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4. Model Parametrization

• model classification

• general model structure

• time series models

• state-space models

• uniqueness properties
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Model Classification

• SISO/MIMO models

• linear/nonlinear models

• parametric/nonparametric models

• time-invariant/time-varying models

• time domain/frequency domain models

• lumped/distributed parameter models

• deterministic/stochastic models
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Transfer function and operator
impulse response of a time-invariant discrete-time linear model

y(t) =

∞∑
k=0

g(k)u(t− k), t = 0, 1, 2, . . .

transfer function from u to y is the z-transform

G(z) =

∞∑
k=0

g(k)z−k

if define a delay operator: Ly(t) = y(t− 1), the transfer operator from u to y is

G(L) =

∞∑
k=0

g(k)Lk

note: we replace the argument z−1 in the transfer function to L to obtain the
transfer operator – we abuse the notations by simply using the same G’s
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General model structure

M(θ) : y(t) = G(L; θ)u(t) +H(L; θ)e(t)

Ee(t)e(s)T = Λ(θ)δ(t, s)

• y(t) is ny-dimensional output

• u(t) is nu-dimensional input

• e(t) is an i.i.d. random variable with zero mean (white noise)

• L is the delay (or lag) operator

• H,G,Λ are functions of the parameter vector θ

• this model is a genearal linear model in u and e
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Feasible set of parameters

θ takes the values such that

• H−1 and H−1G are asymptotically stable

• G(0; θ) = 0 and H(0; θ) = I

• Λ(θ) ⪰ 0
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General SISO model structure

A(L)y(t) =
B(L)

F (L)
u(t) +

C(L)

D(L)
e(t), E[e(t)e(t)T ] = λ2

where

A(q−1) = 1 + a1L + · · · + apL
p

B(q−1) = b1L + b2L
2 + · · · + bnL

n

C(q−1) = 1 + c1L + · · · + cmLm

D(q−1) = 1 + d1L + · · · + dsL
s

F (q−1) = 1 + f1L + · · · + frL
r

note that B(0) = 0 (causal system)
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Special cases

output error structure
y(t) =

B(L)

F (L)
u(t) + e(t)

in this case H(L; θ) = 1

the output error is the difference between the measurable output y(t) and the model
output B(L)/F (L)u(t)

if A(L) = 1 in the general model structure

y(t) =
B(L)

F (L)
u(t) +

C(L)

D(L)
e(t)

• G and H have no common paramater

• possible to estimate G consistently even if choice of H is not appropriate
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Model usages

• simulation: simulate the response where e can be randomly generated

• prediction: estimate y(t) given the information up to time t− 1

ŷ(t|t− 1) = H−1(L)G(L)u(t) + [1−H−1(L)]y(t)

• inference: use model parameters to explain some statistical properties
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System simulation
example: u is binary signal; e is generated with variance 0.1 (10 realizations)

y(t) =

(
0.2 + 0.5L

1− 0.7L− 0.18L2

)
u(t) +

(
1 + 0.7L

1− 0.7L− 0.18L2

)
e(t)
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One-step prediction

it can be derived that the one-step prediction of y (best in MMSE sense) is

ŷ(t|t− 1) = H−1(L)G(L)u(t) + [1−H−1(L)]y(t)
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• example of 1-step prediction of an estimated ARMAX model

• adjusted some model coefficients can lead to a large change in model dynamics
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Model inference

some statistical properties can be drawn from model parameters

• zero entries in AR coefficients explain zero Granger causality

y(t) = A1y(t− 1) +A2y(t− 2) + · · · +Apy(t− p) + et

• zero entries in the inverse spectrum explain conditional independence

example of AR spectrum: S(ω) = A(ω)−HΣA(ω)−1

A(ω) = I − (A1e
−iω +A2e

−2iω + · · · +Ape
−piω)

• zero entries in MIMO transfer function suggest zero effect from u

H(s) =

[
6

(s2+5s+6)
(s+4)

(s2+5s+6)
0

0 (s+2)
(s2+3s+2)

0

]
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State-space models

a linear stochastic model:

x(t + 1) = A(θ)x(t) +B(θ)u(t) + w(t)

y(t) = C(θ)x(t) +D(θ)u(t) + v(t)

w(t) is called process noise and v(t) is measurement noise

• (A,B) defines the system controllability, while (A,C) explains the system
observability

• both w and v are often assumed white noise sequences with zero means and

E
[
w(t)
v(t)

] [
w(s)
v(s)

]T
=

[
Q S
ST R

]
δ(t, s)

• if A is stable, the processes x(t) and y(t) are wide-sense stationary in steady-state

Model Parametrization 4-12



steady-state sense: the covariance function of x is

lim
t→∞

C(t + k, t) = C(k) =

{
AkΣx, k ≥ 0

Σx(A
T )|k|, k ≤ 0

where Σx = limt→∞C(t, t) and can be obtained via the Lyapunov equation

Σx = AΣxA
T +BQBT

• when A is stable, there exists a positive solution Σx (hence, a valid covariance)

• the decay rate of covariance sequence depends on the eigenvalues of A
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Innovation form of state-space model

a standard state-space model can be transformed into the innovation form

x̂(t + 1) = Ax̂(t) +Bu(t) +Ke(t), y(t) = Cx̂(t) +Du(t) + e(t)

• arises from the problem of estimating x(t) conditioning on data up to t− 1 in
MMSE sense

• the estimated x is x̂ and estimated output is ŷ(t) = Cx̂(t) +Du(t)

• e(t) = y(t)− ŷ(t) is called an innovation, explains the residual error after
prediction

• the best prediction of x can be represented in the state-space form, proved by
Kalman – K is called the Kalman gain

• the term Ke(t) is a compensation of approximation error in y(t) to x̂(t + 1)

• the innovation form has only one error (noise) term in the model
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Time series models

stationary models

• ARMAX: AutoRegressive Moving Average model with Exogenous inputs

• ARMA: AutoRegressive Moving Average model

• ARX: AutoRegressive model with Exogenous inputs

• AR: AutoRegressive model

• MA: Moving Average model

non-stationary models

• ARIMA: AutoRegressive Integrated Moving Average model

• ARCH, GARCH (not discussed here)
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ARMAX models

an autoregressive moving average model with an exogenous input:

A(L)y(t) = B(L)u(t) + C(L)e(t)

where e is a white noise with covariance Σ and matrix polynomials are

A(L) = I − (A1L +A2L
2 + · · · +ApL

p),

B(L) = B1L +B2L
2 + · · · +BmLm,

C(L) = I + C1L + C2L
2 + · · · + CqL

q

applying the backward shift (lag) operator explicitly

y(t) = A1y(t− 1) + · · · +Apy(t− p) +B1u(t− 1) + · · · +Bmu(t−m)

e(t) + C1e(t− 1) + · · · + Cqe(t− q)

the parameter vector is θ = (A1, . . . , Ap, B1, . . . , Bm, C1, . . . , Cq,Σ)
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Special cases of ARMAX models

model equation
ARMA A(L)y(t) = C(L)e(t)
AR A(L)y(t) = e(t)
ARX A(L)y(t) = B(L)u(t) + e(t)
MA y(t) = C(L)e(t)
FIR y(t) = B(L)u(t) + e(t)

special cases:

• autoregressive moving average: ARMA(p, q)

y(t) = A1y(t− 1) + · · · +Apy(t− p) + e(t) + C1e(t− 1) + · · · + Cqe(t− q)

• autoregressive: AR(p)

y(t) = A1y(t− 1) + · · · +Apy(t− p) + e(t)
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• moving average: MA(q)

y(t) = e(t) + C1e(t− 1) + · · · + Cqe(t− q)

y consists of a finite sum of stationary white noise (e), so y is also stationary

• finite impulse response: FIR(m)

y(t) = B1u(t− 1) + · · · +Bmu(t−m) + e(t)

• autoregressive with exogenous input: ARX(p,m)

y(t) = A1y(t− 1) + · · · +Apy(t− p) +B1u(t− 1) + · · · +Bmu(t−m) + e(t)
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Equivalent representation of AR(1)

write the first-order AR model recursively

y(t) = Ay(t− 1) + e(t)

= A(Ay(t− 2) + e(t− 1)) + e(t)

= A2y(t− 2) +Ae(t− 1) + e(t)

= A2(Ay(t− 3) + e(t− 2)) +Ae(t− 1) + e(t)

= A3y(t− 3) +A2e(t− 2) +Ae(t− 1) + e(t)

...

=

∞∑
k=0

Ake(t− k)

• by assuming that i) t can be extended to negative index and ii) |λ(A)| < 1

• y can be represented as infinite moving average
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State-space form of AR models

define the state variable

x(t) = (y(t− 1), y(t− 2), . . . , y(t− p))

the state-space form of AR model is

x(t + 1) =


A1 A2 · · · Ap

I 0 0
... . . . ...
0 0 I 0


︸ ︷︷ ︸

A

x(t) +


I
0
...
0

 e(t)

• the characteristic polynomial of the dynamic matrix is

det(zI −A) = det(zp − (A1z
p−1 +A2z

p−2 + · · · +Ap))

• the AR process is wide-sense stationary if its dynamic matrix A is stable
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Non-uniqueness of MA models

consider examples of two MA models

y(t) = e(t) + (1/5)e(t− 1), e(t) ∼ N (0, 25)

x(t) = v(t) + 5v(t− 1), v(t) ∼ N (0, 1)

that their output spectrum cannot be distinguished

• note that MA and AR processes are the inverse to each other (by swapping the
role of y and e)

y(t) = −(1/5)y(t− 1) + e(t), x(t) = −5x(t− 1) + v(t)

• an MA model is called invertible if it corresponds to a causal infinite AR
representation – e.g., process with coefficient 1/5
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Properties of ARMA models

important properties of ARMA model:

A(L)y(t) = C(L)e(t)

• the process is stationary if the roots of the determinant of

A(z) = I − (A1z +A2z
2 + · · · +Apz

p)

are outside the unit circle

• the process is said to be causal if it can be written as

y(t) =

∞∑
k=0

Ψ(k)e(t− k),

∞∑
k=0

|Ψ(k)| ≤ ∞

(the process cannot depend on the future input)
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• the ARMA process is causal if and only if the roots of the determinant of A(z) lie
outside the unit circle

• the process is invertible if the roots of the determinant of

C(z) = I + C1z + · · · + Cqz
q

lie outside the unit circle
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Non-stationary models

examples of non-stationarity and the use of differencing

• random walk: x(t) = x(t− 1) + w(t) (covariance depends on t)

z(t) ≜ x(t)− x(t− 1) = w(t)

z(t) is white noise which is stationary

• linear static trend: x(t) = a + bt + w(t)

z(t) ≜ x(t)− x(t− 1) = b + w(t)− w(t− 1)

z(t) is a MA process

can we recover the original model from the fitted differenced series ?
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Integrated model

denote L a lag operator; a series x(t) is integrated of order d if

(I − L)dx(t)

is stationary (after dth differencing)

• we use I(d) to denote the integrated model of order d

• random walk is the first-order integrated model

• the lag of differencing is used to reduce a series with a trend

• for example, 12-lag of differencing removes additive seasonal effect
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example: y1 is a first-order AR process with coefficient 0.4 and is I(0)
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• y2(t) =
∑t

k=0 y1(k) (cumulative sum of y1 is I(1) – no exact reverting)

• y3(t) =
∑t

k=0 y2(k) (cumulative sum of y2 is I(2) – momentum effect)
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ARIMA models

x(t) is an ARIMA(p, d, q) process if the dth differences of x(t) is an ARMA(p,q)

A(L)(I − L)dx(t) = C(L)e(t)

examples of scalar ARIMA models

• x(t) = x(t− 1) + e(t) + ce(t− 1) can be arranged as

(1− L)x(t) = (1 + cL)e(t)

which is ARIMA(0,1,1) or sometimes called integrated moving average
• x(t) = ax(t− 1) + x(t− 1)− ax(t− 2) + w(t) can be arranged as

(1− aL)(1− L)x(t) = w(t)

which is ARIMA(1,1,0)
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example: log of CPI - consumer production index and its first, second differences
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• log CPI shows the momentum type – characteristics of I(2)

• the first difference has no momentum but no mean-reverting

• the second difference seems to be mean-reverting and behaves like white noise
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Uniqueness properties

question: can we describe a system adequately and uniquely ?

define D the set of θ for which

(Ĝ, Ĥ, Λ̂) gives a perfect description of the true system

three possibilities of this set can occur:

• the set D is empty or underparametrization

• the set D contains one point

• the set D consists of several points or overparametrization
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Non-uniqueness of general state-space models

consider the multivariable model

x(t + 1) = A(θ)x(t) +B(θ)u(t) + w(t)

y(t) = C(θ)x(t) + v(t)

w(t) and v(t) are independent zero-mean white noise with covariance R1, R2

also consider a second model

z(t + 1) = Ā(θ)z(t) + B̄(θ)u(t) + w̄(t)

y(t) = C̄(θ)z(t) + v(t)

where E[w̄(t)w̄(s)T ] = R̄1δ(t, s) and

Ā = QAQ−1, B̄ = QB, C̄ = CQ−1, R̄1 = QR1Q
T

for some nonsingular matrix Q Ā is simply a similarity transform of A
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the two models are equivalent:

• they have the same transfer function from u to y

G(z) = C̄(zI − Ā)−1B̄ = CQ−1(zI −QAQ−1)−1QB = C(zI −A)−1B

• the outputs y from the two models have the same second-order properties, i.e., the
spectral densities are the same

Sy(ω) = C̄(eiω − Ā)−1R̄1(e
iω − Ā)−∗C̄∗ +R2

= CQ−1(eiω − Ā)−1QR1Q
∗(eiω − Ā)−∗Q−∗C∗ +R2

= C[Q−1(eiω − Ā)Q]−1R1[Q
∗(eiω − Ā)∗Q−∗]−1C∗ +R2

= C(eiω −A)−1R1(e
iω −A)−∗C∗ +R2

the model is not unique since Q can be chosen arbitrarily
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Choosing a class of model structures

important factors:

• flexibility: the model structure should describe most of the different system
dynamics expected in the application

• parsimony: the model should contain the smallest number of free parameters
required to explain the data adequately

• algorithm complexity: the form of model structure can considerably influence
the computational cost

• properties of the criterion function: for example, the asymptotic properties of
prediction-error method depends crucially on the criterion function and the model
structure
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