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13. Model selection and model validation

• model selection aspects

• bias and variance

• model selection: criterions, cross-validation

• model validation: whiteness test, cross-correlation test
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Factors in model selection

objective: obtain a good model at a low cost

1. quality of the model: defined by a measure of the goodness, e.g., the
mean-squared error, log-likelihood

• MSE consists of a bias and a variance contribution
• a complex model has small bias but higher variance (than a simple model)
• the best model structure is therefore a trade-off between flexibility and

parsimony

2. price of the model: an estimation method (which typically results in an
optimization problem) highly depends on the model structures, which influences:

• algorithm complexity
• properties of the loss function

3. intended use of the model: prediction, controller design, inference
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Bias-variance decomposition

assume that the observation Y obeys

Y = f (X) + ν, Eν = 0, cov(ν) = σ2

the mean-squared error of a regression fit f̂ (X) at X = x0 is

MSE = E[(Y − f̂ (x0))
2|X = x0]

= σ2 + [Ef̂ (x0)− f (x0)]
2 + E[f̂ (x0)− Ef̂ (x0)]

2

= σ2 + Bias2(f̂ (x0)) + Var(f̂ (x0))

• this relation is known as bias-variance decomposition

• no matter how well we estimate f (x0), σ2 represents irreducible error

• typically, the more complex we make model f̂ , the lower the bias, but the higher
the variance
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proof of bias-variance decomposition: note that

• the true f is deterministic
• var(Y |X = x) = σ2 and E[Y |X = x] = f (x)

• f̂ (x) is random

we will omit the notation of conditioning on X = x

E[(Y − f̂ (X))2] = E[Y 2] + E[f̂ (x)2]− E[2Y f̂ (x)]

= var(Y ) + E[Y ]2 + var f̂ (x) + E[f̂ (x)]2 − 2f (x)E[f̂ (x)]

= var(Y ) + f (x)2 + var f̂ (x) + E[f̂ (x)]2 − 2f (x)E[f̂ (x)]

= σ2 + var f̂ (x) + (f (x)− E[f̂ (x)])2

= σ2 + var f̂ (x) + (E[f (x)− f̂ (x)])2

= σ2 + var f̂ (x) + [Bias(f̂ (x))]2
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Bias and variance in linear models

two nested linear regression models: predictor X in M1 is also contained in M2

M1 : y = Xβ VS M2 : y =
[
X x̃

] [β
α

]
≜ Zγ

setting: two models are estimated by LS method, denoted by β̂ and γ̂

1. M2 has lower MSE in predicting y than the MSE of M1

2. cov(β̂) of M2 is larger than cov(β̂) of M1

3. variance of ŷ from M2 is higher than that of M1

M2 (complex model) has less bias but more variance both in estimator and prediction

our proof will use subscript 1 for M1 and and 2 for M2
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Inverse of block matrices

the inverse of a block matrix

X =

[
A B
C D

]
≻ 0

can be obtained in block using Schur complement: S = (D − CA−1B)−1 ≻ 0

X−1 =

[
A−1 +A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

]
(1)

we often encounter the difference of two quadratic forms

[
u
v

]T [
A B
BT D

]−1 [
u
v

]
− uTA−1u = (v−BTA−1u)TS−1(v−BTA−1u) ≥ 0 (2)

which is always non-negative
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proof of MSE2 ≤ MSE1

• let P1 and P2 be orthogonal projection of y onto R(X) and R(Z), resp

• it can be shown that MSE1 = ∥y∥22 − yTP1y and MSE2 = ∥y∥22 − yTP2y

• it is left to show that yTP2y ≥ yTP1y

P2 = Z(ZTZ)−1ZT =
[
X x̃

] [XTX XT x̃
x̃TX x̃T x̃

]−1 [
XT

x̃T

]
, P1 = X(XTX)−1XT

• apply the inverse of block matrix

P2 − P1 = (x̃−X(XTX)−1XT x̃)S−1(x̃−X(XTX)−1XT x̃)T ⪰ 0

where S = x̃T x̃− x̃TX(XTX)−1XT x̃
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proof of cov(β̂2) ⪰ cov(β̂1)

• cov(β̂2) is the leading (1,1) block of cov(γ̂), while cov(β̂1) = (XTX)−1

• use cov(γ̂) = (ZTZ)−1 and the inverse of block matrix

(ZTZ)−1 =

[
XTX XT x̃
x̃TX x̃T x̃

]−1

≜
[
A B
BT D

]−1

=

[
A−1 +A−1BS−1BTA−1 ×

× ×

]

where S = D −BTA−1B ⪰ 0

• cov(β̂2) is bigger than cov(β̂1) because

cov(β̂2)− cov(β̂1) = A−1 +A−1BS−1BTA−1 −A−1 = A−1BS−1BTA−1 ⪰ 0
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proof of var(ŷ2) ≥ var(ŷ1)

• suppose ŷ1 = uT β̂ and ŷ2 = wT γ̂ where w = (u, v)

• we test prediction of y from new regressors u and (u, v)

• since the model is simply linear, the variance can be obtained by

var(ŷ2)− var(ŷ1) = wT cov(γ)w − uT cov(β)u

=

[
u
v

]T [
XTX XT x̃
x̃TX x̃T x̃

]−1 [
u
v

]
− uT (XTX)−1u

• the difference is non-negative (using result on page 13-6)
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Model properties

consider bias and variance of model with different structures

restrictive

,
linear models

= C lasso ) linear models=

§ Cleast-squares)
I Generalized
E- additive models

I
§ nonlinear

models

( neural net )

Flexibility

(T. Hastie et.al. The Elements of Statistical Learning, Springer, 2010 page 225)

a simple model has less flexibility (more bias) but easy to interpret and has less
variance
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U-shape of generalization error
models are estimated on training data set and evaluated on test set (unseen data)

• training errors always decrease as model complexity increase
• generalization error initially decreases as model picks up relevant features of data
• however, if the model complexity exceeds a certain degree, the generalization error

can rise up again – this is when we observe overfitting
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Model fitting versus model complexity
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• true AR model has order p = 5

• estimate AR model using LS method

• plot loss function (MSE) at different
model orders

• the minimized loss is a decreasing function of the model order
• loss function begins to decrease as the model picks up the relevant features
• as p increases, the model tends to over fit the data
• in practice, we look for the “knee” in the curve (around p = 5)
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Observe overfitting on test error
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• too complex models cannot generalize well on test (unseen) data
• overfitting occurs when MSE on test set decreases but starts to rise again
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Does overfitting always occur?
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• when the true description is highly nonlinear, test MSE does not significantly
increase

• overfitting is apparent when the estimated model is more complex (than it should
be) in order to explain a simpler ground-truth model
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Model selection

• model selection criterions

• cross-validation
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Model selection criterion

parsimony principle: among competing models which all explain the data well, the
model with the smallest number of parameters should be chosen

a model selction criterion consists of two parts:

loss function + model complexity

• the first term is to assess the quality of the model, e.g., likelihood function, RSS,
MSE, Fit Percent (1− ∥y−ŷ∥

∥y−ȳ∥)× 100%

• the second term is to penalize the model order and grows as the number of
parameters increases

• we choose the best model as the one with the lowest model selection score
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What exactly do we choose in a model?

consider an additive error model

yi = g(xi; θ) + ei, ei ∼ N (0, σ2), i = 1, 2, . . . , N

model selection can be choosing

• a list of predictors x

• a degree of polynomial function g

• a number of basis functions used to decompose g

consider a dynamical model with additive noise (e.g., ARX, FIR )

y(t) = g(t, Zt−1; θ) + e(t), e(t) ∼ N (0,Σ), t = 1, 2, . . . , N

model selection can be choosing order (p, q, r) in ARMA model, or order of FIR
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let α be a parameter that indicates model complexity

• ARX or FIR orders

• penalty parameter in regularized regression

• the number of predictors in regression models

what can be a function of α ?

• model quality: it indicate the model fitting at such degree of complexity – such as
L(α),RSS(α)

• prediction error: ε(t, θ) = y(t)− ŷ(t, θ)

• the effective number of parameters (d)

other parameters that involve in model selection scores: N (samples) and output
dimension
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Model selection scores

model quality: L: log-likelihood, V : loss function

model complexity: d: effective number of parameters

• Akaike information criterion (AIC): AIC(α) = −2L(α) + 2d

• corrected Akaike information (AICc): AICc(α) = −2L(α) + 2d + 2d(d+1)
N−d−1

• Bayesian information criterion (BIC): BIC(α) = −2L(α) + d logN

• Akaike’s final prediction-error criterion (FPE): FPE(α) = V (θ̂)
(

1+d/N
1−d/N

)
• Mallow’s Cp: Cp(α) =

1
N

[
RSS(α) + 2dσ̂2

]
• adjusted R2: 1− RSS(α)/(N−d−1)

TSS/(N−1)
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Variable selection in linear regression

model: ŷ =
∑n

k=1 ak cos(kx) + bk sin(kx) for n = 1, 2, . . . , 20 and N = 50
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• aim to choose the number of basis function (n)

• set the effective number of parameters d = 2n (the number of sin(kx), cos(kx))
• compute ∆AIC, ∆AICc, ∆BIC (subtracted by its minimum), Cp, adjusted R2
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• AIC and adjusted R2 chose a complex model, while AICc and BIC picked 4 basis
functions (simpler), and Cp chose 7 basis functions

• train MSE always decreases, as well as, R2 always increases but the curves have a
knee around n = 4
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Choosing AR lag order

fitting AR model of order p = 1, 2, . . . , 20 to unemployment rate time series
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• the effective number of parameters is chosen as d = p

• compute ∆AIC, ∆AICc, ∆BIC, FPE, train MSE, and Fit Percent

• data samples: N = 245, examine two cases: (i) use all data (ii) use only half
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left: use all data right: use half of data
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• left: AIC, AICc and FPE tend to choose a higher order model (p = 13) but BIC
prefers a simpler model (p = 2)

• right: AICc chose a lower order model when N is halved (sample size was
corrected)

• both train MSE and Fit Percent are not good indicators for model selection
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Log-likelihood based scores (AIC, AICc)

AIC, AICc, BIC use negative log-likelihood to indicate model quality

AIC(α) = −2L(α) + 2d

AICc(α) = −2L(α) + 2d +
2d(d + 1)

N − d− 1

BIC(α) = −2L(α) + d logN

• AIC is an approximation of Kullback-Leibler (KL) divergence between the true
density (f (x) and the model (g(x|θ̂))

I(f, g) =

∫
f (x) log(f (x)/g(x|θ))dx

−L(θ̂) + d ≈ Eθ̂[I(f (x), g(x|θ̂))] + constant

• AICc penalizes more on complexity for small N (as quadratic term in d); it
approaches AIC for large samples (large N)
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Log-likelihood based score (BIC)

• BIC penalizes more on complexity than AIC (as indicated by logN > 2)

• when model candidates contain a true model, BIC is consistent (probability of
choosing the correct model → 1 as N → ∞)

• model with minimum BIC ⇔ model with highest posterior density

posterior odds = P (Mm|data)
P (Ml|data) =

P (Mm)

P (Ml)︸ ︷︷ ︸
prior

· P (data|Mm)

P (data|Ml)︸ ︷︷ ︸
Bayes factor

model prior tells which model is more likely to be preferred (by users)

• when prior is not available (all models have equal probabilities), Bayes factor
directly affects the posterior odds

• BIC (with −2 factor) is an approximate of Bayes factor (see Hastie et al. book)
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• for nested models M1 (complex), M2 (simple) with d(M1) = d(M2) +m

– AIC picks complex model if L(M1)− L(M2) > 2m (it’s worth to use complex
model since model quality improved much more)

– BIC picks complex model if L(M1)− L(M2) > m logN

• improved gap of log-likelihood required by AIC is less than that of BIC; hence, AIC
is prone to choosing a complex model more easily than BIC

• for LR (log-likelihood ratio) test, with test statistic

2(L(M1)− L(M2)) ∼ X 2(m)

– LR test picks M1 (complex) if 2L(M1) > 2L(M2) by X 2
0.05(m)

– for m < 7, we have 2m < X 2
0.05(m); hence, AIC tends to pick a complex model

more easily than LR test in this case
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Akaike’s final prediction (FPE)

denote V (θ̂) a loss function used in prediction error method (e.g., det or trace of error
covariance)

FPE(α) = V (θ̂)

(
1 + d/N

1− d/N

)
• model complexity is cooperated in multiplicative form (as compared to additive

form in AIC, BIC)

• when model output is scalar, V (θ̂) is simply MSE and FPE reduces to

FPE =
1

N

∑
t=1

ε2(t, θ̂) · 1 + d/N

1− d/N

• it was shown in Ljung book that FPE is a way to approximate of limN→∞ E[V (θ)]

(population), which can be estimated using V (θ̂) evaluated on estimation data
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Mallow’s Cp

Cp is mostly used in linear regression with d predictors and homoskedastic noise

Cp(α) =
1

N

[
RSS(α) + 2dσ̂2

]

• Cp uses quadratic loss to measure model quality

• σ̂2 is an estimate of noise variance using full model

• RSS/N always decreases when d increases; penalty on complexity is put on 2dσ̂2

• in Hastie et al. book, it showed that Cp is an estimate of test MSE

• other form of Cp exists: Cp = RSS/σ̂2+2d−N but result in choosing the same d
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Adjusted R2

R2 (coefficient of determination) is based on the decomposition:∑
i

(yi − ȳ)2︸ ︷︷ ︸
TSS

=
∑
i

(yi − ŷi)
2

︸ ︷︷ ︸
RSS

+
∑
i

(ŷi − ȳ)2︸ ︷︷ ︸
ESS

+2
∑
i

(yi − ŷi)(ŷi − ȳ)︸ ︷︷ ︸
zero if model has a constant

R2 is the proportion of the total variation in Y that can be linearly predicted by X

R2 = 1− RSS
TSS, adjusted R2 = 1− RSS(α)/(N − d− 1)

TSS/(N − 1)

• for linear model, 0 ≤ R2 ≤ 1 and always increases for larger models

• the presence of d penalizes the criterion for the number of predictor variables

• adjusted R2 increases if the added predictor variables decrease RSS enough to
compensate for the increase in d
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Score relations

for Gaussian noise additive model, we can show that log-likelihood (up to constant) is

−2L(θ) =

{
N log det

(
1
N

∑
t=1 ε(t, θ)ε(t, θ)

T
)
, if noise covariance is a parameter

RSS(θ)
σ2 , if noise variance is given

• for scalar output and noise variance is a parameter

AICscaled = AIC/N = log(MSE) + 2d/N ≈ log(FPE), for d ≪ N

• for scalar output and noise variance is given as σ̂2 (as computed from full model)

AICscaled = AIC/N =
1

N

(
RSS(θ)
σ̂2

+ 2d

)
= σ̂2 · Cp

AIC and Cp choose the same model in this case
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Cross validation

• training error rate: the average error that results from using a trained model (or
method) back on the training data set

• test error rate: the average error that results from using a statistical learning
method to predict the response on a new observation

• training error can be quite different from the test error rate

• cross validation can be used to estimate test error rate using available data:
split into training and validation sets

– validation set approach
– leave-one-out cross validation
– k-fold cross validation
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Splitting data

• training set: used for fitting a model
• validation set: used for predicting the response from the fitted model
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• validation set approach or hold out (left): randomly split data
• leave-one-out or LOOCV (middle): leave 1 sample for validation set
• k-fold (right): randomly split data into k folds; leave 1 fold for validation

– repeat k times where each time a different fold is regarded as validation set and
compute MSE1, MSE2, . . . , MSEk

– the test error rate is estimated by averaging the k MSE’s
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Cross validation on polynomial order

N = 500, show 7 runs of holdout, and 5-fold
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• result of holdout has high variation since it depends on random splitting
• 5-fold results has less variation because MSE is averaged over k folds
• LOOCV requires N loops (high computation cost); MSEi’s are highly correlated
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Estimate a true test MSE by CV

accuracy of test error rate (on simulation data set): using model of smoothing splines

compute the true test MSE (assume to know true f) as a function of complexity

• (left): cv estimates have the correct general U shape but underestimate test MSE

• (center): cv gives overestimate of test MSE at high flexibility

• (right): the true test MSE and the cv estimates are almost identical
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Choosing penalty parameter in lasso

lasso can be used for feature selection by choosing a right amount of penalty
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• each penalty parameter γ corresponds to a sparsity pattern of β
• vary γ and evaluate model selection scores and CV
• k-fold, LOOCV, AIC and AICc chose smaller γ than the one selected by BIC
• solution path show the significant βi’s selected from all methods
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Model validation

the parameter estimation procedure picks out the best model

a problem of model validation is to verify whether this best model is “good enough”

general aspects of model validation

• validation with respect to the purpose of the modeling

• feasibility of physical parameters

• consistency of model input-output behavior

• model order reduction

• parameter confidence intervals

• simulation and prediction
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Validation of dynamical models

dgp: y = Gu +He

model: ŷ = G̃u + H̃e

residual error: ε(t) = y(t)− ŷ(t)

common validation approaches based on residual analysis

• whiteness test of residuals

• cross-correlation test (between residual and input)

• examination of model order
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Whiteness test of residuals

residual error contain mismatch in G (system dynamic) and H (noise dynamic)

ε(t) = (G− Ĝ)u + (H − Ĥ)e, Rε(τ ) =
1

N

N∑
t=τ

ε(t)ε(t− τ )

• ε(t) can be regarded as filtered noise if there is a model mismatch in H and Rε(τ )
is not significantly small at τ ̸= 0 (y(t) could have been better predicted)

• apply hypothesis test (H0: ε is white) with test statistic

W =
N

R2
ε(0)

m∑
τ=1

R2
ε(τ )

d→ χ2(m)

• if W > X 2
α(m), we reject H0 (reject the model and improve Ĥ)
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Cross-correlation test

if Ĝ perfectly matches G, residual ε contains no dynamic of u, so the cross-correlation

Rεu(τ ) =
1

N

N∑
t=τ

ε(t)u(t− τ )

must be zero for all τ

• form a hypothesis test with H0 : Rεu(τ ) is zero

• we can compute the test statistic

W = NrT [Rε(0)Ru]
−1r

d→ χ2(m)

r is a sample cross-correlation, Rε and Ru are auto-correlation

• if W > X 2
α(m), we reject H0 (reject the model and improve Ĝ)
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Residual analysis of ARMAX model
true system: ARMAX(2,2,3) and consider models ARX(3,3) and ARMAX(3,3,3)
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• ARX has a significant Rε(3) (more apparent than ARMAX) — because ARX does
not incorporate noise dynamic in the model

• Rεu of both model stay inside the acceptable region (Ĝ was suitably estimated)
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Model order examination

if a model is overparametrized, it is more likely to see zero-pole cancellation
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compare ARMAX models of order (3,3,3) and (6,6,6)
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Example of MATLAB commands

• resid: residual analysis

• compare: compare the prediction with the measurement

• iopzplot: plots of zeros and poles
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