EE531 - System Identification Jitkomut Songsir

10. Prediction Error Methods (PEM)
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Description

idea: determine the model parameter 6 such that
e(t,0) =y(t) —y(tlt —1,0) is small

y(t|t — 1;0) is a prediction of y(t) given the data up to time ¢ — 1 and based on ¢

general linear predictor:
y(tlt —1;0) = N(L; 0)y(t) + M(L: O)u(t)
where M and N must contain one pure delay, i.e.,
N(0;0)=0,M(0;0) =0
example: y(t|t —1;0) = 0.5y(t — 1) + 0.1y(t — 2) + 2u(t — 1)
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Elements of PEM

one has to make the following choices, in order to define the method

e model structure: the parametrization of G(L; ), H(L;0) and A(f) as a
function of 0

e predictor: the choice of filters NV, M once the model is specified

e criterion: define a scalar-valued function of €(t, #) that will assess the
performance of the predictor

we commonly consider the optimal mean square predictor

the filters NV and M are chosen such that the prediction error has small variance
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Loss function

let N be the number of data points
sample covariance matrix:
1 — .
R(f) = ; e(t,0)eT(t,0)

R(0) is a positive semidefinite matrix (and typically pdf when N is large)

loss function: scalar-valued function defined on positive matrices R

f(R(6))
f must be monotonically increasing, i.e., let X > 0 and for any AX > 0

f(X +AX) > f(X)
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Example 1 f(X) = tr(W.X) where W > 0 is a weighting matrix

f(X+AX)=tr(WX)+tr(WAX) > f(X)
(tr(WAX) > 0 because if A = 0, B = 0, then tr(AB) > 0)
Example 2 f(X) =det X

FIX +AX) — f(X) =det(XV2(I + XTVPAXX V)XY — det X
— det X[det(I + X V2PAX X 12) — 1]

=det X |]J(1+ M(XTPAXX 7)) — 1] >0
k=1

the last inequalty follows from X 12AX X2 =0, s0 A\ >0 for all k

both examples satisfy f(X + AX) = f(X) «<— AX =0
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Procedures in PEM

1. choose a model structure of the form

y(t) = G(L: 0)u(t) + H(L: 0)e(t), Ee(t)e()T = A(6)

2. choose a predictor of the form

y(t|t — 1,0) = N(L;0)y(t) + M(L; 0)u(t)

3. select a criterion function V(0) := f(R(6))
4. determine § that minimizes the loss function V

(some time we use Vv to emphasize that V' depends on the sample size V)
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Least-squares method as a PEM

use linear regression in the dynamics of the form

we can write y(t) = H(t)0 + €(t) where

Hit)=|-ylt—1) ... —ylt—p) u(lt—1) ... wu(t—r)]
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hence, the prediction is in the form of

y(t) = N(L; 0)y(t) + M(L; 0)uf(t)

AN

where N(L;0) =1— A(L) and M(L;0) = B(L)

note that NV(0;6) =0 and M (0;0) =0,

so ¢ uses the data up to time ¢t — 1 as required

the loss function in this case is tr(R(#)) (quadratic in the prediction error)
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Optimal prediction
consider the general linear model
y(t) = G(L; O)ult) + H(L; 0)e(t), Ele(t)e(s)"] = Adys

(we drop argument 6 in G, H, A\ for notational convenience)

assumptions:

e G(0O)=0,H(0)=1
e H YL)and H Y(L)G(L) are asymptotically stable

e u(t) and e(s) are uncorrelated for t < s
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rewrite y(t) as

y(t)

G(L;0)u(t) + [H(L; Te(t) + e(t)

G(L; 0)u(t) + [H(L; 0) — I1H ' (L; 0)[y(t) — G(L; O)ult)] + e(t)
= {H NL;0)G(L; 0)u(t) + [T — HH(L; 0)ly(t) } + e(t)

2 2(t) +e(t)

9) —
9) —

e G(0)=0and H(0) = I imply 2(t) contains u(s),y(s) up to time t — 1

e hence, z(t) and e(t) are uncorrelated

let (¢) be an arbitrary predictor of y(?)

this gives a lower bound, A on the prediction error variance
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the optimal predictor minimizes the prediction error variance

therefore, y(t) = 2z(t) and the optimal predictor is given by
g(tlt —1) = HH(L;0)G(L; O)u(t) + [T — H™(L; 0)]y(t)
the corresponding optimal prediction error can be written as

e(t) = M) y(t[t —1) = e(t)
“HLD)[y(t) — G(L)u(t)]

e from GG(0) =0 and H(0) = I, y(t) depends on past data up to time ¢t — 1

e these expressions suggest asymptotical stability assumptions in H 'G and H !
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Optimal predictor for an ARMAX model

consider the model
y(t)+ay(t —1)=bu(t — 1)+ e(t) + ce(t — 1)

where e(t) is zero mean white noise with variance \*

for this particular case,

bL l+cL
= H(L)=
l1+al’ 2 1+alL

G(L)

then the optimal predictor is given by
- 1) = (=Yg + (2 o
—_ — u
Y 1+ cL I+cL )7
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for computation, we use the recursion equation
gtlt — 1) +cy(t =1t —2) = (c—a)y(t — 1) + bu(t — 1)

the prediction error is

0= (5528 - ()

et)+ce(t—1)=y(t)+ay(t —1) —bu(t —1)

and it obeys

e the recursion equation requires an initial value, i.e., £(0)
e setting £(0) = 0 is equivalent to y(0| — 1) = y(0)
e the transient is not significant for large ¢

e to find Oy, we minimize V(0) over (a, b, c) (nonlinear optimization)
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Loss function minimization

PEM estimate 6 minimizes

V(6) = F(RO) = f (fv > et )t 9>T>

to find a local minimizer using numerical methods, it requires

0V _of 1
e(t,
“OR N Z 5g L°(1:0)=(t.0)"]
example: scalar system and using f(R) = tr(R) will give

N

= (1/N)> e(t,0 V(0) = (2/N)Y e(t,0)Ve(t, )

t=1
and Ve is typically nonlinear in 6
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example: Vye(t, 0) for ARMA(1,1) (special case of page 10-13)

) = () vt
Oe(t) L
da (1 T CL) y(t)
D=(t) (1+al)L L
dc  (1+cL)? ylt) = (14 CL)8<t’ 0)

input arguments of pem command in system identification toolbox:

o input/output {(us, y:)}Y,
e initial parameter: 69 for the search method in optimization

e imposing constraint of 6 (if any)

Prediction Error Methods (PEM)

10-15



Numerical example

the true system (dgp) is ARMAX(2,2,2)

(1 —1.5L+0.7L%y(t) = (1.0L + 0.5L*)u(t) + (1 — 1.0L + 0.2L%)e(t)
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both u, e are white with unit variance; u is binary and independent of ¢
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estimation: armax and arx commands to estimate three models

e ARMAX(2,2,2): guess the model structure correctly
e ARMA(2,2): make no use of input in estimation

e ARX(2,2): no consideration in the noise dynamics

12

Fitting on estimation data set
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——ARMA(2,2): 55.37% M
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using a simpler model (ARX) or neglecting u yielded worse result than using the
model with correct structure
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Example of MATLAB codes

% Generate the data

N =200; Ts =1; t = (0:Ts:Ts*(N-1))"'; noise var = 1;
a=1[1-1.50.7]; b=[01 .5]; ¢c=1[1-10.2];

u = idinput(N, 'PRBS');

e = sqrt(noise var)*randn(N,1);

dgp = idpoly(a,b,c,1,1,noise var,Ts); % data generating process
opt = simOptions('AddNoise',true, 'NoiseData',e);

y = sim(dgp,u,opt); DAT = iddata(y,u,Ts);

% Identification

m = armax(DAT,[2 2 2 1]); % [na nb nc nk] ARMAX(2,2,2)
ml = armax(DAT,[2 0 2 1]); % ARMA(2,2)

m2 = arx(DAT,[2 2 1]); % ARX(2,2) uses the LS method

%» Compare the measured output and the model output
compare (DAT,m,ml1,m2,1) ; % Use 'l' to compare the 1-step prediction
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Computational aspects
|. analytical solution exists

if the predictor is a linear function of the parameter
y(tlt —1) = H(t)0

and the criterion function f(R) is simple enough, i.e.,

V(6) = f(R(6)) = tr(RO) = = S [e(t.0)]° = = 3 llu(t) — H(D)o]

it is clear that PEM is equivalent to the LS method

this holds for ARX or FIR models (but not for ARMAX and Output error models)

Prediction Error Methods (PEM) 10-19



Il. no analytical solution exists

it involves a nonlinear optimization for

e general criterion functions

e predictors that depend nonlinearly on the data

numerical algorithms: Newton-Ralphson, Gradient based methods

typical issues in nonlinear minimization:

e problem has many local minima
e convergence rate and computational cost

e choice of initialization
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Feasible set of parameters

suppose the ground-truth system is described by
S y(t) = Go(L)u(t) + Hy(L)e(t), Ele(t)e(r)!] = Noot +

and that we assume the model M(8) in estimation process

consider all model parameters that make the model matched with the true system
D(M) =10 | Go(L) = G(L;0), Ho(L) = H(L;0), No = A(0)}

we denote the set of all feasible parameters as D(M)

all three possibilities of D(M): empty set, unique member, many members
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Properties of PEM estimate

properties of PEM estimate depends on

e existence of members in D(M)

e choice of loss function
V() = F(R(0) = f (;Ze@, D)et, 9>T>

0 minimizes Vn(0) where N data samples are used

we examine consistency of 65 (when N — o)
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Consistency property

assumptions:

1. the data {u(t),y(t)} are quasi-stationary processes
2. the input is persistently exciting

3. VVn(0) and V*V () are continuous; V>V (0) is non-singular in neighbors of

local minima
4. both G and H are differentiable functions of 8 and uniformly stable

5. D(M) is not empty
under these assumptions, the PEM estimate is consistent

Oy — 60, as N — oo
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Statistical efficiency

assumption: D (M) contains only one member, 6*

o define s(t) = Vye(t,0%) and F = g—{% R=A

e PEM estimate has a limiting normal distribution

VNG —6%) S N(0, P)
P — (E[s(t)Fs(t)) " Bls(t) FAFs(t)T] (Bls(t) Fs(t)]) "

where P = (E[s(t)A"1s(t)1]) ! (covariance has a lower bound)

e P achieves its lower bound (PEM is efficient) in each of the following cases:

— gy is scalar and f(R) = tr(R)
— f(R) = tr(WR) and choose W = A~ (inverse of noise covariance)
— f(R) =logdet(R)
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