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1 Introduction

Thailand usually suffers from flood condition during rainy season. The most
recent severe flood occurred in 2011 due to unorganized water management and
unpredictable nature of rain. It is estimated by the World Bank that it caused
more than 45.7 billion USD [1]. Since flood significantly affects economy and
life of people in Thailand, the prediction of Chao Praya Rivers water level which
consists of Ping, Wang, Yom and Nan rivers would warn the control station to
handle the water situation carefully.



ahusid
auys

Uscunsaoysn
Unusad
g
npmu A
aynsusans \
alne o

Figure 1: Thailand river map. Courtesy of http://geothai.net
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Since the water level of each river is related to its water flow rate, then it is
possible to analyse the water level by considering the flow rate instead. A plot
of flow rate (in m?/s) in each year is called a hydrograph. The maximum point
of flow rate in hydrograph is called the flood peak.
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Figure 2: Hydrograph of Chao Phraya river. Courtesy of Thai royal irrigation
department http://www.rid.go.th

Figure 2 shows the hydrograph of Chao Phraya river which is measured at
C.2 (control station 2) in Nakhon Sawan province in 1995, 2002, 2008, 2010, and
2011. The y-axis shows daily flow rate of Chao Phraya river in m3/s unit. The
x-axis is the reference time which starts from the April that is the start of water
calender year. Then for Thailand, the flood peaks of each hydrograph that is the



maximum flow over time in each year are always in the middle zone of the graph.

Before analysing flood peak data, we need to choose a distribution that fits
well with the data. From [2], a class of 2-parameter models that means the class
of models which each model has two parameters are considered before others
because they are easier to fit the data with model. There are several models
that were generally used to model the problems in hydrology such as Normal,
Log normal (2-parameter), Exponential, log Pearson type III, and generalized
logistic.

Gumbel distribution which is a type of extreme value distribution, has been
chosen to be a model in this problem since it is easy to compute the parameters
needed in the model and also well fitted with the sample data which are flood
peak value of a river. The CDF of Gumbel distribution is

F(x) = e~ P 555

(1)

for x greater than zero and reduced variable of Gumbel distribution is defined
as

y=TT1 g log(F(a))

where p and «, which are two parameters of Gumbel distribution, are positive
value. From the equation (1), the value of F(z) lies between 0 and 1, then
possible value of log(F(x)) is less than 0. Therefore, value of y could be all
possible value in the real line. If x is less than g, then y is positive. In the same
way, v is negative for the opposite case.

The plot of flood peak and reduced variable for each river is fitted well with
Gumbel distribution.

Since correlation can determine the dependency between two rivers and the
value is easy to compute, the correlation is examined to show basic relationship
between two rivers. The correlation is calculated from the flood peaks of years
1972-1974 and 1976-2010 (38 samples). We denote py, p1, p2, 3, andpy are an-
nual flood peaks of Chao Phraya, Ping, Wang, Yom and Nan river respectively.

Figure 3 shows the correlation coefficient between two flood peaks of two
rivers that consists of ten combinations. It is found that the correlation between
Ping River and Wang River is the highest value of 0.725, while the correlation of
Wang-Nan river and the correlation of Ping-Nan river are two the lowest values
of 0.368 and 0.362, respectively. When the influence of the flood peak of each
river to the flood peak of Chao Phraya river are being considered, the flood
peak of Wang river and Nan river have the strongest relation with flood peak
of Chao Phraya river.
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Figure 3: Scatter plot of flood peak data.

2 Problem Descriptions

This paper focuses on fitting Gumbel distribution to flood peak data of Chao
Phraya river which depends on four rivers Ping, Wang, Yom, and Nan. First,
the marginal probabilities of the river is obtained by fitting the old flood peak
data with the Gumbel distribution where the parameters are estimated by using
Maximum likelihood and Method of moments technique. Second, the relation-
ship between the Chao Phraya river and others is investigated by considering
the return period of bivariate Gumbel distribution. Third, multivariate Gumble
distribution is being considered since it can describe the joint probability den-
sity function of flood peaks of all five rivers. Although the multivariate Gumbel
distribution is expected to provide better information about the rivers, the for-
mulation is too complicated (see Appendix 5.4). So this paper will focus solely
on univariate and bivariate Gumbel distribution.

3 Parameter estimation of marginal Gumbel pdf

3.1 Method of moment estimation

In this subsection, method of moment estimator (MM) is used to estimate pa-
rameters u and « of Gumbel probability density function. (see the detail in
the appendix 5.1) First, deriving first and second (variance) moment of Gumbel
distribution. Let Y be a Gumbel random variable with cdf and pdf as follows:

F(y) = exp(—exp(-y)),



f(y) = exp(—y — exp(—y)).

The moment generating function of Y is

oo
m(t) = E[e’Y] = / eV exp(—e Y)e Vdy.
— 00
The substitution x = e™Y,dx = —e " Ygive

m(t) = /000 v e " dr =T(1—1), t€(—o0,1)

where I'(1 — t) is Gamma function defined as I'(z) = fooo u* le~du. And recall
that v = —I"(1) is defined as

H

n—00 k

v = lim (~log(n) + Y _ 1) ~ 0.57722
k=1

(see [5]) and 7 iscalled the Euler’s constant. It is obtained from moment gener-
ating function that

and )
E[Y?] =T"(1) =% + —
(see [6])
Therefore, )
Var(Y) = E[Y2] — E[Y]? = %

If we define X = aY + pu, then

Var(X) =

6
Then the parameters which are estimated with method of moments are

fi =2 —ay (2)

V6S
o= 3)
0
where Z is the sample mean and S is the sample standard deviation. Then the
parameters u and « for each river are computed by solving two linear equations.

The parameters obtained are shown in Table 1.



3.2 Maximum likelihood estimation

In this subsection, We use maximum likelihood estimator(ML) to estimate pa-
rameters g and a of Gumbel probability density function. From probability
density function of Gumbel distribution,

fz|p, ) = le(_@)e(_ exp(—51))

If x1,x2,...,xn are iid Gumbel, then the likelihood function for given y and «
is

N
1 ~ iz _@imw
f(@1,m2,. .., zN|p, @) 7NH L) o (o (- ))

To maximize f, it is convenient to consider the log-likelihood function

_ L 7NI1‘*N7N (i —p)
Ly, o) =log(f(r1,x2,..., N8, a)) = —Nlog(a) o Zexp — )

To find estimated parameters which is the maximizer of the log-likelihood func-
tion, MATLAB command ’fminunc’ is used to solve an unconstrained nonlinear
optimization that is

(fi, &) = argmax L(p, o).

Since the estimated parameters must maximize the log-likelihood function, func-

tion
(=)

is used as input function for ‘fminunc’. After trying different starting points
including the result that was calculated from MM method, the estimated pa-
rameters p and « are obtained and are shown in Table 1.

f = Nlog(a

3.3 Estimation results

The parameters p and o which obtained from MM and ML estimation are shown
in Table 1.(see Listing 1)

River ML method MM method
I a it &
Ping (p1) 319.93 | 125.21 | 323.94 | 110.37
Wang (p3) 421.63 222 420.65 | 236.77
Yom (p3) 682.12 | 445.64 | 642.26 | 553.38
Nan (p4) 998.31 | 444.1 | 1004.6 | 442.18
Chao Phraya (py) | 1996.5 | 829.71 | 1989.3 | 899.71

Table 1: Estimated Gumbel distribution parameters from MM and ML method.



Method | Ping (p1) | Wang (p2) | Yom (p3) | Nan (ps) | Chao Phraya (pn)
MM -594.40 -332.12 -457.38 | -1,030.49 -1,420.87
ML -592.49 -325.39 -433.55 -964.89 -1,293.98

Table 2: Log-likelihood value evaluated using parameters from MM and ML
estimation.

The parameters derived from method of moments and maximum likelihood
are fitted using method in [4](p.92) and compared with scatter plot of data us-
ing Gringorten plotting position.

Gringorten plotting position (using non-exceedance Probability which is the
probability that x is less than some value, P(X < z)) is computed by k** ranked
sorting for N data samples from smallest to largest. Then non-exceedance
probability is

k—0.44
- N+0.12

Reduced variable are acquired by y = — log(— log(P)).

k=1,2,...,N.

Figure 4 displays plots of reduced variable compare to Gumbel distribution
with parameters from MM and ML, the Gumbel plot of parameters that derived
from method of moments is closer to the linear least-squares model (polynomial
of order 1) of data than Gumbel plot of parameters from maximum likelihood
estimation.

4 Parameters estimation of bivariate Gumbel pdf

4.1 Maximum likelihood estimation

In this section, bivariate Gumbel distribution will be considered and its param-
eters will be estimated by using ML estimation. If X = (X3, Xs,..., Xy) and
Y = (Y¥1,Y5,...,Y3) are two vectors of i.i.d. Gumbel, then the pdf of bivariate
gumbel distribution (see Appendix 5.3) is

N
1 e,
f(X7Y|Mw7/j/yaaw7ay79) = ﬁHF(x’Hyl)e sz
O Oéy =1
2(x; —pa) 2(yi—my)
e Qg +e ay 6261‘ eQCi
1-4 + 20 6% ——
d d; d;

(4)

where 6 is the parameter that explains the relation between X and Y that have
the value between 0 and 1. Then the log-likelihood function is
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Figure 4: Plot of reduced variable compared to Gumbel distribution with pa-
rameters from MM and ML estimation.(see Listing 2)



E(,uxnuZhaaf; Oéy, 0) = IOg f(X7Y|.ur7,UJya O‘xa aya 0)

N N
= —Nlog ooy + ZlogF(mi,yi) - Zci
i=1

i=1
N 2@ —pa) 2(yi—my) 2e. 9.
e ag _|_ e ay e Ci e Ci
+ ) logc1—90 > +20— 02
where
log F'(z;) log F(y:)

log F(x;,y;) = log F(x;) + log F(y;) — 0

log F'(z;) + log F'(y;)

o N exp (—L_W) exp (—L*“”)
— exp (_ X Hac) +exp <_ Yi Ny) 10 o ay
O Qy

exp (—7‘%’01"1) + exp (_L/i(::ty)

The ML problem is

max  L(la, [y, Oz, y, 0)
Nz’ﬂy’az’ayae

with the constraints 0 < 6 < 1 ,then parameters which maximize the log-
likelihood function is computed by using MATLAB command ‘fmincon’. The
results are shown in Table 3.

4.2 Computation of parameter # from population product-
moment correlation coefficient

For another method to find parameter 6, we can compute parameter 6 of bi-
variate Gumbel distribution from the relationship between 6 and population
product-moment correlation coefficient p (see [4]) :

9:2[1—%5(77\/?)] for nggg. (5)

The parameters 6 that are estimated by using (5) are shown in Table 4.

4.3 Estimation results
Only the Gumbel parameter 6 is estimated

From the Table 3, notice that the parameter 6 of bivariate Gumbel distribution
between Ping river and Wang river is -, since its correlation coefficient is greater
than 2, so the formula (5) is not valid to use.



River

Chao Phraya (pn)

Ping (p1)

Wang (p2)

Yom (p3)

Nan (p4)

Chao Phraya (pn)

0.5393
0.4852

0.8255

0.6825
0.3566

0.8653
0.8564

Ping (p1)

0.5393
0.4852

1.0000

0.8393
0.8561

0.5667
0.5611

Wang (p2)

0.8255
1.0000

1.0000

0.8726
0.9099

0.5758
0.6049

Yom (ps)

0.6825
0.3566

0.8393
0.8561

0.8726
0.9099

0.7292
0.6367

Nan (p4)

0.8653
0.8564

0.5667
0.5611

0.5758
0.6049

0.7292
0.6367

Table 3: Bivariate Gumbel distribution parameters ¢ which are computed (see
Listing 3) from MLE and formula (5). (MLE\Formula)

Non-exceedance probability (value of joint CDF) of observed data can be

calculated by Gringorten plotting position similar to the one using in univariate

with the observed data are arranged in ascending order for two data sets. (see

[4]) _ _

Z:n=1 Z?:l nm; — 0.44 (6)
N +0.12

where N, is the number of occurences of the combinations of z; and y; and N
is total numbers of samples.

F(zi,y) = P(X <2;,Y <y;) =

We compute the non-exceedance proability P(X < z;,Y < y;) by the follow-
ing three methods: i) Gringorten plotting position as in equation (6), ii) F'(z;, y;)
when parameters fiz, tby, 0z, ty are estimated from marginal MLE and parame-
ter 0 is computes by the fomular (5) iii) F'(z;,y;) when parameter 6 is estimated
from bivariate MLE of one parameter (other parameters fi,, fty, oy, oy are re-
placed by the estimated value from marginal MLE. To compare non-exceedance
probability of the observed data with non-exceedance probability from the the-
ory with parameter 6 from formulation given in (5) and MLE. 2-Norm error has
been chosen to be a comparator of the parameter 6 from the method ii) and the
method iii). It was found that 2-norm error for each combination of two rivers
between two method are slightly different.

River

Chao Phraya (pn)

Ping (p1)

Wang (p2)

Yom (ps3)

Nan (p4)

Chao Phraya (pn)

0.8583
0.8689

1.2377
1.2025

0.8217
0.8928

1.1105
1.1125

Ping (p1)

0.8583
0.8689

1.1385

0.8252
0.8214

0.7050
0.7062

Wang (p2)

1.2377
1.2025

1.1385

0.9989
0.9905

0.8299
0.8232

Yom (ps)

0.8217
0.8928

0.8252
0.8214

0.9989
0.9905

0.7345
0.7577

Nan (p4)

1.1105
1.1125

0.7050
0.7062

0.8299
0.8232

0.7345
0.7577

Table 4: 2-Norm error of non-exceedance probability of observed and theory (¢
calculated (see Listing 4) from formula). (MLE\Formula)
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All Gumbel parameters are estimated by ML

Parameters was estimated by maximum the sum of log-likelihood function for
Chao Phraya river and other rivers. The results of ML estimation are shown
in Table 5. It is interesting that the parameters of Chao Phraya river are not
constant when estimating across different rivers that are clear from the values of
w1 and « are around 1800 and 700 which compare with ML estimation of marginal
probability, which p and « are about 2000 and 800 respectively. The parameters
of bivariate model are lesser than univariate model. Besides, the parameters of
Chao Phraya river are not same as in univariate model. Parameters of other
rivers are slightly different and 6 which are estimated from ML (all parameters
were estimated simultaneously) compare with 6 from formula are also different.

River HRiver QRiver HChaoPhraya QChaoPhraya 0
Ping (p1) | 289.07 | 141.65 1,791.44 698.49 0.2773
Wang (p2) | 403.59 | 193.53 1,807.88 733.72 0.8776
Yom (p3) | 716.58 | 498.84 1,748.89 618.80 0.4277
Nan (ps) | 939.91 | 334.89 1,794.46 701.58 0.6661

Table 5: ML estimated of Gumbel mixed models.(see Listing 5)

4.4 Return period analysis
ML method

When considering the return period of Chao Phraya river given others flood
peak, Figure 7b shows that when the given flood peak of Wang river is varied,
the return period of each given flood peak tends to be the most diverge com-
pared to other rivers which shows that the given flood peak of Wang river has
the biggest impact on Chao Phraya river. Figure 7d shows the return period of
Chao Phraya river given Nan’s flood peak. The graph is similar to figure 7b but
the return period of each given flood peak is less diverge compared to figure 7d.
Figure 7a shows that when the given flood peak of Ping river is varied. Even
though at its extreme (1 percent exceedance probability), the return period of
Chao Phraya river does not differ much from other given flood peaks. Since the
return period of Chao Phraya river given Ping river’s data does not differ much
when the given data are changed, it is considered that Chao Phraya’s flood peak
is less dependent of Ping’s flood peak. For figure 7c, it can be observed that
the graph differs somewhat between each flood peak hence slightly more impact
than Ping river

However, when comparing Figure 5 to Figure 7a,7b,7c,7d, it is discovered
that all conditional return periods (Figure 7a,7b,7c,7d) have higher return pe-
riods than the marginal return period of Chao Phraya river (Figure 5) at every
values of Chao Phraya river’s flood peak. When given a river flood peak, the
conditional probability is less than the marginal probability of Chao Phraya
river. Notice that when high magnitude flood peak (i.e. at 1 percent exceedance
probability or 100 years return period) occurs in either Ping, Wang, Yom, or
Nan, probability of Chao Phraya river flooding should be greater than when no
prior knowledge of previouly mentioned river is known.

In order to investigate the problem of results above, we consider marginal

11



CDF of Gumbel distribution
F(z) = e~ (=<5
and conditional CDF of Gumbel distribution

Flz|Y =y)= F(x)efe(erm)*l.

To campare the value of the marginal CDF and the conditional CDF when all

. . . —0(—L 4L )y~ .,
parameters of the function are identical, the term e (mer@m toerm) s to

be considered. Since m + logzlr(y) is negative, fﬁ(m + m)’l will

be positive. This leads to the value of ¢ mrm TrEre) to be greater than
1. Finally, it can be concluded that a conditional CDF of bivariate Gumbel
distribution is greater than the marginal CDF of univarite Gumbel distrition
provided that the parameters a,, oy, is, 1y used in the univariate CDF and in
the bivariate CDF are the same values.

At this point, we can not utilize the bivariate Gumbel model to predict the
relationship between Chao Phraya river and the others.

MM method

Figure 8 and Figure 10 show the marginal return period of Chao Phraya river
and the conditional return period of Chao Phraya river given others flood peak
computed using the parameters which is derived from method of moment re-
spectively. Figure 10a, 10b, 10c, and 10d suggest that the conditional return
period of Chao Phraya river depends on the peak flow of the other rivers, which
is in contrast to the result obtained in 4.4 (in 4.4 the return period of Chao
Phraya river seems to independent of the peak flow of Ping and Yom). As ex-
pected, the conditional return period of Chao Phraya river is higher than the
marginal return period.

12
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Figure 5: Marginal return period of Chao Phraya river by using ML estimate.
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Figure 7: Conditional return period by using ML estimate. (see Listing 6)
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Figure 9: Marginal return period of Ping, Wang, Yom, Nan river by using MM
estimate. (see Listing 6)
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(c) Given the peak of Yom river

Figure 10: Conditional return period by using the estimated parameters com-
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(b) Given the peak of Wang river
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(d) Given the peak of Nan river

puted from the formula 5 and MM method. (see Listing 6)
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5 Appendix

5.1 Principle of method of moments

(see [7]) Method of moments is a simple method of parameters estimation by
using population parameters. Let X be a random variable following some dis-
tribution. Then the kth moment of the distribution is defined as,

wr = E[X*].

For example, p1 = E[X] and pp = Var(X) + (E[z])%
The sample moments of observations X1, X, ..., X,, independent and iden-
tically distributed from some distribution are defined as,

1 n
ﬂk:E;Xik'

For example, i; = X is the familiar sample mean and jiy = 6% + X2 where 6 is
the standard deviation of the sample.

The method of moments estimator simply equates the moments of the dis-
tribution with the sample moments (ur = fir) and solves for the unknown
parameters. Note that this implies the distribution must have finite moments.

For example, if X, X5, ..., X, are i.i.d. a Poisson distribution with proability
mass function,

Ate A
—

P(X=x)= ,r=20,1,2,...

where ) is an unknown parameter. Check that E[X] = A. So, uy = E[X] = A =
X = [i1. Hence, the method of moments estimator of A is the sample mean.

5.2 Principle of maximum likelihood estimation

Suppose 1, T2, ...,y are i.i.d. observation with joint probability density func-
tion

flx1, 2o, ...;zn|0) = f(21]|0) X f(a2]0) X -+ x f(xn]|6)

called the likelihood function, where 6 is a vector of unknown parameters 61, 6s, ...

for pdf of a family of x;. It is often more convenient to work with the logarithm
of likelihood function, called the log-likelihood function:

N
L(0) = log(f(x1, 2, ..., xn[0) = > log(f(x:]0))
i=1

The method of maximum likelihood estimates 6 by finding a value of 6 that
maximizes the log-likelihood function £(6)

5.3 Bivariate Gumbel distribution

Bivariate Gumbel distribution called Gumbel mixed model which its marginal
pdf is Gumbel distribution was used by [4] to create joint pdf of Flood peaks-
Volume peak and Flood duration-Volume. The general form of cdf is:

F(a.y) = F(x)F(y) exp {—e ekl } SCEYESY
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0 is the parameter that describes the relation between two random variables.
The formulation to calculate 6 is given in [4] which is

022[1—005(7&)} for nggg

where p is correlation coefficient of the two random variables.
probability density function of bivariate Gumbel distribution is

2@ —pg) 20—ny)

0?F (z,y) 1 € s e oy p2¢ €2
— ’ — F —C 1 _ 0 207 0 e
f(xay) axay O(Iay (CC,y)G d2 + ds + d4
. (7)
where ¢ = %+%’ d=¢ o 4 ¢ oy .

5.4 Multivariate Gumbel distribution

Multivariate Gumbel distribution is obtain from transforming multivariate log-
gamma distribution. [3] Multivariate log-gamma distribution

o0

v v+n) - | \v+n Yj
fr(r, .., yp) =4 Z I(‘( (1-6)" H v+n ] ) + ><exp(—>\_]5)7 y; >0
j=1 j

n=

Using the transformation,

4 (/o)
’ 223
Gives
S (1= ) T, A : o
Fese o) =0 2 [C(o+n) Tl P “’*”);‘“Z’ ;X Plpiz) g
where z; € IR

5.5 Detail of Ping river and Chao Phraya river

In this section, we plot the flow peak of Ping, Wang, Yom, Nan rivers. For each
river, we sort the peak values ascendingly and plot the peak of Chao Phraya river
from the corresponding year. This is to see the result of cause and effect from
each river to Chao Phraya similar to the scatter plots to see the correlations.
Figure 11 suggest that there are no clear distinct effect from the peak magnitude
of the four rivers to Chao Phraya.
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Figure 11: Bar plot of scaled flow peak values of each of Ping, Wang, Yom, Nan
rivers and Chao Phraya river. (see Listing 7)

5.6 Code

Univar_est.m is a code to compute the value of parameters for univariate distri-
bution by MM and MLin Section 3.3. The sample correlation of all rivers have
been computed in this code and represent the correlation as shown in Figure 3.

load (’Peak_data.mat’)

3 % Create necessary data for MM and Ml estimation

% mean

avg = [mean(pn);mean(pl);mean(p2);mean(p3);mean(p4)];
%std deviation

s = [std(pn);std(pl);std(p2);std(p3);std(p4)];

% alpha from MM

amm = sqrt (6)*s/pi;

% mu from MM

umm = avg — 0.5772xa.mm;

% number of sample data

s n = [length(pn),length(pl),length(p2),length(p3),length(p4)];
parmm = [umm’;amm’];

% Reformat sample data for convenience in coding
P = {pn,pl,p2,p3,pd};

par-ml = [];

% ML estimation of parameters using fminunc to find local minimum
for i=1:5
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end

funl = @Q(x) n(i)xlog(x(2)) + sum((P{i}—x(1))/x(2)) + sum(exp(—(
P{i}—x(1))/x(2)));

parl = fminunc(funl ,parrmm(:,i));

par_ml = [par_ml,parl];

% Display parameters from MM and ML
par-mm = [umm’;amm’ |

par-

ml = par_ml

% Calculate log likelihood wvalues
likelihood-mm = [];

like
for

lihood_ml = [];

i=1:5

likelihood-mm=[likelihood-mm ;n(i)x*log (par-mm (2)) + sum ((P{i}—
parmm (1)) /par-mm(2)) + sum(exp(—(P{i}—parmm(1))/parmm(2)))];
likelihood-ml=[likelihood-ml;n(i)*log(par-ml(2)) + sum((P{i}—
par_ml(1))/par_ml(2)) + sum(exp(=(P{i}-par.ml(1))/parml(2)))];

7 end
% Display log likelihood values
likelihood-mm = likelihood_mm ’
likelihood-ml = likelihood_-ml"’

% Calculate sample correlation of all combination
correlation = corr (p-mat)
% Display scatter plot of each pairs

figu

; k=1;

for

5 end

save

re

i= 1:5
for j = 1:5
subplot (5,5,k)
scatter (p-mat (:,i),p-mat(:,j),’x")
strl = num2str(i—1);
str2 = num2str(j—1);

if 1 =18&& j==
strl = 'N’;
str2 = 'N’;
elseif j==1
str2 = 'N’;
elseif i==1
strl = 'N’;
end

str = sprintf(’Corr (P%s,P %s) = %1.3f ,strl  str2,
correlation (i,j));

title (str)

k = k+1;
end

7 clear i j k funl parl f hesl avg s a.m u.m n str strl str2 amm

umm
(’Peak_Par_data.mat’)

Listing 1: Univar_est.m

Figure 4 in Section 3.3 was generated by Univar_reduced.m.

load

(’Peak_Par_data.mat’);

% Create array that keep the number of samples for each rivers

n =

[length (pn) ,length (pl),length(p2),length (p3),length(p4)];

% Sort data in ascend order
pl = sort(pl, 'ascend’);
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p2 = sort (p2, 'ascend’);
p3 = sort (p3, 'ascend’);
p4 = sort(p4, 'ascend’);
pn = sort (pn, ’ascend ’);

% Create cell for convenience of coding

P={pn,pl,p2,p3,p4};
% Create new variables
Y_g = cell(5,1);

5 Ymm = cell (5,1);

Y.ml = cell(5,1);
X_ls = cell(5,1);
par_ls_gringorten =zeros(2,5);

% Calaculate reduced variable value

for i = 1:5
% Observed data using Gringorten method
v = —log(~log ((((Lin(i))—0.44) /(n(i)+0.12))));
% Reduced var using parameters form MM
yamm = (P{i}—parmm(1l,i))/parmm(2,i);
% Reduced var using parameters form ML
y-ml = (P{i}—par-ml(1,i))/par-ml(2,i);
% Least square to find parameters from Gringorten method
A = ones(n(i),2);
A(:,2) = v;
par_ls_gringorten (:,i) = A\P{i};
% x_-1s is flow peak compute from par_ls_gringorten. computed
for purpose
% of plotting.
x_ls = (y+*par_ls_gringorten (2,i))+par_ls_gringorten (1,i);
Y-g{i} =y’
Yom{i} = ymm;
Yoml{i} = y-ml;
X Is{i} = x_1s;

) end

% Plot reduced variable vs flow peak

for i = 1:5
figure;
scatter (Y_g{i},P{i}, . ");
hold on
plot (Y_g{i},X-Is{i}, r");
hold on
plot (Yamm{i} ,P{i}, k*);
hold on
plot (Y_ml{i} ,P{i}, g");
legend (’Gringorton’, ’LinFit Gringorton’, MM’ ,’ML’,’Location’,’
northwest ) ;
xlabel (’Reduced Variable’, FontSize’,15);
ylabel (’Flow (m"3/s)’,’FontSize’ ,15);
str = sprintf(’p-%i’,1);

if i =25
str = 'p_-N’;
end
title (str, ’FontSize’ ,15);

end
clear str y ymm y-ml A x_ls i

Listing 2: Univar_reduced.m

The parameters of Gumbel mixed model in Section 4.3 was obtained from
Bivar_est.m. The concern of this code is only to provide € from formula pro-
vided in [4] and from ML estimation which only 6 has been determined not all
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parameters.

load (’Peak_Par_data.mat’)

% Create new variables
theta_formulation = zeros(5);
theta-ml = zeros (5);

Fx = zeros(38,5);

c =
d =
std

7 InFx = zeros (38,5);

cell (5);
cell (5);
= zeros (38,5);

exp_std = zeros(38,5);

for

end

i=1:5

% std = (x—mu)/alpha

std(:,1i) = (p-mat(:,i)—par_ml(1,i))/par-ml(2,1);
% exp_std = exp(std)

exp-std (:,1) = exp(std(:,1));

% InFx is log of non—exceedance prob. InFx = —exp(—std)
InFx (:,1) = —exp(—std (:,1));

% Fx is non—exceedance prob. Fx = exp(—exp(—))

Fx(:,i) = exp(InFx(:,1));

for j=1:i

% Sample correlation must less than or equal to 2/3 to make
the
% formulation to be valid.
if correlation(i,j) <= 2/3
theta_formulation (i,j) = 2%(1—cos(pi*sqrt(correlation (i,
i)/6)));
theta_formulation(j,i) = theta_formulation (i,j);
end
% Calculate ¢, d for convenience of coding
% ¢ = (x—mu=x)/alpha_-x + (y—mu.y)/alpha_y
c{i,j}= std(:,i)+std(:,j);
% d = exp{(x—mux)/alpha_x} + exp{(y—mu.y)/alpha_y}
d{i,j}= exp-std (:,i)+exp-std (:,j);

% Find theta from ML
if i7=j
% A,B,C are constant terms, pre—calculated for
convenience of
% coding
A= (exp(24std (:,1) )exp(24std (i ,3))) ./ (d{i,j}."2);
B= exp(2¢c{i,i})./(d{i,j}."3);
= exp(2%c{i.i}) /(d{i,j}."4);
% Minus of Log—likelihood function
func = Q(x) —(sum(—xx*(1./((1./InFx(:,1))+(1./InFx(:,]))
))+log(1— x*A + 2xxxB 4+ (x72)xC)));
% Find the minimum point. Choose starting point from

theta
% calculated from formula .
t = fmincon (func,theta_formulation(i,j)
01 10,0,1) ;
theta.ml(i,j) = t;
theta.ml(j,i) = t;
end
end

clear i j func AB C ¢ d t std exp-std
save(’bivar.mat’)

Listing 3: Bivar_est.m
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Joint non-exceedance probability of observed data calculated from Gringorten
method and theoretical non-exceedance probability of Gumbel mixed model us-
ing parameters (p, ) from ML estimation and 6 from both formula and ML
estimation in Section 4.3.

% N is number of samples for each rivers
N=length (p-mat) ;

3 % Create new variables

% Occurence is matrix of the number of occurences of X<=x, Y<=y
Occurrence=cell (5);

; % Non—exceedance prob from Gringorten, Formulation, ML

jnt_nonexc_Gri=cell (5);
jnt_nonexc_For=cell (5);
jnt_nonexc_ML=cell (5);

for i=1:5
for j=1:i
Occurrence{i, j}=zeros(N,1);
% Count the number of occurences
for k=1:N
x=(p-mat (:,1) <= p-mat(k,i));
y=(p-mat (:,j) <= p-mat(k,j));
Occurrence{i,j}(k) = sum(x&y);
end
% Calculate non—exceedance prob
jnt_nonexc_Gri{i,j}= (Occurrence{i,j}—0.44)./(N+0.12);
jnt_nonexc-For{i,j}=Fx(:,1).*Fx(:,]).*xexp(theta_formulation
(i,§) *(1./((1./InFx(:,1))+(1./inFx (:,3)))));
jnt_nonexc.ML{i,j} =Fx(:,i).*Fx(:,j).*exp(theta_ml(i,j)
(1.7 ((1./InFx (5, 1)) +(1./InFx (:1§))))) 3
end
end

% Calculate error compare to observed data by 2—norm and percentage
Obse_Form_percent=zeros (5) ;
Obse_Form_norm=zeros (5) ;
Obse_ML_percent=zeros (5) ;
Obse_ML_norm=zeros (5) ;
for i=1:5
for j=1:i
Obse_Form_percent (i,j)=mean((jnt_nonexc_Gri{i,j}—jnt_nonexc_For{
i,j})./jnt_nonexc_Gri{i,j});
Obse_Form_norm (i, j) = norm(jnt-nonexc-Gri{i,j}—jnt_-nonexc_For{i,
i) /N;
Obse_ML _percent (i,j)= mean((jnt-nonexc_Gri{i, j}—jnt_-nonexc_-ML{i,
j})./int_nonexc_-Gri{i,j});
Obse_ML_norm (i, j) = norm(jnt_-nonexc_Gri{i,j}—jnt_-nonexc-ML{i,j
1) /N
end
end
clear i j k x y

Listing 4: jnt_prob.m
ML estimation of all parameters in Gumbel mixed model was calculated by
ML mixed.m in Section 4.3.

load (’bivar.mat’)
% Create cell to record parameter from estimation

parameter = cell (5);
for i=1:5
for j=1:i
if i7=j
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5 end

% Starting point of optimization choose from marginal
ml and

% theta from formulation

start = [par-ml(:,i);par_-ml(:,j);theta_formulation(i,j)
1

% Minus of log likelihood function

funl = Q(x) —(sum(—log(x(2)x*x(4)) .
—exp(—(p-mat (:,i)—x /x(2)) -
—exp(—(p-mat (:,)—x /x(4)) -
—x(5) * (1. p-mat (:,1)=x(1))

/x(2))))+(1./(—exp(—=(p-mat (:,j)—x(3))/x(4))
—((p-mat (:,1)=x(1)) ) —((p-mat (:,j)
—x(3))/x(4))

+log (1 — x(5) *( (exp(2*(p-mat(:,i)—x(1))
-/x(2))+exp (2% (p-mat (:,j)—x(3))./x(4))) .

/((eXP((p mat (:,1)=x(1))./x(2))+exp ((
p-mat (:,j)=x(3))./x(4)))."2)).

+2*x(5)*((exp(2*((p_mat(:,i)—x(l))./x
(2) + (p-mat (:,j)—x(3))./x(4)))) -

/((eXP((P mat (:,1)=x(1))./x(2))+exp ((
p-mat (:,j)=x(3))./x(4)))."3)) .

+(x(5) “2) #((exp (2% ((p-mat (¢, 1)=x(1)) ./x
(2) + (p-mat(:,j)—x(3))./x(4))

<
(
/(1. /(—6X1)>
/

)) -
/((e xp (p-mat (:,1)=x(1))./x(2))+exp ((
p-mat (:,j)—x(3))./x(4)))."4)))));
temp = fmincon (funl,start ,[],[],[],[],[0,0,0,0,0],[inf,
inf ,inf ,inf ;1]);
parameter{i,j} = temp;
end

end

clear i j funl temp start

save

Figure 5, 6, 7, 8,9, and 10 in Section 11 were generated by Return_period_bivar.m.

load

(’bivar-ml.mat )

Listing 5: ML_mixed.m

(’bivar-ml.mat’)

F=cell (10,1);
cF=cell (4);

5 % Create matrix of peak flow

s qn = (10:10:8000) ’;

% Calculate non—exceedance prob

s F{1} = exp(—exp(—(gn—par_-ml(1,1))/par-ml(2,1)));

% Calculate marginal return period
T_chao = 1./(1-F{1});

figu

re

% Plot semilog graph of flow vs return period
semilogy (qn, T_chao)

ylim

5 xlim
5 grid

titl

([0,1000])

([0,8000])

on

e ("Return period of p.N’,’FontSize’,13)

xlabel ('Flow (m"3/s)’,’FontSize’,13)
ylabel (’Return peroid (years)’,’FontSize’,13)

% Create matrix of peak flow

q =
figu
for

(10:10:4000) ’

re

i=1:4

% Calculate non—exceedance prob
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F{i+1} = exp(—exp(—(q-par-ml(1,i+1))/parml(2,i+1)));

% Calculate marginal return period

T = 1./(1-F{i+1});

% Plot semilog graph of flow vs return period

subplot (2,2,1)

semilogy (q,T)

ylim ([0,1000])

str = sprintf(’Return period of p-%i’,i);

title (str, FontSize’ ,13)

xlabel (’Flow (m"3/s)’,’FontSize’,13)

ylabel (’Return peroid (years)’,’FontSize’,13)

grid

ax=gca;

set (ax, 'LineWidth’,.05, ’XGrid’,’on’,’YGrid’, ’on’);
end

C:{’b7 ’ 7r” 7g7 bl 7k7};
Fx_bivar=cell (4,1);
Fy_bivar=cell (4,1);
InFx_bivar=cell (4,1);

; InFy_bivar=cell (4,1);
7 % Each row of Confidence refer to index of flow peak of each river

(Ping,
% Wang, Yom, Nan) which have exceedance prob 20%, 10%, 5%, 1%
respectively
Confidence
=[50,61,71,94;69,84,98,130;146,184,220,301;144,169,193,2438];
for i=1:4
figure
% Calculate marginal non—exceedance prob & log of non—
exceedance prob
% using parameters from ML
Fx_bivar{i}=exp(—exp(—(gqn—parameter{i+1,1}(3))/parameter{i
+1,13(4))) ;
Fy_bivar{i}=exp(—exp(—(gqn—parameter{i+1,1}(1))/parameter{i
+1,11(2))) 5
InFx_bivar{i}=log (Fx_bivar{i});
InFy_bivar{i}=log(Fy-bivar{i});
for j=1:4
% Calculate conditional non—exceedance prob & conditional
return
% period
cF{j,i} = Fx_bivar{i}(1:600) .xexp(—parameter{i+1,1}(5)
*(1./((1./1nFx_bivar{i}(1:600))+(1/InFy_bivar{i}(Confidence(i, ]
)))))) ;5
¢cT = 1./(1—cF{j,1}(1:600));
semilogy (qn(1:600) ,cT, "color’ ,C{j })
hold on
end
% Plot marginal of Chao Phraya river
semilogy (qn(1:600) ,T_chao (1:600) ,—m’)
str = sprintf(’Return period of p.N given p.-%i’,i);
ylim ([0,100])
title (str, ’FontSize’ ,17)
legl=sprintf(’20%% (%i0)’,Confidence(i,1));
leg2=sprintf (’10%% (%i0)’,Confidence (i,2));
leg3=sprintf ('5%% (%i0)’,Confidence(i,3));
legd=sprintf ('1%% (%i0)’,Confidence(i,4));
legend (legl ,leg2 ,leg3 ,legd , ’Marginal ’, ’Location’, ’northwest )
ch = get(gcf, ’children’)
set (ch(1l), ’'FontSize’,15)
xlabel ("Flow (m"3/s)’,’FontSize’ ,17)
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ylabel (’Return peroid (years)’,’FontSize’ ,17)

grid

ax=gca ;

set (ax, 'LineWidth’ ,.01, 'XGrid’,’on’,’YGrid’, ’on’);
end

% Calculate marginal return period using parameter from MM
F{6} = exp(—exp(—(qn-parmm(1,1))/parmm(2,1)));
T_chao = 1./(1-F{6});

figure

% Plot semilog graph of flow vs return period
semilogy (qn, T_chao)

ylim ([0,1000])

xlim ([0,8000])

grid on

title (’Return period of p.-N’,’FontSize’,13)
xlabel ('Flow (m"3/s)’,’FontSize’,13)

ylabel (’Return peroid (years)’,’FontSize’ ,13)

figure
for i=1:4
% Calculate non—exceedance prob
F{i+6} = exp(—exp(—(g—par-mm(1,i+1))/parrmm(2,i+1)));
% Calculate marginal return period
T=1./(1-F{i+6});
% Plot semilog graph of flow vs return period
subplot (2,2,1)
semilogy (q,T)
ylim ([0,1000])
str = sprintf(’Return period of p%i’,i);
title (str, ’FontSize’,13)
xlabel ("Flow (m"3/s)’,’FontSize’ ,13)
ylabel (’Return peroid (years)’,’FontSize’,13)
grid
ax=gca;
set (ax, 'LineWidth’ ,.05, 'XGrid’,’on’,’YGrid’, ’on’);
end
% Reusing old variable since we only consider the plot
for i=1:4
figure
% Calculate marginal non—exceedance prob & log of non—
exceedance prob

% using parameters from MM and formula
Fx_bivar{i}=exp(—exp(—(gqn—par-mm(1,1))/parrmm(2,1)));
Fy_bivar{i}=exp(—exp(—(gn—par-mm (1,i+1))/par-mm(2,i+1)));
InFx_bivar{i}=log (Fx_bivar{i});
InFy_bivar{i}=log(Fy_-bivar{i});
for j=1:4

% Calculate conditional non—exceedance prob & conditional
return

% period

cF{j,i} = Fx_bivar{i}(1:600) .xexp(—theta_formulation (i+1,1)
x(1./((1./1nFx_bivar{i}(1:600))+(1/InFy_bivar{i}(Confidence (i, j
)))))) 5
¢cT = 1./(1—cF{j,1}(1:600));
semilogy (qn(1:600) ,cT, "color’ ,C{j})
hold on
end
% Plot marginal of Chao Phraya river
semilogy (qn(1:600) ,T_chao (1:600) , —m’)
str = sprintf(’Return period of p-N given p-%i’,i);
ylim ([0,100])
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144
145
146
147
148
149
150

151

title (str, ’FontSize’ ,17)
legl=sprintf(’20%% (%i0)’,Confidence (i,1));
leg2=sprintf(’10%% (%i0)’,Confidence (i,2));
leg3=sprintf ('5%% (%i0) ,Confidence(i,3));
legd=sprintf ('1%% (%i0)’ ,Confidence(i,4));
legend (legl ,leg2 ,leg3 ,leg4 , ’Marginal ’, ’Location’, ’northwest )
ch = get(gcf, ' children’)
set (ch(1), ’'FontSize’,15)
xlabel ("Flow (m"3/s)’,’FontSize’ ,17)
ylabel (’Return peroid (years)’,’FontSize’,17)
grid
ax=gca;
set (ax, 'LineWidth’ ,.01, ’XGrid’,’on’,’YGrid’, ’on’);
end
clear legl leg2 leg3 legd4 ax str C i j

Listing 6: Return_period_bivar.m
Figure 77, 77, 7?7, and 7?7 in Section 4.3 were generated by

% Scaling factor is set to be 5000 for Chao Phraya and 1000 for

others
> scaling = [5000,1000];
5 p_-mat_scale = p_mat;
4+ % Scale data of Chao Phraya river
5 p-mat_scale(:,1) = p.mat(:,1)./scaling(1);
6 str = {’Ping’, Wang’, ’Yom’, 'Nan’ };
7 for i=1:4
8 % Sorting p_i data
9 p-mat_scale = sortrows(p-mat_scale ,i+1);
10 % Scale data of p_i river
1 p-mat_scale (:,i4+1) = p_-mat_scale(:,i+41)./scaling(2);
12 temp = [p-mat_scale (:,i+1),p-mat_scale(:,1)];
13 figure
14 b=bar (temp) ;
15 set (b(1),’ FaceColor’,’c’)
16 set (b(2), FaceColor’,’y’)
17 set (b, ’BarWidth’ ,1)

21

legend (strcat (str{i},’ (x1000) ), Chao Phraya (x5000)’, Location’
, ’northwest ) ;
ylabel (’Peak flow’,’FontSize’ ,17)
xlabel (’Year index’,’FontSize’ ,17)
end

Listing 7: bar_plot.m
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