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Abstract

Rain fall is conventionally collected by rain gauge on stations which is accurate but sparse. In
order to improve an interpolation of rainfall between stations,reainfall data predicted from satellite
is introduced. Both data set are merged by a linear estimator to interpolate a rainfall map.

1 Introduction

1.1 Overview and assumptions

By geodesic latitude and longitude coordinate, the rainfall map is equally divided into a flat rectangular,
longitudinally n fragments, latitudinally m fragments, called grid. Provided indices (i, j) originated at
top-left of the map, mathematically the grid (i, j) belongs to a Cartesian product of all possible grid:

I =
{

(i, j) | (i, j) ∈ {1, 2, 3 . . .m} × {1, 2, 3 . . . n}
}
.

Figure 1: Example of m× n grid

The following would propose the way to predict ŷij , a predicted rainfall corresponding to each (i, j)
grid. There are two sources of data used to predict ŷij . First from rain gauge xij in millimeter collected
from stations every time interval of δt. A number of rain gauge station N is less than mn. Second source
of data zij , predicted from the geodesic satellite, is available for all grid. Such data is predicted from
humidity and atmospheric data.

Two assumptions are proposed:
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1. Predicted data ŷij depends only on data from surrounding grid including itself. Mathematically,
surrounding grid of the (i, j) grid is indexed by:

Iij =
{

(i− 1), i, (i+ 1)
}
×
{

(j − 1), j, (j + 1)
}

=
{

(i− 1, j − 1), (i− 1, j), (i− 1, j + 1), (i, j − 1), (i, j), (i, j + 1),

(i+ 1, j − 1), (i+ 1, j), (i+ 1, j + 1)
}

Figure 2: Surrounding grids are displayed in yellow colors where the center is the (i, j) grid, the grid of
interest.

2. ŷij is a linear estimator. From 1, ŷij is a linear combination of xij and zij from surrounding grid.
Let Ig be the index set of grids having ground stations. In other words, ŷij can be expressed as:

ŷij =
∑

(k,l)∈Ig∩Iij

aij,nxkl + b
∑

(k,l)∈Iij

zkl, (1)

where aij,n and b are scalar parameters and n runs from 1 to M , where M is the cardinality of
Ig ∩ Iij . In other words, aij,n does not only depend on the grid location but also depends on ŷ
location intended to predict.

To illustrate the expression of ŷij , consider Figure 8, where the yellow grids contain rain guage stations.
As an example, suppose (2, 2) is the grid of our interest. Therefore,

ŷ22 = a22,1x13 + a22,2x32 + a22,3x33 + b(z11 + z12 + z13 + z21 + z22 + z23 + z31 + z32 + z33)

Figure 3: Example of grid system used to describe the interpolation of rainfall, ŷ.

1.2 Example of rainfall data along the year

As shown in Figure 4, the averaged values of satellite data in rainy season is higher than others. Figure
5 shows the difference of averaged value of rainfalls from ground station and from satellite measured at
the location where ground stations are available. The green color represents the magnitude of 0, where
we do not make a comparison since no stations available on those locations. We tend to see that in the
rainy season, the satellite measurement is significantly overestimated.
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Figure 4: The averaged value (over days in a season) of ground station rainfall and satellite rain fall in
each season. Left. Ground station data. Right. Satellite data. The plot in each row represents summer,
rainy, and winter seasons, from top to bottom, respectively. The color maps of each plot are adjusted to
be in the same scale.

Figure 5: The difference between rainfall data from station and from satellite. The x and y axes represent
the grid coordinates (i, j). Each row represents data from summer, rainy and winter seasons, from top
to bottom, respectively.

2 Estimation formulation

In this section, we present an estimation formulation of ŷ from one-day data. The extension of this
formulation to consider data throughout the year can be shown in a straightforward way, but is omitted
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as future work. Suppose that each yij and zij is available throughout the entire grid and they can be
written in vector as:

ŷ = (ŷ11, . . . , ŷm1, ŷ12, . . . , ŷm2, . . . , ŷ1n, . . . , ŷmn)

z = (z11, . . . , zm1, z12, . . . , zm2, . . . , z1n, . . . , zmn)

The variable x is obtained by stacking xij for only (i, j) ∈ Ig into a column vector. For example, if
3× 3 grid has ground station at Ig = {(2, 1), (2, 3)}, x will have two entries given by x = (x21, x23). An
illustration of vectorization process is provided in the appendix.

We can show that from (1), ŷ can be expressed as:

ŷ = Ax+ bQz, (2)

where A and b are weighting parameters to be estimated, and Q is a mapping matrix that selects elements
of z corresponding to the equation (1). We note that A contains aij,n parameters from (1) and it has
a zero structure depending on the ground station locations. To simplify the estimation formulation, we
propose a way to permute ŷ such that its components are grouped into the grids associated with locations
having ground stations and the grids associated with locations without ground stations. To this end,
define Qz = z̃ and a permutation matrix P such that P ŷ is arranged into

P ŷ =

[
ŷ1
ŷ2

]
where ŷ1 is a vector consisting ŷij for (i, j) ∈ Ig and ŷ2 contains ŷij for (i, j) /∈ Ig. Note that the length

of ŷ1 is the cardinality of Ig. This goes the same for P z̃ = (x̃1, x̃2) and PA , Ã =

[
A1

A2

]
.

The zero structure of A, denoted by the index set IA, and matrices P , Q can be computed beforehand
and it is explained in the appendix. After the permutation on ŷ, the zero structure of PA is changed,
and denoted by the index set IÃ. As a result, it follows that

P ŷ = PAx+ bP z̃ =

[
A1

A2

]
x+ b

[
z̃1
z̃2

]
=

[
ŷ1
ŷ2

]
To define an estimation formulation, we select choosing A and b in a least-squares sense. We intend

to fit the predicted rainfall ŷ to the values observed from the ground and satellite stations. A quadratic
loss, repesenting goodness of fit, is denoted by f and consists of two terms: ground station and satellite
fitting terms. The variables A, b would be chosen in a way that ŷ is close to ground station data when
available and close to satellite data when not. Furthermore, the satellite is assumed to be less accurate
so that it is reasonable to penalize the satellite term with γ. In other word, the parameter γ is a positive
number which trades off between the fitting error from station and satellite data. The cost objective can
be expressed as

f(A, b) = ‖ŷ1 − x‖22 + γ‖ŷ2 − z2‖22
= ‖A1x+ bz̃1 − x‖22 + γ‖A2x+ bz̃2 − z2‖22 (3)

Note that the zero structure of A is changed by the permutation. We propose to use the following
estimation formulation:

min
A1,A2,b

‖A1x+ bz̃1 − x‖22 + γ‖A2x+ bz̃2 − z2‖22

subject to aij = 0, ∀i, j /∈ Ig
aij ≥ 0, ∀(i, j)
b ≥ 0,

(4)

with variable A = (A1, A2) and its entries are aij , and the variable b ∈ R. The constraints aij ≥ 0 and
b ≥ 0 suggest that we consider only the nonnegative weighting in the interpolation.
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3 Result of rainfall prediction

3.1 Sample prediction result on 9 September 2012

A satellite data is in a grid starting at longitude 90 and latitude −15. An adjacent cell represents distance
of 0.25 degree. Locating corresponding satellite data, station has the same grid size of 0.25 degree and
overall dimension of 16 × 10. Vectors x, z are reshaped to grid form X,Z of the dimension 16 × 10 to
visualize the result.

As an example, the data on rainy day of 9 September 2012 is considered with γ = 0.5. From Figure
6 and Figure 7, grid matrix X and Z share the same tendency. A dark color represents a small value,
conversely a light color represent a large value. On the z axis of the following plot is rainfall magnitude
in centimeter. x, y axes are a grid belongs to latitude of 15.5 to 19.5, and longitude of 99.0 to 101.5.

Figure 6: Rainfall from ground station in form of grid matrix X. Original and weighted version are
shown on the left and right respectively.

Figure 7: Rainfall from satellite prediction in form of grid matrix Z. Original and weighted version are
shown on the left and right respectively.

In Figure 6 and 7, original rainfall data are on the left and the weighted version are on the right.
The plot shows that the data from x is preferred to z, as a consequence of higher degree of freedom. The
ground station data x would be less preferred by the optimization process when the model is extended
to be dynamic.

On the right side of Figure 7, an original rainfall data from satellite is weighted with b = 0.0407. If
ŷ is a result from equally weighted 9 surrounding grid of z, the value of parameter should be b ≈ 1

9 .
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3.2 Predicted Ŷ

The predicted ŷ is a combination of weighted x and z discussed in section 3.1. The vector ŷ are reshaped
back to the grid matrix Ŷ to visualize the result. In the Figure 8, Ŷ has a large fluctuation. From
Figure 6 and 7, ŷ use z as an background, which remain its value of 1/3. Then, the sharper fluctuation
is obtained from weighted x. A peak position of Ŷ are similar to those of X and Z.

Figure 8: Grid matrix Ŷ interpolated from x and z

3.3 Effect on varying penalty parameter

The same result of data on 9 September is evaluated with different γ. Using 50 value of γ from logarith-
mic space range from 10−3 to 103, the variation is portrayed in Figure 9.

The cost objective according to (3) is recalled into two parts as followed:

f1(A, b) = ‖A1x+ bz̃1 − x‖22, (5)

f2(A, b) = ‖A2x+ bz̃2 − z2‖22 (6)

The parameter γ is a penalty term multiplying to f2(A, b) . If gamma is large, f2(A, b) will be small.
It follows from Figure 9 that when one cost function is small the other cost function is large.

Figure 9: Plot of trade off curve between cost objective f1(A, b) and f2(A, b) when varying penalty
parameter γ.
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3.4 Examples of extreme cases

Within year, there are days when both source of data highly disagree. Two examples of prediction on
those extreme cases are provided below:

On October 1, the station grid has its maximum near 6 and has few spike. The satellite grid shows
different tendency and has range below 1.5, which is 4 times lower than those of station. With γ = 0.3,
Ŷ is predicted in a way that heavily based on x data and ignore z. It follows from Figure 12 and 10 that
X and Ŷ is approximately the same. As in Figure 11, the value of satellite grid is further suppressed to
be below 1.

Figure 10: Station grid with some spike Figure 11: The location of station

Figure 12: A predicted value of grid Ŷ

On February 1, the station measurement is all 0, shown in Figure 13. It follows from Figure 14 that
there are low but non-zero value for satellite data. The optimization yield very low value for b in order
of 10−8, which leads to approximately all 0 entries of predicted Ŷ .

Figure 13: Station grid with no rainfall Figure 14: Satellite grid is weighted to be close to 0
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Appendix

Programming code

The following m-file script yields and estimated value of y. The inputs are station and satellite data X

and ZExcess in grid form. The label Excess is a satellite grid matrix with additional entries extended
1 grid from its border. This is added due to the evaluation of

∑
zij at the border grid.

A matrix hasStation is a grid which has binary entries. The matrix hasStation has entry equal to 1
when there is a ground station at that grid and 0 otherwise. The matrix P in the report is implemented
through function forwardP which is simply row swapping according to the linear index of Ig. Conversely,
backwardP is an inverse version P. Note that PA is not a stacking of A1 and A2.

The zero structure of A is determined by getIndexA12Zero to be used in the constraint of the convex
optimization.

% Several differences in notation are

% Ig is a linear index

% s denotes spreading Z i.e. Qz

Ig = find(hasStation);

notIg = find(~hasStation);

% Row swapping

% label 1 indicates having station

% label 2 indicates no station

x = X(:);

[x1, x2] = forwardP(x, hasStation);

Z = cropZ(ZExcess);

Zs= cropZ(spreadGrid(ZExcess));

z = Z(:);

zs = Zs(:);

[z1, z2] = forwardP(z, hasStation);

[zs1, zs2] = forwardP(zs, hasStation);

nGr = length(Ig);

nSat = length(zs2);

% obtain zero structure of A

[indexA1Zero, indexA2Zero] = getIndexA12Zero(Ig, hasStation, rowGrid, colGrid);

cvx_begin

variable A1(nGr, nGr);

variable A2(nSat, nGr);

variable b;

minimize(norm(A1*x1 + b*zs1 - x1, 2) + gamma*norm(A2*x1 + b*zs2 - z2, 2));

subject to

A1(indexA1Zero) == 0;

A2(indexA2Zero) == 0;

A1 >= 0;

A2 >= 0;

b >= 0;

cvx_end
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% WARNING: Don’t forget to map back

% A ~= [A1; A2] so do the others

A = backwardP([A1; A2], hasStation);

zs = backwardP([zs1; zs2], hasStation);

% evaluate y

% y = Ax + bQz = Ax + bzs

weightedx = A*x1;

weightedz = b*zs;

y = weightedx + weightedz;

X_est = vec2grid(weightedx);

Z_est = vec2grid(weightedz);

Y_est = vec2grid(y);

The function getIndexA12Zero is simply a loop through each index of Ig and assignment of entries
related to that index. The description is explained in the comment block in the following code.

function [indexA1Zero, indexA2Zero] = getIndexA12Zero(Ig, hasStation, rowGrid, colGrid)

N = rowGrid*colGrid;

h = rowGrid;

nGr = length(Ig);

nonzeroAGrid = zeros(N, nGr);

% each level of for loop do each following

% (a) run each available ground station position

% (b) go to that point set point before and after to 1

% (c) go to a column grid before/after that point repeat b

for i = 1:nGr

idx = Ig(i);

for j = [-1,0,1]

for k = [-h,0,h]

if(((idx+k)+j > 0) && ((idx+k)+j < N))

nonzeroAGrid((idx+k)+j, i) = 1;

end

end

end

end

[A1Zero, A2Zero]= forwardP(~nonzeroAGrid, hasStation);

indexA1Zero = find(A1Zero);

indexA2Zero = find(A2Zero);

end

An implementation on Qz is not by directly find Q. However, the grid notation is used to simplify
the thinking process during the implementation.

Let ek,` ∈ R`×3,

ek,` =

{
1 ∀(i, j) ∈ (k − 1, 1), (k, 2), (k + 1, 3)

0 otherwise

We rewrite Z at surrounding grid as eTi,mXej,n, then Qz can be expressed as:
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Qz = vec(1TeTi,mZej,n1)

Consider product of 1TeTi,m =
[
0 0 · · · 1 1 1 · · · 0

]
where 1 are located at row entries

i− 1, i, i+ 1. Similarly ej,n1 =
[
0 0 · · · 1 1 1 · · · 0

]T
, where 1 are located at column entries

j − 1, j, j + 1. Let Tm ∈ Rm×m be a tridiagonal matrix of the form

Tm =


1 1
1 1 1

. . .
. . .

. . .

1 1 1
1 1



which evaluated by the following function getTridiag. A matrix Qz when in grid form can be
obtained by spreadGrid.

function spread_grid = spreadGrid(grid)

[row, col] = size(grid);

Tm = getTridiag(row);

Tn = getTridiag(col);

spread_grid=Tm*grid*Tn;

end

function T = getTridiag(m)

% make tridiagonal matrix for spreading Z

T=toeplitz([1,1,zeros(1,m-2)],[1,1,zeros(1,m-2)]);

end

Apart from MATLAB, javascript with node.js library is used for reading and cleaning a data into
a grid database. The script read a file from large satellite database then select the interested portion
of data and write into the new small grid database. The csv format is chosen due to its cross platform
compatibility. All of the MATLAB implementation utilizes the X and ZExcess, which is read once form
such grid database.
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Explanation on grid system

Figure 15: Example of 3× 3 grid

Extra grid

The location with
station

The location with
no station

From figure 15, we define the rainfall of each grid by the following equations.

ŷ11 = b(z00 + z10 + z20 + z01 + z11 + z21 + z02 + z12 + z22) (1)

ŷ21 = a21x32 + b(z10 + z20 + z30 + z11 + z21 + z31 + z12 + z22 + z32) (2)

ŷ31 = a31x32 + b(z20 + z30 + z40 + z21 + z31 + z41 + z22 + z32 + z42) (3)

ŷ12 = a12x13 + b(z01 + z11 + z21 + z02 + z12 + z22 + z03 + z13 + z23) (4)

ŷ22 = a22,1x13 + a22,2x32 + a22,3x33 + b(z11 + z21 + z31 + z12 + z22 + z32 + z13 + z23 + z33) (5)

ŷ32 = a32,1x32 + a32,2x33 + b(z21 + z31 + z41 + z22 + z32 + z42 + z23 + z33 + z43) (6)

ŷ13 = a13x13 + b(z02 + z12 + z22 + z03 + z13 + z23 + z04 + z14 + z24) (7)

ŷ23 = a23,1x13 + a23,2x32 + a23,3x33 + b(z12 + z22 + z32 + z13 + z23 + z33 + z14 + z24 + z34) (8)

ŷ33 = a33,1x32 + a33,2x33 + b(z22 + z32 + z42 + z23 + z33 + z43 + z24 + z34 + z44) (9)
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From equation (1)-(9),we can rewrite them to this form:

ŷ = Ax+ bQz, (10)

where variables and parameters are define as:

ŷ =



ŷ11
ŷ21
ŷ31
ŷ12
ŷ22
ŷ32
ŷ13
ŷ23
ŷ33


, A =



0 0 0
a21,1 0 0
a31,1 0 0

0 a12,1 0
a22,1 a22,2 a22,3
a32,1 0 a32,2

0 a13,1 0
a23,1 a23,2 a23,3
a33,1 0 a33,2


, x =

x32x13
x33



Q =



1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0
0 0 1 1 1 0 0 0 0
1 0 0 1 1 1 0 0 0
1 1 0 0 1 1 1 0 0
1 1 1 0 0 1 1 1 0
0 1 1 1 0 0 1 1 1
0 0 1 1 1 0 0 1 1
1 0 0 1 1 1 0 0 1
1 1 0 0 1 1 1 0 0
1 1 1 0 0 1 1 1 0
0 1 1 1 0 0 1 1 1
0 0 1 1 1 0 0 1 1
0 0 0 1 1 1 0 0 1
0 0 0 0 1 1 1 0 0
0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0



T

, z =



z00
z10
z20
z30
z40
z01
z11
z21
z31
z41
z02
z12
z22
z32
z42
z03
z13
z23
z33
z43
z04
z14
z24
z34
z44



, and b = b
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