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Description

idea: determine the model parameter θ such that

ε(t, θ) = y(t)− ŷ(t|t− 1; θ) is small

ŷ(t|t− 1; θ) is a prediction of y(t) given the data up to time t− 1 and based on θ

general linear predictor:

ŷ(t|t− 1; θ) = N (L; θ)y(t) +M (L; θ)u(t)

where M and N must contain one pure delay, i.e.,

N (0; θ) = 0,M (0; θ) = 0

example: ŷ(t|t− 1; θ) = 0.5y(t− 1) + 0.1y(t− 2) + 2u(t− 1)
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Elements of PEM

one has to make the following choices, in order to define the method

• model structure: the parametrization of G(L; θ),H(L; θ) and Λ(θ) as a
function of θ

• predictor: the choice of filters N,M once the model is specified

• criterion: define a scalar-valued function of ε(t, θ) that will assess the
performance of the predictor

we commonly consider the optimal mean square predictor

the filters N and M are chosen such that the prediction error has small variance
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Loss function

let N be the number of data points

sample covariance matrix:

R(θ) =
1

N

N∑
t=1

ε(t, θ)εT (t, θ)

R(θ) is a positive semidefinite matrix (and typically pdf when N is large)

loss function: scalar-valued function defined on positive matrices R

f (R(θ))

f must be monotonically increasing, i.e., let X ≻ 0 and for any ∆X ⪰ 0

f (X +∆X) ≥ f (X)
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Example 1 f (X) = tr(WX) where W ≻ 0 is a weighting matrix

f (X +∆X) = tr(WX) + tr(W∆X) ≥ f (X)

(tr(W∆X) ≥ 0 because if A ⪰ 0, B ⪰ 0, then tr(AB) ≥ 0)

Example 2 f (X) = detX

f (X +∆X)− f (X) = det(X1/2(I +X−1/2∆XX−1/2)X1/2)− detX

= detX [det(I +X−1/2∆XX−1/2)− 1]

= detX
[

n∏
k=1

(1 + λk(X
−1/2∆XX−1/2))− 1

]
≥ 0

the last inequalty follows from X−1/2∆XX−1/2 ⪰ 0, so λk ≥ 0 for all k

both examples satisfy f (X +∆X) = f (X) ⇐⇒ ∆X = 0
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Procedures in PEM

1. choose a model structure of the form

y(t) = G(L; θ)u(t) +H(L; θ)e(t), Ee(t)e(t)T = Λ(θ)

2. choose a predictor of the form

ŷ(t|t− 1; θ) = N (L; θ)y(t) +M (L; θ)u(t)

3. select a criterion function V (θ) := f (R(θ))

4. determine θ̂ that minimizes the loss function V

(some time we use VN to emphasize that V depends on the sample size N)
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Least-squares method as a PEM

use linear regression in the dynamics of the form

A(L)y(t) = B(L)u(t) + e(t)

we can write y(t) = H(t)θ + ε(t) where

H(t) =
[
−y(t− 1) . . . −y(t− p) u(t− 1) . . . u(t− r)

]
θ =

[
a1 . . . ap b1 . . . br

]T
θ̂ that minimizes (1/N )

∑N
t=1 ε

2(t) will give a prediction of y(t):

ŷ(t) = H(t)θ̂ = (1− Â(L))y(t) + B̂(L)u(t)
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hence, the prediction is in the form of

ŷ(t) = N (L; θ)y(t) +M (L; θ)u(t)

where N (L; θ) = 1− Â(L) and M (L; θ) = B(L)

note that N (0; θ) = 0 and M (0; θ) = 0,

so ŷ uses the data up to time t− 1 as required

the loss function in this case is tr(R(θ)) (quadratic in the prediction error)
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Optimal prediction

consider the general linear model

y(t) = G(L; θ)u(t) +H(L; θ)e(t), E[e(t)e(s)T ] = Λδt,s

(we drop argument θ in G,H,Λ for notational convenience)

assumptions:

• G(0) = 0,H(0) = I

• H−1(L) and H−1(L)G(L) are asymptotically stable

• u(t) and e(s) are uncorrelated for t < s
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rewrite y(t) as

y(t) = G(L; θ)u(t) + [H(L; θ)− I ]e(t) + e(t)

= G(L; θ)u(t) + [H(L; θ)− I ]H−1(L; θ)[y(t)−G(L; θ)u(t)] + e(t)

=
{
H−1(L; θ)G(L; θ)u(t) + [I −H−1(L; θ)]y(t)

}
+ e(t)

≜ z(t) + e(t)

• G(0) = 0 and H(0) = I imply z(t) contains u(s), y(s) up to time t− 1

• hence, z(t) and e(t) are uncorrelated

let ŷ(t) be an arbitrary predictor of y(t)

E[y(t)− ŷ(t)][y(t)− ŷ(t)]T = E[z(t) + e(t)− ŷ(t)][z(t) + e(t)− ŷ(t)]T

= E[z(t)− ŷ(t)][z(t)− ŷ(t)]T + Λ ≥ Λ

this gives a lower bound, Λ on the prediction error variance
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the optimal predictor minimizes the prediction error variance

therefore, ŷ(t) = z(t) and the optimal predictor is given by

ŷ(t|t− 1) = H−1(L; θ)G(L; θ)u(t) + [I −H−1(L; θ)]y(t)

the corresponding optimal prediction error can be written as

ε(t) = y(t)− ŷ(t|t− 1) = e(t)

= H−1(L)[y(t)−G(L)u(t)]

• from G(0) = 0 and H(0) = I , ŷ(t) depends on past data up to time t− 1

• these expressions suggest asymptotical stability assumptions in H−1G and H−1
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Optimal predictor for an ARMAX model

consider the model

y(t) + ay(t− 1) = bu(t− 1) + e(t) + ce(t− 1)

where e(t) is zero mean white noise with variance λ2

for this particular case,

G(L) =
bL

1 + aL
, H(L) =

1 + cL

1 + aL

then the optimal predictor is given by

ŷ(t|t− 1) =

(
bL

1 + cL

)
u(t) +

(
(c− a)L

1 + cL

)
y(t)
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for computation, we use the recursion equation

ŷ(t|t− 1) + cŷ(t− 1|t− 2) = (c− a)y(t− 1) + bu(t− 1)

the prediction error is

ε(t) =

(
1 + aL

1 + cL

)
y(t)−

(
bL

1 + cL

)
u(t)

and it obeys
ε(t) + cε(t− 1) = y(t) + ay(t− 1)− bu(t− 1)

• the recursion equation requires an initial value, i.e., ε(0)

• setting ε(0) = 0 is equivalent to ŷ(0| − 1) = y(0)

• the transient is not significant for large t

• to find θ̂pem, we minimize V (θ) over (a, b, c) (nonlinear optimization)
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Loss function minimization

PEM estimate θ̂ minimizes

V (θ) := f (R(θ)) = f

(
1

N

N∑
t=1

ε(t, θ)ε(t, θ)T

)

to find a local minimizer using numerical methods, it requires

∂V

∂θ
=

∂f

∂R
· 1

N

N∑
t=1

∂

∂θ

[
ε(t, θ)ε(t, θ)T

]
example: scalar system and using f (R) = tr(R) will give

V (θ) = (1/N )

N∑
t=1

ε(t, θ)2, ∇V (θ) = (2/N )

N∑
t=1

ε(t, θ)∇θε(t, θ)

and ∇θε is typically nonlinear in θ
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example: ∇θε(t, θ) for ARMA(1,1) (special case of page 10-13)

ε(t) =

(
1 + aL

1 + cL

)
y(t)

∂ε(t)

∂a
=

(
L

1 + cL

)
y(t)

∂ε(t)

∂c
= −(1 + aL)L

(1 + cL)2
y(t) = − L

(1 + cL)
ε(t, θ)

input arguments of pem command in system identification toolbox:

• input/output {(ui, yi)}Ni=1

• initial parameter: θ(0) for the search method in optimization

• imposing constraint of θ (if any)
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Numerical example

the true system (dgp) is ARMAX(2,2,2)

(1− 1.5L + 0.7L2)y(t) = (1.0L + 0.5L2)u(t) + (1− 1.0L + 0.2L2)e(t)
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both u, e are white with unit variance; u is binary and independent of e
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estimation: armax and arx commands to estimate three models

• ARMAX(2,2,2): guess the model structure correctly
• ARMA(2,2): make no use of input in estimation
• ARX(2,2): no consideration in the noise dynamics
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using a simpler model (ARX) or neglecting u yielded worse result than using the
model with correct structure
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Example of MATLAB codes

% Generate the data
N = 200; Ts = 1; t = (0:Ts:Ts*(N-1))'; noise_var = 1;
a = [1 -1.5 0.7]; b = [0 1 .5]; c = [1 -1 0.2];
u = idinput(N,'PRBS');
e = sqrt(noise_var)*randn(N,1);
dgp = idpoly(a,b,c,1,1,noise_var,Ts); % data generating process
opt = simOptions('AddNoise',true,'NoiseData',e);
y = sim(dgp,u,opt); DAT = iddata(y,u,Ts);

% Identification
m = armax(DAT,[2 2 2 1]); % [na nb nc nk] ARMAX(2,2,2)
m1 = armax(DAT,[2 0 2 1]); % ARMA(2,2)
m2 = arx(DAT,[2 2 1]); % ARX(2,2) uses the LS method

% Compare the measured output and the model output
compare(DAT,m,m1,m2,1) ; % Use '1' to compare the 1-step prediction
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Computational aspects

I. analytical solution exists

if the predictor is a linear function of the parameter

ŷ(t|t− 1) = H(t)θ

and the criterion function f (R) is simple enough, i.e.,

V (θ) := f (R(θ)) = tr(R(θ)) =
1

N

N∑
t=1

∥ε(t, θ)∥2 = 1

N

N∑
t=1

∥y(t)−H(t)θ∥2

it is clear that PEM is equivalent to the LS method

this holds for ARX or FIR models (but not for ARMAX and Output error models)
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II. no analytical solution exists

it involves a nonlinear optimization for

• general criterion functions

• predictors that depend nonlinearly on the data

numerical algorithms: Newton-Ralphson, Gradient based methods

typical issues in nonlinear minimization:

• problem has many local minima

• convergence rate and computational cost

• choice of initialization
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Feasible set of parameters

suppose the ground-truth system is described by

S : y(t) = G0(L)u(t) +H0(L)e(t), E[e(t)e(τ )T ] = Λ0δt,τ

and that we assume the model M(θ) in estimation process

consider all model parameters that make the model matched with the true system

D(M) = {θ | G0(L) = G(L; θ), H0(L) = H(L; θ), Λ0 = Λ(θ)}

we denote the set of all feasible parameters as D(M)

all three possibilities of D(M): empty set, unique member, many members
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Properties of PEM estimate

properties of PEM estimate depends on

• existence of members in D(M)

• choice of loss function

VN(θ) := f (R(θ)) = f

(
1

N

N∑
t=1

ε(t, θ)ε(t, θ)T

)

θ̂N minimizes VN(θ) where N data samples are used

we examine consistency of θ̂N (when N → ∞)
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Consistency property

assumptions:

1. the data {u(t), y(t)} are quasi-stationary processes

2. the input is persistently exciting

3. ∇VN(θ) and ∇2VN(θ) are continuous; ∇2VN(θ) is non-singular in neighbors of
local minima

4. both G and H are differentiable functions of θ and uniformly stable

5. D(M) is not empty

under these assumptions, the PEM estimate is consistent

θ̂N
p−→ θ∗, as N → ∞
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Statistical efficiency

assumption: D(M) contains only one member, θ∗

• define s(t) = ∇θε(t, θ
⋆) and F = ∂f

∂R

∣∣∣
R=Λ

• PEM estimate has a limiting normal distribution
√
N (θ̂ − θ∗)

d→ N (0, P )

P = (E[s(t)Fs(t)])
−1 E[s(t)FΛFs(t)T ] (E[s(t)Fs(t)])

−1

where P ⪰ (E[s(t)Λ−1s(t)T ])−1 (covariance has a lower bound)

• P achieves its lower bound (PEM is efficient) in each of the following cases:
– y is scalar and f (R) = tr(R)
– f (R) = tr(WR) and choose W = Λ−1 (inverse of noise covariance)
– f (R) = log det(R)
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