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Abstract

Neural network of human body is transmitted through electrical current. The electrical current
induces an electrical field which can be measured, called Electroencephalography or EEG. Nowa-
days, EEG signals are applied to use for medical benefits such as identification symptoms. Math-
ematical model of the signal has to be known before using as an identifier. This study proposes
Vector-Autoregressive model (VAR) for estimation multi-channel EEG signals. The parameters are
estimated by maximum likelihood method. Model selection is chosen by Bayesian Information Cri-
terion (BIC). Wald test is used to test how correlated between channels of EEG signals. The result
shows the best fit of EEG model has 1.8395% of residue error and the pattern of model parameters
are generated by the Wald test.

1 Introduction

Infomation transmittion between neurons or nerve cells in a brain us transmitted by electrical charges
which induces a magnetic field and create an electrical field. Electroencephalography or EEG signals
are measured from electrical field around a head by electrodes. EEG signal has very small magnitudes
because a skull and scalp which have great resistivity to an electrical field and internal and external
noise. The signals are detected, amplified, filtered and converted into digital before being observed.
EEG signals are classified into 5 bandwidths; delta (0.5-4 Hz), theta (4-7.5 Hz), alpha (8-13 Hz), beta
(14-26 Hz) and gamma (>30 Hz). Each frequency of the signals can be used to identify the behavior of
a brain [1].

EEG signal has been estimated and modelled with many models by several algorithms. In this study,
we introduce Autoregressive (AR) model to estimate the signal, which is expressed as:

X(t) =

p∑
k=1

AkX(t− k) + e(t)

where X(t) is an EEG sample at time equals to t, e(t) is an error term and Ak is a matrix parameter of
past data.

There are many studies that already had applied and estimated the EEG model into many forms
such as Autoregressive (AR) model and Autoregressive-Moving-average (ARMA) model and make use
of them.

Epilepsy is a brain disorder, which normal pattern of neuron activity is disturbed. EEG model was
introduced to distinguish between epileptic patients and normal people [1]. The difference between these
two groups was classified by the peak alpha frequency (PAF) of EEG signals. The EEG signal of epileptic
patient had higher amplitude of absolute spectrum power than the normal person. The study estimated
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the EEG signal in form of ARMA model which was the best for a model with sharp peaks and deep nulls
frequency spectrum. Its parameters were estimated by Kalman smoother algorithm. The biomarker was
used to identify an epileptic patient. The biomarker of any EEG bandwidth was calculated with range
of frequency of the models, power spectral density and sampling frequency. The t-test was introduced
to identify which channels or bandwidth was best for distinguish between two groups. The biomarker of
the identifier should be signinficant different. The result showed that every band excepts Gamma2 had
significant difference of spectrum power.

The study in [2] shows another application of EEG signal, which is used to identify the sleeping
disorders in human. The sleeping can be separated into 2 sleeping states; Rapid eyes movement (REM)
and Non-rapid eyes movement (NREM). The data which was used was from the standard system of
sleep recording and stating critertia called R&K standard. The standard of classifying between these
two stages was created by visual classification by specialists. EEG signals were estimated in a form
of ARMA model, which their coefficients were estimated by Kalman filter modeling. Feature vectors
were generated from ARMA parameters by K-mean segmental HMM (Hidden Markov Model). The
classification of sleeping states came from an obeservation sequence of the feature vectors. The result of
classification was coherent to the R&K standard. However, it was hard to identify between 2 sleeping
states. A medical opinion is still required.

For an AR model, in the study [3] aims to establish the feature for identifying a person by his/her
EEG signal. The study based on the hypothesis that EEG signals were related to individual genetic
information. This study seeked to find a biometrics which were AR parameters to identify person. The
AR parameters were estimated by Yull-Walker approach. The parameters were formed as a feature
vectors and were classified by Competitive Neural Network. The study compared feature vectors from
single and multiple channels estimation of EEG models and found that feature vector from multiple
channels estimation had more correctly than single channel estimation.

2 Formulating VAR equation of EEG signals

To formulate VAR equation of EEG signals, sample data of each node in each period of a brain are
used to estimate parameters in the equation. VAR model with p-order lag of EEG is shown as:

y(t) = c+A1y(t− 1) +A2y(t− 2) + · · ·+Apy(t− p) + v(t) (1)

where y(t) ∈ Rn of EEG signal at time t, c ∈ Rn and Ai ∈ Rnxn are matrices of parameters and v(t) is
a gaussian white noise with covariance matrix is Σ ∈ Rnxn. The equation (1) can be written as:

y(t) = AH(t) + v(t) (2)

where H(t) = (1, y(t − 1), y(t − 2), ..., y(t − p)) ∈ Rnp+1, A =
[
c A1 A2 · · · Ap

]
∈ Rnxnp+1, and

v(t) ∼ N (0,Σ)
VAR equation of EEG signals is estimated by maximum likelihood estimation. The parameters of the

equation have to be estimated by maximizing the probability density function for the given parameters
which are A and Σ. The probability density function for the given A and Σ can be formulated from the
equation (2) as:

v(t) = y(t)−AH(t)

fy(y(t)|A,Σ) = fv(y(t)−AH(t)) (3)

Suppose data of EEG signal at t = 1 to t = p are known, data y at t = p + 1 to t = N , which N is a
number of final estimation time point, need to be estimated. Therefore, the parameters of VAR equation
which use to estimate data y at t = p+ 1 to t = N can be solved from the likelihood function of y.

f(y|θ) = f(y|A,Σ) = f(y(t), y(t+ 1), ..., y(N)|A,Σ)

= f(y(p+ 1), y(p+ 2), ..., y(N)|A,Σ)

=
1

(2π)
(N−p)

2

· 1

|Σ|
(N−p)

2

· exp−1

2

N∑
t=p+1

(y(t)−AH(t))TΣ−1(y(t)−AH(t)).

(4)
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It is convenient to consider the log-likelihood function of (4)

log(f(y|A,Σ)) = L(A,Σ) =
N − p

2
log |Σ−1| − 1

2

N∑
t=p+1

(y(t)−AH(t))TΣ−1(y(t)−AH(t))

=
N − p

2
log |Σ−1| − 1

2
‖L[Y −AH]‖2F

(5)

where L is from Σ−1 = LTL, Y =
[
y(p+ 1) y(p+ 2) · · · y(N)

]
∈ RnxN−p,

and H =


1 1 · · · 1

y(p) y(p+ 1) · · · y(N − 1)
y(p− 1) y(p) · · · y(N − 2)

...
...

...
y(1) y(2) · · · y(N − p)

 ∈ Rnp+1xN−p.

The parameter Â is solved by minimizing the term ‖L[Y − AH]‖2F to maximize the probability density
function by differentiating this term with A, which the result is shown as:

Â = Y HT (HHT )−1 (6)

The parameter Σ̂ is solved by differentiating the equation (5) with Σ−1, which the result is shown as:

Σ̂ =
1

N − p

N∑
t=p+1

(y(t)− ÂH(t))(y(t)− ÂH(t))T (7)

the estimation of VAR model of EEG signal can be written as:

ˆy(t) = ÂH(t) (8)

The AR model is achieved, next step is to choose lag order of AR model which is accurate and
reliable. Bayesian Information Criterion (BIC) is introduced to assess the models with various order in
term of BIC score.

BIC score is calculated from:
BIC = −2L+ d logN

where L is log-likelihood function of y, d is the number of effective parameters and N is the number of
samples. The proper lag order is found if BIC score of its model is the lowest.

3 Result and Discussion

10 channels of focal x-signal EEG of an epilepsy patient are estimated with different pth lag order
and are compared to the real data. In this experiment, VAR models with lag order equal to 1-20 are
chosen to observe how lag orders affect to quality of VAR models.

Figure 1 shows the relation between the residue mean error of model of 10 channels with 10240
samples which its lag order vary between 0-20. The figure show that wtih an increase of lag order, the
model is tend to has less error. However, it is hard to say that which lag order has the least order. Plus,
higher lag order is also affect complexity of calculation.
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Figure 1: Graph Between Error Magnitude and pth lag order.

Figure 2 shows the relation between BIC score and lag order of models. At the lag order equals to
10 has the lowest BIC score which equals to 4.645x105. However, other higher lag order such as 11, 12
have less residue error than 10th but they are slightly different.

Figure 2: BIC score with p order.

Figure 3 shows the real EEG signal and the estimated model of lag order equals to 10. The real
signal and the estimated model has 1.8395% of the residue error. AR model with lag order equals to 10
is the best fit for this EEG signals.
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Figure 3: VAR Model with 10th-order.

4 Hypothesis Testing by the Wald Statistics

We are going to begin with assuming that an unknown parameter θ has been estimate by ML, that
it belongs to a parameter space Θ ⊆ Rp, and we want to test the null hypothesis

H0 : r(θ) = 0

where r : Rp → Rm is a restriction function, with m 6 p.
Let θ̂ be the estimate of the parameter θ ∈ Rp obtained by maximizing the log-likelihood function

over the whole parameter space Θ:
θ̂ = arg max

θ⊂Θ
L(θ)

where L(θ) is the log-likelihood function.
From [5], the Wald test is based on the following test statistic:

W = r(θ̂)T [Dr(θ̂)Avar(θ̂)Dr(θ̂)
T ]−1r(θ̂)

where Dr(θ̂) is Jacobian of r with respect to the entries of θ̂, and Avar(θ̂) is a consistent estimate of

the asymptotic covariance matrix of θ̂. Asymptotically, the test statistic has a Chi-square distribution,
as stated by the following proposition.

Proposition : Under the null hypothesis that r(θ) = 0, the Wald statistic W converges in distribution
to Chi-square distribution with m degrees of freedom.
We can calculate Avar(θ̂) by using the Fisher information matrix for θ contained in y (1 sample) which
is defined as

I(θ) = E[(∇θL(θ))(∇θL(θ))T ]

the expectation of the outer product of the gradient of the log-likelihood function. Avar(θ̂) is defined as

Avar(θ̂) =
1

N
I(θ)−1

when I(θ) is the Fisher information matrix for θ and N is the sample size. For the ML estimation, the
asymptotic covariance matrix can be computed by

ˆAvar(θ̂ml) = [−
N∑
i=1

∇2 log f(yi|θ̂)]−1

The idea of the Wald test is if H0 is true, θ̂ should satisfy r(θ̂) to be close to zero.
In the Wald test, the null hypothesis is rejected if

W > c

where c is a pre-determined critical value. The size of the test (significance level) can be its asymptotic
value

α = P (W > c) = 1− P (W 6 c) ≈ 1− F (c)

where F (c) is the distribution function of Chi-square random variable with m degrees of freedom. The
critical value c can be chosen by

c = F−1(1− α)
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5 Performing hypothesis test on LS problem.

Consider, LS estimation
x̂ = arg min

x
‖Ax− y‖ = (ATA)−1AT y

with the restrictions,
r11x1 + r12x2 + ...+ r1kxk = q1

r21x1 + r22x2 + ...+ r2kxk = q2

...

rm1x1 + rm2x2 + ...+ rmkxk = qm

and can be written in matrix form,
Rx = q

for example, if one of the coefficients is zero, xi = 0,

R =
[
0 0 ... 1 0 ... 0

]
and q = 0.

or some coefficients is zero such as, x1 = x3 = x4 = 0,

R =

1 0 0 0 0 ... 0
0 0 1 0 0 ... 0
0 0 0 1 0 ... 0

 and q = 0.

The hypothesis implied by the restrictions is

H0 : Rx− q = 0,

H1 : Rx− q 6= 0.

where H1 is called alternative hypothesis.

By Wald test, if H0 is true, then Rx̂−q should be close to zero. For the example of a single coefficient,
if H0 : xi = 0 is correct, then x̂i should be close to zero.

Now consider y = Ax + V where V is gaussian white noise ∼ N (0, σ2I), we choose x to be zero in
some entries. Then generate y and estimate x using LS method. After that we perform Wald test on x̂
and detect the zero entries of x.

By using Matlab, we choose x ∈ R100 (some coefficients is zero), A ∈ R120X100,V ∼ N (0, 10|x|), and
use α = 0.05. Then generate y = Ax+ V 10,000 data set and calculate two type of errors by averaging
the value of them over the data set. The result is

Type I error = 0.0505
Type II error = 0.0008

when the two types of error is the error that we reject the true H0 called type I error and the error that
we accept the false H0 called type II error.

Now consider a value of a significance level, variance of noise, and sample size that the value of the
type II error depend on it. Repeating the Wald test to calculate the Type II error by the following
situation and the result is shown in Figure 4,5, and 6 that is when increasing the significance level, and
the sample size the type II error tend to be decreasing and when increasing the variance of noise the
type II error tend to be increasing.
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Figure 4: Type II error when varying the variance of noise

Figure 5: Type II error when varying the significance level
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Figure 6: Type II error when varying the sample size

6 Performing hypothesis test on AR Model.

In this section we generate AR model : y(t) = AH(t) + v(t) by choosing y(t) ∈ R4, A ∈ R4x40, lag order
p = 10 and significance level α = 0.05 with sample size equal to 10,000 data points. Then compute the
pattern of model parameter. The result is

True model parameters pattern :


X X 0 X
X X X X
X 0 X 0
X 0 X X


and estimated model parameters pattern :


X X 0 X
X X X X
X 0 X 0
X 0 X X


when X represent to the non-zero value of the model parameter and 0 represent to the zero value of the
model parameter.

From the result, y3 is not has an affect on y1, y2 and y4 are not have an affect on y3, and y2 is not
has an affect on y4 and the estimated model parameter pattern is the same as the true pattern.

7 Conclusion

From mathematics calculation and graph analysis, AR model is suitable to estimate multi-channels EEG
signal. The best estimation AR model of this EEG signal, which has low error and sensible and reliable,
is the model with lag order equals to 10 and has residue error of 1.8395% .In the performing hypothesis
section, we can see the accuracy of the Wald test for analyzing a zero component in the model parameters
when varying some values and for AR model we can analyze the pattern of model parameters to see the
correlation between the time series data.
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Appendix

MATLAB Code

The Matlab code is consisted of the log-likelihood calculation, Plotting trade off curve, Plotting BIC
score,Performing Wald test for LS problem, and Performing Wald test for AR model.

% impoort 10 EEG signals

eeg1 = importdata(’Data_F_Ind0001.txt’);

eeg2 = importdata(’Data_F_Ind0002.txt’);

eeg3 = importdata(’Data_F_Ind0003.txt’);

eeg4 = importdata(’Data_F_Ind0004.txt’);

eeg5 = importdata(’Data_F_Ind0005.txt’);

eeg6 = importdata(’Data_F_Ind0006.txt’);

eeg7 = importdata(’Data_F_Ind0007.txt’);

eeg8 = importdata(’Data_F_Ind0008.txt’);

eeg9 = importdata(’Data_F_Ind0009.txt’);

eeg10 = importdata(’Data_F_Ind0010.txt’);

data = [ eeg1(:,1)’ ;

eeg2(:,1)’ ;

eeg3(:,1)’ ;

eeg4(:,1)’ ;

eeg5(:,1)’ ;

eeg6(:,1)’ ;

eeg7(:,1)’ ;

eeg8(:,1)’ ;

eeg9(:,1)’ ;

eeg10(:,1)’;

];

n =10; %count data

a = []; %error matrix of all data

b = []; %mean error from a (trade off curve)

N = 10240; % sample of data in 20 second

BIC = [];

for p = 1:20 % loop for lag order 0 - 20

Y = [];

Y = data(:,p+1:N);

X = []; % this loop

for i = 1:N-p

X1 = [1];

for j = 1:p

X1 = [X1 ; data(:,p+i-j)];

end

X = [X X1];

end

thetahat = Y*X’*inv(X*X’);

sigmahat = [0];

X = [];

for i = 1:N-p

X1 = [1];

for j = 1:p

X1 = [X1 ; data(:,p+i-j)];

end

sigmahat = sigmahat + (data(:,p+1) - thetahat*X1)*(data(:,p+1) - thetahat*X1)’;

end
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sigmahat = sigmahat/N-p;

% this is estimated EEG signal

Yhat = [data(:,1:p) thetahat*X];

/% find trade off curve

for k = 1:n

error = 0;

error = sum(abs(data(k,:)-Yhat(k,:)))/N;

a(k,p) = error;

end

% mean error at p order, when finish p loop, b is mean error of order 0-20.

b(1,p) = sum(a(:,p))/n;

% find BIC score of p order 0-20

logLH = 0; % find log-likelihood function at p order

rlogLH = 0;

llogLH = (N-p)*log(det(inv(sigmahat) ) )/2;

X = [];

for i = 1:N-p

X1 = [1];

for j = 1:p

X1 = [X1 ; data(:,p+i-j)];

end

rlogLH = rlogLH + (data(:,p+1) - thetahat*X1)’*inv(sigmahat)*(data(:,p+1) - thetahat*X1);

end

rlogLH = (-1/2)*rlogLH;

logLH = llogLH+rlogLH; /%Log-likelihood function

d = n*(1+n*p);

BIC(1,p) = -2*logLH+ d*log(n);

end

% trade off curve

figure

plot(1:p,b(1,:),’-xb’)

title(’error of pth lag order’)

xlabel(’p order’)

ylabel(’error’)

% BIC score

figure

plot(1:p,BIC(1,:),’-xb’)

title(’BIC score of pth lag order’)

xlabel(’p order’)

ylabel(’BIC’)

% Wald test for LS problem when varying variance of noise

SX=100;

x=rand(SX,1)*10; % The ture valve

for i=1:SX

if rem(i,2)==0

x(i)=0;

end

end

11



A=rand(150,SX)*10;

mu=zeros(150,1);

alpha=0.05; c=chi2inv(1-alpha,1);

q=0;

Type1Error=zeros(1,20); Type2Error=zeros(1,20); n=1;

for i=0.5:0.5:10

E1=0; E2=0; j=0;

while j<10000

S=i*norm(x); Sigma=S*eye(150);

V=S*inv(A’*A);

v=mvnrnd(mu,Sigma,1);

y=A*x+v’;

clearvars v

xhat=A\y;

for m=1:SX

R=zeros(1,SX);

R(m)=1;

J=R;

r=R*xhat-q;

W=r’*inv(J*V*J’)*r;

if W>c

if rem(m,2)==0

E1=E1+1;

end

else if W<c

if rem(m,2)==1

E2=E2+1;

end

end

end

end

j=j+1;

end

Type1Error(n)=E1/(10000*SX/2);

Type2Error(n)=E2/(10000*SX/2);

n=n+1;

end

i=(0.5:0.5:10);

Type1Error

Type2Error

plot(i,Type2Error,’-o’); ylabel(’Type II Error’); xlabel(’Multiplier’);

title(’Type II error when varying variance of noise’);

% Wald test for LS problem when varying alpha

SX=100;

x=rand(SX,1)*10; % The ture valve

for i=1:SX

if rem(i,2)==0

x(i)=0;

end

end

A=rand(150,SX)*10;

mu=zeros(150,1);

S=10*norm(x);

Sigma=S*eye(150);

q=0;

V=S*inv(A’*A);

Type1Error=zeros(1,10); Type2Error=zeros(1,10); n=1;

for i=0.01:0.01:0.1
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E1=0; E2=0; j=0;

while j<10000

alpha=i; c=chi2inv(1-alpha,1);

v=mvnrnd(mu,Sigma,1);

y=A*x+v’;

clearvars v

xhat=A\y;

for m=1:SX

R=zeros(1,SX);

R(m)=1;

J=R;

r=R*xhat-q;

W=r’*inv(J*V*J’)*r;

if W>c

if rem(m,2)==0

E1=E1+1;

end

else if W<c

if rem(m,2)==1

E2=E2+1;

end

end

end

end

j=j+1;

end

Type1Error(n)=E1/(10000*SX/2);

Type2Error(n)=E2/(10000*SX/2);

n=n+1;

end

i=0.01:0.01:0.1;

Type1Error

Type2Error

plot(i,Type2Error,’-o’);xlabel(’Significance level’);ylabel(’Type II Error’)

title(’Type II error when varying a significance level’);

% Wald test for LS problem when varying a sample size

SX=100;

x=rand(SX,1)*10; % The ture valve

for i=1:SX

if rem(i,2)==0

x(i)=0;

end

end

A=rand(150,SX)*10;

mu=zeros(150,1);

S=10*norm(x);

alpha=0.05; c=chi2inv(1-alpha,1);

q=0;

Type1Error=zeros(1,50); Type2Error=zeros(1,50); n=1;

for i=101:150

E1=0; E2=0; j=0;

while j<10000

A1=A(1:i,:);

V=S*inv(A1’*A1);

mu=zeros(i,1);

Sigma=S*eye(i);

v=mvnrnd(mu,Sigma,1);

y=A1*x+v’;
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clearvars v

xhat=A1\y;

for m=1:SX

R=zeros(1,SX);

R(m)=1;

J=R;

r=R*xhat-q;

W=r’*inv(J*V*J’)*r;

if W>c

if rem(m,2)==0

E1=E1+1;

end

else if W<c

if rem(m,2)==1

E2=E2+1;

end

end

end

end

j=j+1;

end

Type1Error(n)=E1/(10000*SX/2);

Type2Error(n)=E2/(10000*SX/2);

n=n+1;

end

i=101:150;

Type1Error

Type2Error

plot(i,Type2Error); ylabel(’Type II Error’); xlabel(’Sample size’);

title(’Type II error when varying a sample size’);

% Wald test for AR model

%GENAR(n, p, N, d) generates order-p AR model sparse parameter Ai, i = 1,

%2, ..., p, with density d and simulates N data vectors from the generated

%model.

%Initial p data vectors are randomly generated and the data is corrupted by

%noise of variance varn.

%Assume that all the model parameters Ai, i = 1, 2, ..., p, share the same

%sparsity pattern.

function [A,TrueModel,Model] = ARWaldTest(n, p, N, d, varn,alpha)

Y = zeros(n, N-p);

A = zeros(n, n, p);

H = zeros(n*p, N-p);

%create sparsity pattern with nonzero diagonal elements

sppat = sprandn(n, n, d) | speye(n);

sdA = sqrt(0.01); %variance of normally distributed parameter

%generate parameters

for i = 1:p

A(:, :, i) = sdA*sprandn(sppat);

end

%check model stability

comp = [speye(n*(p-1)), sparse(n*(p-1), n)]; %complementary
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ITER = 0;

while (abs(eigs([A(:, :); comp], 1)) >= 1) && (ITER<1000)

for i = 1:p

A(:, :, i) = sdA*sprandn(sppat);

end

ITER = ITER + 1;

end

if ITER == 1000

fprintf(’ERROR\n’)

return

end

%generate data

H(:, 1) = randn(n*p, 1); %initialize p data vectors

sdn = sqrt(varn);

for j = 2:(N-p)

ynext = A(:, :)*H(:, j-1) + sdn.*randn(n, 1);

H(:, j) = [ynext; H(1:n*(p-1), j-1)];

end

Y = [H(1:n, 2:(N-p)), ynext];

%--- compute Sigmahat ---;

Sigma=0;

Ahat=Y*H’/(H*H’);

for t=1:N-p

Sigma=Sigma+(Y(:,t)-Ahat*H(:,t))*(Y(:,t)-Ahat*H(:,t))’;

end

Sigmahat=Sigma/(N-p);

%--- Generate new parameter for Wald test ---;

y=zeros(n,1,N);

for i=1:N

if i<p+1

y(:,:,i)=H(n*(p-1)+1:n*p,i);

elseif i>=p+1

y(:,:,i)=Y(:,i-p);

end

end

yy=[];

for i=1:N

yy=[yy y(:,:,N-i+1)];

end

M=zeros(n,n*n*p,N-p);

for i=p+1:N

yyy=[];

for j=1:n

yyy=[yyy yy(j,N-i+2:N-i+1+p)];

end

for k=1:n

M(k,:,i-p)=[zeros(1,(k-1)*n*p) yyy zeros(1,n*n*p -n*p-(k-1)*n*p)];

end

end

sum=0;

for i=1:N-p

sum=sum+M(:,:,i)’*inv(Sigmahat)*M(:,:,i);

end

Avar=inv(sum);

Ahatt=zeros(n,n,p);

for i=1:p
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Ahatt(:,:,i)=Ahat(1:n,n*(i-1)+1:n*i);

end

theta=zeros(n*n*p,1);

num=1;

for i=1:n

for j=1:n

for k=1:p

theta(num)=Ahatt(i,j,k);

num=num+1;

end

end

end

%--- Wald test ---;

c=chi2inv(1-alpha,p)

model=zeros(1,n*n);

for i=1:n*n

D=[zeros(p,p*(i-1)) eye(p) zeros(p,n*n*p-p*(i-1)-p)];

r=D*theta;

W=r’/(D*Avar*D’)*r;

if W>c

model(i)=1;

else model(i)=0;

end

end

Model=zeros(n,n);

for i=1:n

Model(i,:)=model(n*(i-1)+1:n*i);

end

TrueModel=A(:,:,1);

for i=1:n

for j=1:n

if TrueModel(i,j)~=0

TrueModel(i,j)=1;

end

end

end
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