solution is the normal vector of hyperplane that lies
closest to all data points of y
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Example 1: data fitting

given data points {(ti, yi)}mi=1, we aim to approximate y using a function g(t)

y = g(t) := β1g1(t) + β2g2(t) + · · · + βngn(t)

• gk(t) : R → R is a basis function
– polynomial functions: 1, t, t2, . . . , tn
– sinusoidal functions: cos(ωkt), sin(ωkt) for k = 1, 2, . . . , n

• the linear regression model can be formulated as
y1
y2...
ym

 =


g1(t1) g2(t1) · · · gn(t1)
g1(t2) g2(t2) · · · gn(t2)... ...
g1(tm) g2(tm) · · · gn(tm)



β1

β2...
βn

 ≜ y = Xβ

• often have m ≫ n, i.e., explaining y using a few parameters in the model
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fitting a 6th-order polynomial to data points generated from f (t) = 1/(1 + t2)
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• (right) the weighted sum of basis functions (xk) is the fitted polynomial
• the ground-truth function f is nonlinear, but can be decomposed as a sum of

polynomials
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Example 2: FIR model

given input/output data: {(y(t), u(t))}mt=0, we aim to estimate FIR model parameters

y(t) =

n−1∑
k=0

h(k)u(t− k)

determine h(0), h(1), . . . , h(n− 1) that gives FIR model output closest to y
y(n− 1)
y(n)

...
y(m)

 =


u(n− 1) u(n− 2) . . . u(0)
u(n) u(n− 1) . . . u(1)

... ... ... ...
u(m) u(m− 1) . . . u(m− n + 1)




h(0)
h(1)

...
h(n− 1)


• y(t) is a response to u(t), u(t− 1), . . . , u(t− (n− 1))

• we did not use initial outputs y(0), y(1), . . . , y(n− 2) since there are no historical
input data for those outputs
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Example 3: scalar first-order model

given data set: {(u(t), y(t)}Nt=1, we aim to estimate a scalar ARX model

y(t) = ay(t− 1) + bu(t− 1) + e(t)

y(t) is linear in model parameters: a, b
y(2)
y(3)

...
y(N )

 =


y(1) u(1)
y(2) u(2)

... ...
y(N − 1) u(N − 1)

[ab
]

• the model is first-order, the equation is initialized with y(1), u(1)

• before collecting data, one chooses u to appropriately stimulate the system

• an impulse input is a bad choice as the whole second column is almost zero
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data generation:

• a = 0.8, b = 1 are true parameters

• e is white noise with variance 0.1

• PRBS input
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estimated parameters: â = 0.75, b̂ = 1.08
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Closed-form of least-squares estimate

the zero gradient condition of LS objective is

d

dβ
∥y −Xβ∥22 = −XT (y −Xβ) = 0

which is equivalent to the normal equation

XTXβ = XTy

if X is full rank:

• least-squares solution can be found by solving the normal equations

• n equations in n variables with a positive definite coefficient matrix

• the closed-form solution is β = (XTX)−1XTy

• (XTX)−1XT is a left inverse of X
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Properties of full rank matrices

suppose X is an m× n matrix; we always have

rank(X) ≤ min(m,n)

if X is full rank with m ≥ n (tall matrix)

• rank(X) = n and N (X) = {0} (Xz = 0 ⇔ z = 0)
• XTX is positive definite: for any z ̸= 0 then

zTXTXz = ∥Xz∥2 > 0

similarly, if X is full rank with m ≤ n (fat matrix)

• rank(X) = m and N (XT ) = {0}

• XXT is positive definite
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Geometric interpretation of a LS problem

• ∥y −Xβ∥2 is the distance from y to

Xβ = β1x1 + β2x2 + · · · + βnxn

• solution βls gives the linear combination of the columns of X closest to y

• Xβls is the orthogonal projection of y to the range of X
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Orthogonal projection

orthogonality condition

xT
k (y − Py) = 0, ∀k

the optimal residual ⊥ to any vector in R(X)

• Py is the orthogonal projection of y onto R(X) spanned by x1, . . . , xn

• Py gives the best approximation; for any ŷ ∈ R(X) and ŷ ̸= Py

∥y − Py∥ < ∥y − ŷ∥
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• from the orthogonality condition and Py is a linear combination of {xk}

xT
k y = xT

kPy =

n∑
j=1

xT
k xjβj, ∀k


xT
1 y

xT
2 y...

xT
ny

 =


xT
1 x1 xT

1 x2 . . . xT
1 xn

xT
2 x1 xT

2 x2 . . . xT
2 xn... ... . . . ...

xT
nx1 xT

nx2 . . . xT
nxn



β1

β2...
βn



• this also leads to the normal equation: XTXx = XTy

• Xβls = Py with
P = X(XTX)−1XT

(provided that X has full rank)
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Numerical computation

we can solve a least-squares problem via

• Cholesky factorization: factor XTX ≻ 0 into LLT where L is lower triangular

• QR factorization

most programming languages provide built-in commands

returned output MATLAB Python
β̂ X\y scipy.linalg.lstsq
estimated model fitlm sklearn.linear model.LinearRegression

the closed-form β̂ = (XTX)−1XTy is for analysis purpose

we do not actually compute β̂ from this expression
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Solving least-squares via QR factorization

for any tall X ∈ Rm×n, we have QR factorization:

X =
[
Q1 Q2

] [R1

0

]
= Q1R1

where Q ∈ Rm×m orthonormal, Q1 ∈ Rm×n, R1 ∈ Rn×n upper triangular,
invertible

• multiplication by orthogonal matrix does not change the norm, so

∥Xβ − y∥2 =
∥∥∥∥[Q1 Q2

] [R1

0

]
β − y

∥∥∥∥2
=

∥∥∥∥[Q1 Q2

]T [
Q1 Q2

] [R1

0

]
β −

[
QT

1

QT
2

]
y

∥∥∥∥2
=

∥∥∥∥[R1β −QT
1 y

−QT
2 y

]∥∥∥∥2 = ∥R1β −QT
1 y∥2 + ∥QT

2 y∥2

Linear least-squares 4-17



• the least-squares objective can be minimized by the choice

βls = R−1
1 QT

1 y

which makes the first term zero

• residual with optimal β is

Xβls − y = −Q2Q
T
2 y

• Q1Q
T
1 gives projection on R(X)

P = X(XTX)−1XT = Q1R1(R
T
1 R1)

−1RT
1 Q

T
1 = Q1Q

T
1

• Q2Q
T
2 gives projection on R(X)⊥

P⊥ = I − P = I −Q1Q
T
1 = Q2Q

T
2
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Weighted least-squares

given W a positive definite matrix that can be factorized as W = LTL

a weighted least-squares (WLS) problem is

minimize
x

(Xβ − y)TW (Xβ − y)

• equivalent formulation: minimizex ∥L(Xβ − y)∥2

• can be solved from the modified normal equation

XTWXβ = XTWy

• the solution is β̂wls = (XTWX)−1XTWy (if X is full rank)
• Xβwls is the orthogonal projection on R(X) w.r.t the new inner product

⟨x, y⟩W = ⟨Wx, y⟩
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Interpretation of WLS

when m-measurements contain some outliers (samples 3,9,10)
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using W = diag(w1, w2, . . . , wm) gives WLS objective:
∑m

i=1wi(yi − xT
i β)
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• use relatively low w3, w9, w10 to penalize less on those samples
• the linear model tends not to adapt to outliers – making WLS a more robust

method than LS
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Assumptions for analyzing LS estimates

a general regression model is of the form

y = E[y|x] + e

• E[y|x] is the conditional mean of y when x is given (the best estimate in MMSE)
• e is uncertainty or noise; assumed to have zero mean
• generally, E[y|x] is nonlinear in x

• LS framework assumes that E[y|x] is linear in x

analysis of LS estimate relies on the data generating process (DGP)

yi = xT
i β + ei, i = 1, 2, . . . , N

where β is the true (unknown) parameter; given {(xi, yi)}Ni=1, we estimate β using
LS framework
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Analysis of the LS estimate (static case)

assumptions:

• e is noise with zero mean and covariance matrix Σ

• the least-square estimate: βls = argmin ∥y −Xβ∥2 = (XTX)−1XTy

• the sensor matrix X is deterministic

then the following properties hold:

• βls is an unbiased estimate of β (Eβ̂ = β, or β̂ = β when e = 0)

• the covariance matrix of βls is given by

cov(βls) = (XTX)−1XTΣX(XTX)−1
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the expression of cov(βls) = (XTX)−1XTΣX(XTX)−1 suggests that

• if X can be arbitrarily chosen, pick X that the covariance is small

• the covariance of the LS estimate depends on noise covariance

special case: noise covariance is diagonal

• Σ = diag(σ2
1, . . . , σ

2
N) (heteroskedasticity): ei has different variances

• Σ = σ2I (homoskedasticity): ei has uniform variance

for homoskedasticity case, the covariance of the LS estimate reduces to

cov(βls) = σ2(XTX)−1

note: X has N rows; as N increases, (XTX)−1 gets smaller making βls less
uncertain
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BLUE property
under the dgp: y = Xβ + e and homoskedasticity of e, the LS estimator

βls = (XTX)−1XTy

is the best linear unbiased estimator (BLUE) of β

assume β̂ = By is any other linear estimator of β

• require BA = I in order for β̂ to be unbiased
• cov(β̂) = BBT

• cov(βls) = BX(XTX)−1XTBT (apply BX = I)

for an orthogonal projection matrix, we have I − P ⪰ 0

cov(β̂)− cov(βls) = B(I −X(XTX)−1XT )BT ⪰ 0

βls has smaller covariance than other linear estimators
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Generalized least-squares estimators

for correlated noise with cov(e) = Σ

we can derive BLUE estimator by scaling y = Xβ + e with Σ−1/2

Σ−1/2y = Σ−1/2Xβ + Σ−1/2e

the generalized least-squares estimator of β is

βgls = (XTΣ−1X)−1XTΣ−1y

which has BLUE property under heteroskedasticity of noise

• this is a special case of weighted least-squares problem with W = Σ−1

• noise covariance is typically unknown; we replace Σ with its estimate
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Analysis of the LS estimate (stochastic case)

suppose we apply the LS method to a dynamical system

y(t) = H(t)β + e(t)

• the observations y(1), y(2), . . . , y(N ) are available

• β is the dynamical model parameter

typically, x(t) contains the past outputs and inputs

y(1), . . . , y(t− 1), u(1), . . . u(t− 1)

(hence x = H(t) is no longer deterministic)

and e(t) is white noise with covariance Σ
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the LS estimate β̂N (depending on N) given by

β̂N =

[
1

N

N∑
t=1

H(t)TH(t)

]−1 [
1

N

N∑
t=1

H(t)Ty(t)

]

has the following properties (under some assumptions):

• β̂N is consistent, i.e., it converges to the true parameter in probability

plim β̂N = θ ⇐⇒ lim
N→∞

P (|β̂N − β| < ϵ) = 1

•
√
N (β̂ − β) is asymptotically Gaussian distributed N (0, P ) where

P = Σ−1
x ΣuxΣ

−1
x

Σx involves E[H(t)TH(t)] and Σux involes E[H(t)e(t)e(t)TH(t)T ]
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the consistency results of LS estimate are based on some assumptions

β̂N − β =

(
1

N

N∑
t=1

H(t)TH(t)

)−1{
1

N

N∑
t=1

H(t)Ty(t)−

(
1

N

N∑
t=1

H(t)TH(t)

)
β

}

=

(
1

N

N∑
t=1

H(t)TH(t)

)−1(
1

N

N∑
t=1

H(t)Te(t)

)

hence, β̂N is consistent if

• E[H(t)TH(t)] is nonsingular
satisfied in most cases, except u is not persistently exciting of order n

• E[H(t)Te(t)] = 0
not satisfied in most cases, except e(t) is white noise
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Summary

• LS method can be applied to models that are linear in the parameters

• a LS solution is unique if there is no colinearity (X is full rank)

• the method is mature, can be solve efficiently and is available in many softwares

• LS estimate has the BLUE property under the assumption that the noise in data
generating process is homoskedastic

• LS estimate is consistent if the additive noise is uncorrelated with the regressors
and the system is persistently excited
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Related topics

• significance test: examine which predictors are significant to be included

• variable selection: best subset selection, step-wise regression

• qualitative input variables: use dummy variables

• some nonlinear relationship between y and x can be formulated as LS

• non-constant noise variance: some transformation of data, e.g., log(·) is applied

• regularization
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