EE531 - System ldentification

4. Linear least-squares

e linear regression

e engineering applications

e solving linear least-squares

e numerical computation

e weighted linear least-squares

e properties of LS estimates
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Linear regression

e a linear relationship between variables y and x using a linear function:

Yy = [1r1+ Boxo + -+ + Bpy = :L*Tﬂ

where y € R™, z € R™*", 8 € R"

e Y contains the measurement variables and is often called the
regressed /response/explained/dependent variable

e 1;'s are the input variables that explain the behavior of y; called the
predictor/explanatory/independent variables

e (3 is the regression coefficient
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e given a data set: {(x;,y;)}*, we can form a matrix form

U1 11 T12 o Tin B

Y  [T2ar X2 -+ Ton B A B

. o . . . . o y o X/B
_ym_ _xml Lm?2 et xmn_ _ﬁn_

e the matrix X is sometimes called the design/regressor matrix

e given y and X, one would like to estimate (3 that gives the linear model output
match best with y

e in practice, in the presence of noise and disturbance, more data should be collected
in order to get a better estimate — leading to overdetermined linear equations

e an exact solution to y = X (3 does not usually exist; however, it can be solved by
linear least-squares formulation
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Problem statement

overdetermined linear equations:
Xp=y, XismXxXnwithm>n

for most y cannot solve for (3
linear least-squares formulation:

1/2

miniBmize ly — X B2 = Z(Z XiiB; — vi)°

i=1 j=1

o v =1y — X[ is called the residual error
e [ with smallest residual norm ||| is called the least-squares solution

e equivalent to minimizing ||y — X 3]
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Fitting linear least-squares

left: explain the sale amount by advertising on TV

_ Sales (Unit)

| | | |
100 50 20 250 0 ; l:
Advertised cost on TV (USD) x2 1

e left: sum squared distance of data points to the line is minimum (this line fits best)

e right: for two predictors, LS solution is the normal vector of hyperplane that lies
closest to all data points of y
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Example 1: data fitting

given data points {(¢;,y;) }/*,, we aim to approximate y using a function g(t)

e gi(t) : R — R is a basis function

— polynomial functions: 1,¢, ¢, ...t
— sinusoidal functions: cos(wyit), sin(wgt) for k =1,2,...,n

e the linear regression model can be formulated as

Y1
Y2

Ym

g1(t1)
g1 (.752)

gl<;5m)

g2(t1)
ga(t2)

g2(tm)

B
B

5,

Yy = g(t) = 5191(75) + 6292<t> +oee 5ngn<t>

e often have m > n, i.e., explaining y using a few parameters in the model
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46



fitting a 6th-order polynomial to data points generated from f(t) = 1/(1 + t?)
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e (right) the weighted sum of basis functions (z*) is the fitted polynomial

5

e the ground-truth function f is nonlinear, but can be decomposed as a sum of
polynomials
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Example 2: FIR model

given input/output data: {(y(t),u(t))}}>, we aim to estimate FIR model parameters

n—1

y(t) =Y h(ku(t — k)

k=0

determine h(0), h(1),...,h(n — 1) that gives FIR model output closest to ¥

y(n —1)

u(n — 1)

u(n — 2)
u(n - 1)
u(m.— 1)

e y(t) is a response to u(t),u(t —1),...,u(t — (n —1))

e we did not use initial outputs y(0),y(1), ...

input data for those outputs

Linear least-squares
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hn — 1)

,y(n — 2) since there are no historical
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Example 3: scalar first-order model

given data set: {(u(t),y(t)},, we aim to estimate a scalar ARX model
y(t) =ay(t —1)+bu(t — 1) +e(t)

y(t) is linear in model parameters: a, b

y(2) y(1) u(l1)

y3) | _ | @) u(2) H
: : 5 b

y(N)] [y =1) u(N—-1)]

e the model is first-order, the equation is initialized with y(1), u(1)
e before collecting data, one chooses u to appropriately stimulate the system

e an impulse input is a bad choice as the whole second column is almost zero
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data generation:

e ¢ =0.8,b=1 are true parameters

e ¢ is white noise with variance 0.1

e PRBS input
PRBS input 5
M — . oA n —e— actual output
—e—estimate
3
0.5/ 2 +—1 ?
1%’ 2e T W ﬁ
0 . le\j/\f@a @WX
LW Y
L 2
-05 2 $
gl S b S e s [ 10 20 30 40 50
10 20 30 40 50 t

estimated parameters: a = 0.75, b =1.08
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Closed-form of least-squares estimate

the zero gradient condition of LS objective is

Ty = XBI3 = ~XT(y ~ XB) =0
which is equivalent to the normal equation
XT'xp=Xx1y
if X is full rank:

e |east-squares solution can be found by solving the normal equations
e 1 equations in n variables with a positive definite coefficient matrix
e the closed-form solution is 8 = (X1 X)~1 X1y

o (XTX)"1X" is a left inverse of X

Linear least-squares
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Properties of full rank matrices
suppose X is an m X n matrix; we always have
rank(X) < min(m,n)
if X is full rank with m > n (tall matrix)

e rank(X)=nand N(X)={0} (Xz=0< 2z=0)

o X1 X is positive definite: for any z # 0 then

XXz = Xz2]]* >0

similarly, if X is full rank with m < n (fat matrix)

e rank(X) =m and N(X1) = {0}

e X X7 is positive definite

Linear least-squares

4-12



Geometric interpretation of a LS problem

Y

e |y — X ||z is the distance from y to

XpB = pix1+ Baxa+ -+ Bnn

e solution (i gives the linear combination of the columns of X closest to y

e X [ is the orthogonal projection of y to the range of X
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Orthogonal projection

orthogonality condition

vy (y — Py) =0, Vk

iy the optimal residual L to any vector in R(X)

e Py is the orthogonal projection of y onto R(X) spanned by 1, ..., z,

e Py gives the best approximation; for any y € R(X) and y # Py

|y — Pyl| < [ly — 9|
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e from the orthogonality condition and Py is a linear combination of {x}

e this also leads to the normal equation: X' Xz = X7y

o X[ = Py with

iy =xi Py = Z rix;8;, Vk
j=1

T, T T T
T T T T
T,y | T, %1 T,Ty ... X

P=XXx'x)"'xt

(provided that X has full rank)
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Numerical computation

we can solve a least-squares problem via

e Cholesky factorization: factor X7 X > 0 into LL’ where L is lower triangular

e QR factorization

most programming languages provide built-in commands

returned output  MATLAB Python

15 X\y scipy.linalg.Istsq
estimated model fitlm sklearn.linear_model.LinearRegression

the closed-form (3 = (XTX)~1X Ty is for analysis purpose
we do not actually compute B from this expression
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Solving least-squares via QR factorization

for any tall X € R™*™, we have QR factorization:

X=[Q1 Q) [}81] = Q1R

where ) € R™*™ orthonormal, (); € R™*", R; € R™*"™ upper triangular,
PP g

invertible

e multiplication by orthogonal matrix does not change the norm, so

|XB8 —ylI* =

Linear least-squares

@ Q] m 5 y|

Q1 Q)" [ Q)

[R15 — Q1Ty] ’
-Q3y

2

2

o
) Lot

= |R18 — Qi y|* + |Q3 y|”
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e the least-squares objective can be minimized by the choice

bis = Rl_lQ?y
which makes the first term zero

e residual with optimal [ is
_ T
Xﬁls — Y= _QZQQ Yy

o Q1Q1 gives projection on R(X)

P=X(XTX)"'XT = Q,R\(RTR)'RTQT = 0,QT

o (0,QI gives projection on R(X)+

Pr=1-P=1-QiQ{ =Q:Q;
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Weighted least-squares

given TV a positive definite matrix that can be factorized as W = L1 L

a weighted least-squares (WLS) problem is
minimize (X[ — y)TW(XB )
e equivalent formulation: minimize, || L(XS3 — y)*

e can be solved from the modified normal equation

XT'wxp=XTwy

e the solution is Byis = (XTW X)L XTWy (if X is full rank)

o X (s is the orthogonal projection on R(X) w.r.t the new inner product

<xvy>W = <W:C7 y>
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Interpretation of WLS

when m-measurements contain some outliers (samples 3,9,10)

3.5

3 L

using W = diag(wy, ws, ..., w,,) gives WLS objective: Z:’ll w;(y; — xl B)?

o data
—LS ||
WLS

e use relatively low ws, wq, wqy to penalize less on those samples

e the linear model tends not to adapt to outliers — making WLS a more robust

method than LS

Linear least-squares
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Assumptions for analyzing LS estimates

a general regression model is of the form
y=Elylz] +e

e E[y|z] is the conditional mean of yy when x is given (the best estimate in MMSE)
® ¢ is uncertainty or noise; assumed to have zero mean
e generally, E[y|z] is nonlinear in x

e LS framework assumes that E[y|z] is linear in x

analysis of LS estimate relies on the data generating process (DGP)

yi=x B+e, i=12...,N

where (3 is the true (unknown) parameter; given {(x;, y;)}¥,, we estimate 3 using

LS framework
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Analysis of the LS estimate (static case)

assumptions:

® ¢ is noise with zero mean and covariance matrix X
e the least-square estimate: [, = argmin ||y — X8|s = (X1 X)) 1 X1y

e the sensor matrix X is deterministic

then the following properties hold:

e [ is an unbiased estimate of 3 (EB = 3, or 3= 3 when e = 0)
e the covariance matrix of i is given by

cov(f) = (X' X)T' XTEX(XTX)™!
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the expression of cov(f) = (X1 X)) XIS X (XTX)~! suggests that

e if X can be arbitrarily chosen, pick X that the covariance is small

e the covariance of the LS estimate depends on noise covariance
special case: noise covariance is diagonal

e ¥ =diag(o?,...,0%) (heteroskedasticity): e; has different variances

e Y = 0*I (homoskedasticity): e; has uniform variance

for homoskedasticity case, the covariance of the LS estimate reduces to
2 vT v\—1
cov(fPi) = (X" X)

note: X has N rows; as IV increases, (X1 X)™! gets smaller making S3; less
uncertain

Linear least-squares
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BLUE property

under the dgp: y = X5 + e and homoskedasticity of e, the LS estimator
B = (XTX)"LxTy

is the best linear unbiased estimator (BLUE) of

assume B = By is any other linear estimator of 3

e require BA = I in order for B to be unbiased
e cov(3) = BBT
e cov(f) = BX(XTX)"'XTBT (apply BX =1)

for an orthogonal projection matrix, we have I — P > 0

AN

cov(B) — cov(B) = B(I — X( X' X)"'X")BY =0
D) has smaller covariance than other linear estimators

Linear least-squares

4-24



Generalized least-squares estimators

for correlated noise with cov(e) = ¥

we can derive BLUE estimator by scaling y = X3 + e with X ~1/2

N2y — 2 2
the generalized least-squares estimator of [ is

Bys = (XTy—1x)"1x Ty
which has BLUE property under heteroskedasticity of noise

e this is a special case of weighted least-squares problem with W = ¥ ~!

e noise covariance is typically unknown; we replace > with its estimate
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Analysis of the LS estimate (stochastic case)

suppose we apply the LS method to a dynamical system

y(t) = H(t)5 + elt)

e the observations y(1),y(2),...,y(IN) are available

e (3 is the dynamical model parameter

typically, () contains the past outputs and inputs

y(1), ...yt — 1), u(l),...u(t —1)

(hence « = H (t) is no longer deterministic)

and e(t) is white noise with covariance ¥
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the LS estimate Sy (depending on V') given by

1 & T
Iv=|~—=> HO'H —N H(t)"
has the following properties (under some assumptions):

o BN is consistent, i.e., it converges to the true parameter in probability

plimfy =0 <= lim P(|fy—8l<e =1
N —o0

o \/N(B — ) is asymptotically Gaussian distributed N (0, P) where
P=Y 1%,

Y, involves E[H (t)1 H(t)] and 3, involes E[H (t)e(t)e(t)T H(t)!]
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the consistency results of LS estimate are based on some assumptions

By — B = <]1f ; H(t)' H <t>> {]i, ; H(t)"y(t) - <]i, ; H(t)" H(t)
1L L
- (N > H(t) H(t)) <N;H(t) e(t)>

hence, O is consistent if

e E[H(t)I'H(t)] is nonsingular
satisfied in most cases, except u is not persistently exciting of order n

e E[H(t)le(t) =0

not satisfied in most cases, except e(t) is white noise

Linear least-squares
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Summary

e LS method can be applied to models that are linear in the parameters
e a LS solution is unique if there is no colinearity (X is full rank)
e the method is mature, can be solve efficiently and is available in many softwares

e LS estimate has the BLUE property under the assumption that the noise in data
generating process is homoskedastic

e LS estimate is consistent if the additive noise is uncorrelated with the regressors
and the system is persistently excited
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Related topics

e significance test: examine which predictors are significant to be included

e variable selection: best subset selection, step-wise regression

e qualitative input variables: use dummy variables

e some nonlinear relationship between y and x can be formulated as LS

e non-constant noise variance: some transformation of data, e.g., log(-) is applied

e regularization
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