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13. Model selection and model validation

e model selection aspects
e bias and variance
e model selection: criterions, cross-validation

e model validation: whiteness test, cross-correlation test
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Factors in model selection

objective: obtain a good model at a low cost

1. quality of the model: defined by a measure of the goodness, e.g., the
mean-squared error, log-likelihood

e MSE consists of a bias and a variance contribution
e a complex model has small bias but higher variance (than a simple model)

e the best model structure is therefore a trade-off between flexibility and
parsimony

2. price of the model: an estimation method (which typically results in an
optimization problem) highly depends on the model structures, which influences:

e algorithm complexity
e properties of the loss function

3. intended use of the model: prediction, controller design, inference
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Bias-variance decomposition
assume that the observation Y obeys
Y =f(X)+v, Ev=0, cov(v)=o"
the mean-squared error of a regression fit f(X) at X = g is

MSE = E[(Y — f(z0))*|X = )

= 0 + [Ef(z0) — f(w0)]” + E[f(z0) — Ef ()]
— o2 + Bias?(f(x0)) + Var( f(z0))

e this relation is known as bias-variance decomposition

e no matter how well we estimate f(x), o° represents irreducible error

e typically, the more complex we make model f the lower the bias, but the higher

the variance

Model selection and model validation
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proof of bias-variance decomposition: note that

e the true f is deterministic

e var(Y|X =z) =0 and E[Y|X = 2| = f(x)

e f(x)is random

we will omit the notation of conditioning on X =«

E[(Y - f(X))]

Model selection a

nd model validation

E[Y?] + E[f(2))] - E2Y f(x)]

var(Y) + E[Y]’ + var f(z) + E[f (x)]* — 2(2)E[f (x)]

var(Y) + f(z)? + var f(z) + E
o + var f(z) +
o + var f(z) +

) +

o + var f(z) + [Bias(f(z))]?

f(@) = 2f(2)E[f(x)]
(f(x) — E[f(x))
(Elf(x) = f(x)

)2
>2
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Bias and variance in linear models

two nested linear regression models: predictor X in Mj is also contained in M,

Mi:y=XB VS /\/lgzy:[X i] lﬁléZv

8%

setting: two models are estimated by LS method, denoted by BA and 7

1. Ms has lower MSE in predicting y than the MSE of M,

AN AN

2. cov(f3) of My is larger than cov(f3) of M;

3. variance of § from M is higher than that of M,

M (complex model) has less bias but more variance both in estimator and prediction

our proof will use subscript 1 for My and and 2 for M,
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Inverse of block matrices

the inverse of a block matrix

A B
o [4 2o

can be obtained in block using Schur complement: S = (D — CA™!B)™t = 0

-1 _ A+ A7IB(D-CA™'B)"'1CA™ —-A"'B(D-CA'B)™! 1)
B —(D - CA™'B)"lCA! (D—-CA™'B)~!

we often encounter the difference of two quadratic forms

H T [ﬁT ﬂ _1 H ~uTA™ = (v = BTAT )T v - BTA) > 0 (2)

which is always non-negative
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proof of MSE, < MSE,

e let P; and P, be orthogonal projection of y onto R(X ) and R(Z), resp
e it can be shown that MSE; = ||y||3 — y? Piy and MSE; = ||y||5 — y! Py

e it is left to show that y! Py > vy Py

T I'x 'z

XTx XT:;;] ! [XT
€T

P=2z(Z"Z)'Z" =X Z7] [

e apply the inverse of block matrix
P—P=-XX"X)"'X"#)s 2z - X(XTX)"'XT5) =0

where S = 217 — 2T X (XTX)"1XTx

Model selection and model validation
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proof of cov(f,) = cov(f)

o COV(BQ) is the leading (1,1) block of cov(7¥), while cov(Bl) = (XTX)!

e use cov(¥) = (Z1'Z)~! and the inverse of block matrix

XTX XT:Y;]1 N [A B]l [A_1+A—1BS—1BTA—1 X

T r\—1 _ L
(Z"2) _[iTX z'z| —|B" D X X

where S=D — BTA- 1B =0
e cov(f) is bigger than cov(3;) because

N A

cov(fy) —cov(f) = A+ ATIBSTIBTAT — AT = ATIBSTIBT AT = 0
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proof of var(y,) > var(y)

e suppose {1 = ul S and ¢, = wT4 where w = (u, v)
e we test prediction of y from new regressors u and (u,v)

e since the model is simply linear, the variance can be obtained by

var () — var(f;) = w’ cov(y)w — v’ cov(B)u

[ =R

ol |37x  iT3 u]_“T<XTX>_1“

e the difference is non-negative (using result on page 13-6)
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Model properties

consider bias and variance of model with different structures
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(T. Hastie et.al. The Elements of Statistical Learning, Springer, 2010 page 225)

a simple model has less flexibility (more bias) but easy to interpret and has less

variance
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U-shape of generalization error
models are estimated on training data set and evaluated on test set (unseen data)

& underfitting —> & oyerfitting zone->

Errvv

Wm\fw’b&«
goe

capacidy ((\mrle\cH\/)

e training errors always decrease as model complexity increase
e generalization error initially decreases as model picks up relevant features of data

e however, if the model complexity exceeds a certain degree, the generalization error
can rise up again — this is when we observe overfitting
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Model fitting versus model complexity

16

155}
1412 e true AR model has order p = 5

'1‘2 1.4 | e estimate AR model using LS method

213'5 | @ plot loss function (MSE) at different

13 ]
model orders
12.5F :
12— -

1 2 3 4 5 6 7 8 9 10
model order

e the minimized loss is a decreasing function of the model order
e loss function begins to decrease as the model picks up the relevant features
e as p increases, the model tends to over fit the data

e in practice, we look for the “knee” in the curve (around p = 5)
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Observe overfitting on test error

Estimﬂation data

Test data

—f(2)
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e too complex models cannot generalize well on test (unseen) data

e overfitting occurs when MSE on test set decreases but starts to rise again
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Does overfitting always occur?

f(z) is nonlinear

—f(z)
o data
1.5 H—Linear 5
——Polynomial
——Smoothing spline
= 1
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e when the true description is highly nonlinear, test MSE does not significantly

Increase

MSE
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Model complexity

e overfitting is apparent when the estimated model is more complex (than it should
be) in order to explain a simpler ground-truth model
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Model selection

e model selection criterions

e cross-validation
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Model selection criterion

parsimony principle: among competing models which all explain the data well, the
model with the smallest number of parameters should be chosen

a model selction criterion consists of two parts:

loss function + model complexity

e the first term is to assess the quality of the model, e.g., likelihood function, RSS,

MSE, Fit Percent (1 — [=41) x 100%

e the second term is to penalize the model order and grows as the number of
parameters increases

e we choose the best model as the one with the lowest model selection score
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What exactly do we choose in a model?

consider an additive error model
yi = g(x;;0) +e;, € NN(O,O'Q), i=1,2,...,.N
model selection can be choosing

e a list of predictors x
e a degree of polynomial function g

e a number of basis functions used to decompose g
consider a dynamical model with additive noise (e.g., ARX, FIR )
y(t)=g(t, 2" 0) +e(t), e(t)~N(0,%), t=1,2,....N

model selection can be choosing order (p, ¢,r) in ARMA model, or order of FIR
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let & be a parameter that indicates model complexity

e ARX or FIR orders
e penalty parameter in regularized regression

e the number of predictors in regression models

what can be a function of o 7

e model quality: it indicate the model fitting at such degree of complexity — such as

L(a), RSS(«)
e prediction error: £(t,0) = y(t) — y(t,0)
e the effective number of parameters (d)

other parameters that involve in model selection scores: N (samples) and output

dimension
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Model selection scores

model quality: L: log-likelihood, V': loss function

model complexity: d: effective number of parameters
e Akaike information criterion (AIC): AlIC(a)) = —2L(a) + 2d

e corrected Akaike information (AlCc): AlCc(a) = —2L(ax) + 2d + ]2\?(_?_”1

e Bayesian information criterion (BIC): BIC(«a) = —2L(«) + dlog N

e Akaike's final prediction-error criterion (FPE): FPE(a) = V (0) (E%%)
e Mallow's C): Cp(ax) = % [RSS(Q) + 2d62]

e adjusted R?*: 1 — RSST(gS)%%:%—l)
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Variable selection in linear regression

model: § = >, aycos(kx) + by sin(kx) forn =1,2,...,20 and N = 50

y = xsin(z) + e

e aim to choose the number of basis function (n)
e set the effective number of parameters d = 2n (the number of sin(kx), cos(kx))

e compute AAIC, AAICc, ABIC (subtracted by its minimum), C,,, adjusted R?
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Information Criterion

adjusted R?

—o—Adjusted R[]
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e AIC and adjusted R? chose a complex model, while AlCc and BIC picked 4 basis

functions (simpler), and C), chose 7 basis functions

e train MSE always decreases, as well as, R? always increases but the curves have a

knee around n =4
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Choosing AR lag order

fitting AR model of order p = 1,2, ..., 20 to unemployment rate time series

. Unemployment Rate

10 |

Percent

2 | | | | | |
1950 1960 1970 1980 1990 2000
Date

e the effective number of parameters is chosen as d = p
e compute AAIC, AAICc, ABIC, FPE, train MSE, and Fit Percent

e data samples: N = 245, examine two cases: (i) use all data (ii) use only half
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left: use all data  right: use half of data
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e left: AIC, AlCc and FPE tend to choose a higher order model (p = 13) but BIC

prefers a simpler model (p = 2)

e right: AlCc chose a lower order model when N is halved (sample size was
corrected)

e both train MSE and Fit Percent are not good indicators for model selection
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Log-likelihood based scores (AIC, AlCc)

AlIC, AlCc, BIC use negative log-likelihood to indicate model quality

AIC(a) = —2L(a)+2d
AlCc(a) = —2L(a) +2d+ ifd(_d;_l)l
BIC(a) = —2L(a)+dlogN

e AIC is an approximation of Kullback-Leibler (KL) divergence between the true
density (f(z) and the model (g(|6))

I(f,g) = / F() log(£(2)/g(z]8))dz
—L(0)+d

Q

), 9(33\9))] + constant

e AlCc penalizes more on complexity for small N (as quadratic term in d); it
approaches AIC for large samples (large V)
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Log-likelihood based score (BIC)

e BIC penalizes more on complexity than AIC (as indicated by log N > 2)

e when model candidates contain a true model, BIC is consistent (probability of
choosing the correct model — 1 as N — o0)

e model with minimum BIC < model with highest posterior density

P(M,|data) P(M,,) P(data|M,,)
P(M|data)  P(M,;) P(data|M;)

.
7

posterior odds =

prior Bayes factor

model prior tells which model is more likely to be preferred (by users)

e when prior is not available (all models have equal probabilities), Bayes factor
directly affects the posterior odds

e BIC (with —2 factor) is an approximate of Bayes factor (see Hastie et al. book)
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e for nested models M; (complex), My (simple) with d(M;) = d(Ms) +m

— AIC picks complex model if L(M;) — L(My) > 2m (it's worth to use complex
model since model quality improved much more)
— BIC picks complex model if L(M1) — L(M3) > mlog N

e improved gap of log-likelihood required by AIC is less than that of BIC; hence, AIC
is prone to choosing a complex model more easily than BIC

e for LR (log-likelihood ratio) test, with test statistic
2(L(My) = L{Mz)) ~ X (m)

— LR test picks M (complex) if 2L(M;1) > 2L(M3) by X ,-(m)
— for m < 7, we have 2m < X7 ,:(m); hence, AIC tends to pick a complex model
more easily than LR test in this case
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Akaike’s final prediction (FPE)

AN

denote V() a loss function used in prediction error method (e.g., det or trace of error

covariance)
FPE(r) = V(0) G i Z;%)

e model complexity is cooperated in multiplicative form (as compared to additive

form in AIC, BIC)

e when model output is scalar, V() is simply MSE and FPE reduces to

1 - 14+d/N
FPE=— ) £%(t,0)-
Ntz_;g 60 TN

e it was shown in Ljung book that FPE is a way to approximate of limy . E[V(0)]

AN

(population), which can be estimated using V() evaluated on estimation data
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Mallow’s C,

C)p, is mostly used in linear regression with d predictors and homoskedastic noise

C(a) = % RSS(a) + 2d6%]

e (), uses quadratic loss to measure model quality
e & is an estimate of noise variance using full model
e RSS/N always decreases when d increases; penalty on complexity is put on 2d5?

e in Hastie et al. book, it showed that (), is an estimate of test MSE

e other form of C, exists: C), = RSS/6*+ 2d — N but result in choosing the same d
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Adjusted R*

R? (coefficient of determination) is based on the decomposition:

Z(yz — ) = Z(yz — 0:)° + Z@z — )’ +2 Z(yz —9i)(Yi — )

7 7
N\ _J N\ _J

TES RES E§S zero if modelras a constant

R? is the proportion of the total variation in Y that can be linearly predicted by X

RSS
R*=1-— o adjusted R* =1

RSS(a)/(N —d —1)
- TSS/(N —1)

e for linear model, 0 < R? < 1 and always increases for larger models
e the presence of d penalizes the criterion for the number of predictor variables

e adjusted R? increases if the added predictor variables decrease RSS enough to
compensate for the increase in d
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Score relations

for Gaussian noise additive model, we can show that log-likelihood (up to constant) is

RSSQ(G)’ if noise variance is given

—2L(6) = {Nlog det (% D1 E(L, 0)elt, Q)T) , if noise covariance is a parameter

o

e for scalar output and noise variance is a parameter

AlCcaied = AIC/N = log(MSE) + 2d/N = log(FPE), for d < N

e for scalar output and noise variance is given as 6* (as computed from full model)

1 /RSS(6) .
AlCesled = AlC/N = N ( 52 —|—2d) =0° - Cp

AIC and Cp choose the same model in this case
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Cross validation

e training error rate: the average error that results from using a trained model (or
method) back on the training data set

o . the average error that results from using a statistical learning
method to predict the response on a new observation

e training error can be quite different from the test error rate

e cross validation can be used to estimate test error rate using available data:
split into training and validation sets

— validation set approach
— leave-one-out cross validation
— k-fold cross validation

Model selection and model validation 13-31



Splitting data

e training set: used for fitting a model

e validation set: used for predicting the response from the fitted model

e validation set approach or hold out (left): randomly split data
e leave-one-out or LOOCV (middle): leave 1 sample for validation set
e k-fold (right): randomly split data into k folds; leave 1 fold for validation

— repeat k£ times where each time a different fold is regarded as validation set and
compute MSE;, MSE,, ..., MSE,
— the test error rate is estimated by averaging the £k MSE's
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Cross validation on polynomial order

N = 500, show 7 runs of holdout, and 5-fold

Holdout (7 seperate runs)

06 |
05t
L
n
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0.2 r

5-fold CV (7 seperate runs)
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Ccv
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0.4 r

0.3 |
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LOOCV

2

4 6
Polynomial order

e result of holdout has high variation since it depends on random splitting

e 5-fold results has less variation because MSE is averaged over k folds

10

e LOOCV requires N loops (high computation cost); MSE;'s are highly correlated
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Estimate a true test MSE by CV

accuracy of test error rate (on simulation data set):

fis close to linear

3.0
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1.0
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using model of smoothing splines

fis far from linear

20

true test MSE
10-fold CV

LOOCV

15

10

Mean Squared Error

T T
2 5 10 20
Flexibility

compute the true test MSE (assume to know true f) as a function of complexity

o (left): cv estimates have the correct general U shape but underestimate test MSE

e (center): cv gives overestimate of test MSE at high flexibility

e (right): the true test MSE and the cv estimates are almost identical
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Choosing penalty parameter in lasso

lasso can be used for feature selection by choosing a right amount of penalty

Cross validation Information Criterion

750‘ ElE

ros < 8 ~-AIC
1* 700, i —AICc|]
251 b ! ! BIC
: o 650
32 | 8
: & 600
150 1
1\ ! - LOOGVH
\. ‘ ‘ ‘ 500 i~ : !
0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2
¥/ ¥/
5 Coefficients
T T
ar]
2f
0p=
2 3 ' L L L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Y/ Ymax

e cach penalty parameter v corresponds to a sparsity pattern of (3

e vary v and evaluate model selection scores and CV
e k-fold, LOOCV, AIC and AlCc chose smaller ~v than the one selected by BIC

e solution path show the significant 3;'s selected from all methods
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Model validation

the parameter estimation procedure picks out the best model
a problem of model validation is to verify whether this best model is “good enough”

general aspects of model validation

e validation with respect to the purpose of the modeling
e feasibility of physical parameters

e consistency of model input-output behavior

e model order reduction

e parameter confidence intervals

e simulation and prediction
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Validation of dynamical models

dgp: y = Gu+ He

model: § = Gu + He

residual error: (t) = y(t) — y(t)

common validation approaches based on residual analysis

e whiteness test of residuals
e cross-correlation test (between residual and input)

e examination of model order
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Whiteness test of residuals

residual error contain mismatch in G (system dynamic) and H (noise dynamic)
. A 1
e(t) = (G = Gu+ (H — Hle,  Re(r) = > elt)e(t —7)

e c(t) can be regarded as filtered noise if there is a model mismatch in H and R.(T)
is not significantly small at 7 # 0 (y(¢) could have been better predicted)

e apply hypothesis test (Hy: ¢ is white) with test statistic

N — 2 2
W = R 2 el S X (m)

o if W > X2(m), we reject Hy (reject the model and improve H)
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Cross-correlation test

if G perfectly matches G, residual € contains no dynamic of u, so the cross-correlation
| N
Reu() = > eltyult — 1)

t=7

must be zero for all 7

e form a hypothesis test with Hy : R.,(7) is zero

e we can compute the test statistic
W = Nr'[R.(0)R,)'r 5 x*(m)

r is a sample cross-correlation, R, and R,, are auto-correlation

o if W > X2(m), we reject Hy (reject the model and improve G)
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Residual analysis of ARMAX model

true system: ARMAX(2,2,3) and consider models ARX(3,3) and ARMAX(3,3,3)

Residual Analysis

Auto-correlation Cross-correlation

[ ARMAX
ARX

Amplitude
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e ARX has a significant R.(3) (more apparent than ARMAX) — because ARX does
not incorporate noise dynamic in the model

e R., of both model stay inside the acceptable region (é’ was suitably estimated)
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if a model is overparametrized, it is more likely to see zero-pole cancellation

Imaginary axis

Model order examination
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compare ARMAX models of order (3,3,3) and (6,6,6)
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Example of MATLAB commands

e resid: residual analysis
e compare: compare the prediction with the measurement

e iopzplot: plots of zeros and poles
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