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Abstract

In generally, when the new data is measured. The estimated model are changed but estimate
by the data which combine between both historical data and new data. That meant estiamte
every time when the new data is measured. This project is aim to describe updating an estimated
model of solar forecasting by using recursive method with SARIMA model which is a type of
time series model. The result from this study is a modification of the model which use recursive
identification.

1 Introduction

Solar irradiance is the power per unit area from the sun and is one of the important factor for
photovoltaic cell to make a renewable energy from solar radiation. In Meteorological Department
has separate the solar irradiance into 3 types

1. Global Horizontal Irradiation(GHI) is the total of Direct Normal Irradiation(DNI) and Diffuse
Horizontal Irradiance(DHI). GHI is an important parameter for evaluation of solar energy
potential of a particular region.

2. Direct Normal Irradiation(DNI) is the amount of solar radiation received per unit area by a
surface that is always held perpendicular (or normal) to the rays that come in a straight line
from the direction of the sun at its current position in the sky.

3. Diffuse Horizontal Irradiance(DHI) is the amount of radiation received per unit area by a
surface that does not arrive on a direct path from the sun, but has been scattered by molecules
and particles in the atmosphere

All three component can write to equation 1

GHI = DHI +DNI cos(θ) (1)

where θ is solar zenith angle. This study is focus on GHI only. The behavior of the solar irradiance
in two days is shown in figure 1. This figure show that the GHI data is similar to a periodic signal.

This study focus on time series models. Time series model is a model which can analyzed to
understand a past and forecast a future. This model are use in many branch such as engineering,
account, and science where the data is measured sequentially in time. Time series split into 2 types
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Figure 1: GHI in 1st-2nd January 2017

1. Time series model with stationary process is a time series model which have a constant mean
and autocorrelation depend on time gap example AR, MA, ARMA, ARX, ARMAX

2. Time series model with non-stationary process is a time series model which either mean or
autocorrelation depend on time example ARIMA, ARIMAX

From above show that the time series model with stationary process is a subset of time series
model with non-stationary model. Thus, we will use time series model with non-stationary process
for describe the trend from the past and forecast the future. According to [3] show that the
SARIMA(2, 2, 4)(0, 1, 1)16 have the most log-likelihood function. Thus, this study use the Seasonal
AutoRegressive Integrated Moving Average (SARIMA) model which define by

Ã(L)(1− LT )DA(L)(1− L)dI(t) = C̃(L)C(L)e(t) (2)

can be written as SARIMA(p, d, q)(P,D,Q)T where

A(L) =1− (A1L+A2L
2 + · · ·+ApL

p)

C(L) =1 + (C1L+ C2L
2 + · · ·+ CqL

q)

Ã(L) =1− (Ã1L
T + Ã2L

2T + · · ·+ ÃPL
PT )

C̃(L) =1 + (C̃1L
T + C̃2L

2T + · · ·+ C̃QL
QT )

(3)

L is a lag operator, T is a seasonal period, d is an integrated non-seasonal order and D is an
integrated seasonal order. Each polynomial in equation 3 call

• A(L) call autoregressive(AR) polynomial

• C(L) call moving average(MA) polynomial

• Ã(L) call seasonal autoregressive(SAR) polynomial

• C̃(L) call seasonal moving average(SMA) polynomial

Equation 2 can reduced to the AutoRegressive Integrated Moving Average(ARIMA) model which
define by

A(L)(1− L)dĨ(t) = C(L)v(t) (4)

can be written as ARIMA(p, d, q) where

W (t) =Ã(L)(1− LT )DI(t)

v(t) =C̃(L)e(t)
(5)

Equation 2 can reduced to the AutoRegressive Moving Average(ARMA) model which define by

A(L)y(t) = C(L)v(t) (6)

can be written as ARMA(p, q) where

y(t) = Ã(L)(1− LT )D(1− L)dI(t) (7)
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2 Problem statement

The objective of the problem statement are

• Using SARIMA model to forecast solar irradiance

• I(t) is measured solar irradiance

• Ã1, C̃2, · · · , ÃP given to zero

• A1, A2, · · · , Ap, C1, C2, · · · , Cq, C̃1, C̃2, · · · , C̃Q are the coefficient which we want to find

3 Methodology

This study using time series model to estimate the solar irradiance which the process of the esti-
mation is shown in figure 3.

First, the GHI data must be remove a seasonal trend. That meant we could write the seasonal

Figure 2: Estimation Diagram

trend into fourier series. After removing the seasonal trend, the removed seasonal trend data will
similar to random signal. Before finding the parameter in ARMA model, we check the autocor-
relation graph to check for sure that each point of data are uncorrelated. If the autocorrelation
graph is not similar to white noise, we could differentiate that data and check the autocorrelation
again. After differencing until the autocorrelation graph is similar to white noise, we use that set
of differencing data to find the parameter in ARMA model by using maximum likelihood estima-
tion(ML). Then this model use prediction error method(PEM) to find the estimated model and use
this model to forecast GHI data.

3.1 Estimation of seasonal trend

This section is described finding the seasonal trend and use this seasonal trend to remove from the
data. The aim of this section is finding the seasonal period T .

1. SARIMA Model
This study consider an additive seasonal trend which can write in function 8

A(L)y(t) = s(t) + α+ C(L)e(t) (8)

where s(t) = s(t−T ) is a seasonal term, α is constant and e(t) is noise. Then y(t) is subtracted
by y(t− T ). We will get

A(L)y(t)−A(L)y(t− T ) = s(t) + α+ C(L)e(t)− s(t− T )− α− C(L)e(t− T )

= C(L)e(t)− C(L)e(t− T )
(9)

The above model can write to SARIMA(p, d, q)(0, 1, 1)T
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2. Fitting seasonal trend
This section is describe finding the seasonal ternd before removing from the data. The seasonal
trend can write into fourier series

s(t) =

k∑
i=1

(ai cos(ωit) + bi sin(ωit)) (10)

where t = 1, 2, · · · , N , ai is coefficient of co-sinusoidal component of each frequency ωi and bi
is coefficient of sinusoidal component of each frequency ωi. To find the frequency ωi, we must
analytic in frequency domain to find the power spectrum density. Then we choose the high
energy frequency to be selected as ωi. Before finding the power spectrum density, we use Fast
Fourier Transform(FFT) to be transformed to the frequency domain. Fast fourier transform
is algorithm to find the discrete fourier transform(DFT) [2] which shown in equation 11

S(k) =

N−1∑
t=0

s(t)e
j2πkt
N (11)

where ωk = 2πk
N and k = 0, 1, · · · , N − 1. After using FFT, then we find |S(k)| to find ωk.

Only high-energy frequency will given to ωi in equation 10.

3.2 Estimation of integrated part

This section is described a process to find the integrated order. After removing seasonal trend,
ACF might be correlated in each time. That meant ACF is not similar to white noise spectrum.
From equation 6 we can write

A(L)y(t) = C(L)v(t)

The data y(t) was differentiate by subtracting y(t− 1).

∆y(t) = y(t)− y(t− 1) = (1− L)y(t)

We can also differentiate 2nd time

∆2y(t) = ∆y(t)−∆y(t− 1) = (1− L)2y(t)

If we differentiate the data in d time, we will write in equation

∆dy(t) = (1− L)dy(t) (12)

Finally, the equation 6 is substituted y(t) by equation 12. We will get the AutoRegressive Integrated
Moving Average(ARIMA) Model

A(L)(1− L)dy(t) = C(L)v(t) (13)

From the equation 13, we will see that the transfer function is

Y (z)

V (z)
=

C(z)

A(z)(1− z−1)d
(14)

In equation 14 show that this model has not stationary process because it has poles lying on unit
circle. If we substitute Ŵ (t) = (1− L)dy(t) this model will have the stationary process.
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3.3 Estimation of ARMA Model

This section is describe about the estimation of AutoRegressive Moving Average(ARMA) model.
In this report we will use maximum likelihood estimation to find the parameter in AR polynomial,
MA polynomial and noise variance.
Maximum likelihood estimation is one of the method to find the parameter by maximizing a cost
function which define by

L(y|θ) = f(y(1), y(2), · · · , y(N)|θ) (15)

where f(y(1), y(2), · · · , y(N)|θ) is defined by

f(y(1), y(2), · · · , y(N)|θ) =
N∏
t=1

( 1

σ
√

2π

)
e−

v(t)2

2σ2 (16)

In equation 15, this cost function also called likelihood function where

θ =
[
A1 A2 · · · Ap C1 C2 · · · Cq σ2

]T
f(y|θ) is conditional probabilitiy density function(conditional pdf) of v(t) in equation 2 and N is a
number of data.
From equation 6 can also write

y(t) = A1y(t−1)+A2y(t−2)+· · ·+Apy(t−p)+v(t)+C1v(t−1)+C2v(t−2)+· · ·+Cqv(t−q) (17)

Thus, we can find v(t) in term of A1, A2, · · · , Ap, C1, C2, · · · , Cq from equation 17

v(t) = y(t)−(A1y(t−1)+A2y(t−2)+· · ·+Apy(t−p))−(C1v(t−1)+C2v(t−2)+· · ·+Cqv(t−q)) (18)

If v(t) has normal distribution which have zero mean and variance σ2. Then the log-likelihood
function according to [1] is

L(θ) = −N
2

log(2π)− N

2
log(σ2)−

N∑
t=1

v(t)2

2σ2
(19)

From [1], if we have y(t) has real value from 1 to p and v(t) = 0 since t = p, p − 1, · · · , p − q + 1,
so that y(t) also has normal distribution. Thus, we start at t = p + 1. At the same time, the
conditional likelihood function is change to equation 20

L(y|θ) = f(y(p+ 1), y(p+ 2), · · · , y(N)|y(1), y(2), · · · , y(p), θ) (20)

Thus, the likelihood function is

L(y|θ) = (
1

2πσ2
)N−pe−

∑N
t=p+1

v(t)2

2σ2 (21)

From the maximum likelihood estimati on method, we can find the estimator from log-likelihood
function. Finally, we have a cost function to find the estimator from the maximum of the cost
function in equation 22

logL(y|θ) = −N − p
2

log(2π)− N − p
2

log(σ2)−
N∑

t=p+1

v(t)2

2σ2
(22)

where logL(y|θ) is the cost function of the problem and v(t) in equation 22 can consider in 2-norm.
Thus we can write into matrix form
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v(p+ 1)
v(p+ 2)

...
v(N)

 =


y(p+ 1)
y(p+ 2)

...
y(N)

−


y(p) y(p− 1) · · · y(1) v(p) v(p− 1) · · · v(p− q + 1)
y(p+ 1) y(p) · · · y(2) v(p+ 1) v(p) · · · v(p− q + 2)

...
...

. . .
...

...
...

. . .
...

y(N) y(N − 1) · · · y(p) v(N) v(N − 1) · · · v(p)





A1

A2
...
Ap
C1

C2
...
Cq


The numerical solution of θ̂ML can find from many optimization method example steepest-descent,
quasi-newton, conjugate-gradient and the other method. However, doing ML in MATLAB and
doing ML by hand-out probably not given the same parameter especially the parameter in seasonal
moving average polynomial because the simple estimation in equation 9 show that they has pole
lie in unit circle.

3.4 Model Validation

After we specify some properties of the models. We must have some criterior score to find the opti-
mum order of SARIMA models. This study using akaike information criterion(AIC) and bayesian
information criterion(BIC). Both AIC and BIC are explain a trade-off between a complexity of the
model and goodness of fit. Both AIC and BIC is defined by

AIC = −2L+ 2d (23)

BIC = −2L+ d log(N) (24)

where L is log-likelihood function, N is number of training data and d is number of parameter in
each models.

3.5 Computation of Forecast

After finding the model, it will be used to forecast the solar irradiance in the next h-step. From
the ARMA model in equation 6.

A(L)y(t) = C(L)v(t)

The optimal prediction from the ARMA model by using prediction error method(PEM) in [4] and
[5] is

ŷ(t|t− 1) = (1− C−1(L)A(L))y(t) (25a)

e(t) = C−1(L)A(L)y(t) (25b)

We can find the estimatied ARMA(p, q) model

C(L)ŷ(t|t− 1) = (C(L)−A(L))y(t)

(C(L)− 1)ŷ(t|t− 1) + ŷ(t|t− 1) = (C(L)− 1)y(t)− (A(L)− 1)y(t)

ŷ(t|t− 1) = (C(L)− 1)(y(t)− ŷ(t|t− 1))− (A(L)− 1)y(t)

ŷ(t|t− 1) = (C(L)− 1)e(t)− (A(L)− 1)y(t)

ŷ(t|t− 1) = (C1L+ C2L
2 + · · ·+ CqL

q)e(t) + (A1L+A2L
2 + · · ·+ApL

p)y(t)

(26)
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So that we can compute one-step ahead prediction of ARMA(p, q) model

ŷ(t+ 1|t) =(C(L)− 1)e(t+ 1) + (1−A(L))ŷ(t+ 1|t)
=(C1L+ C2L

2 + · · ·+ CqL
q)e(t+ 1) + (A1L+A2L

2 + · · ·+ApL
p)ŷ(t+ 1|t)

=C1e(t) + C2e(t− 1) + C3e(t− 2) + · · ·+ Cqe(t− q + 1)+

A1ŷ(t|t) +A2ŷ(t− 1|t) + · · ·+Apŷ(t− p+ 1|t)

(27)

And we can compute h-step prediction of ARMA(p, q) model

ŷ(t+ h|t) =(C(L)− 1)e(t+ h) + (1−A(L))ŷ(t+ h|t)
ŷ(t+ h|t) =C1e(t+ h− 1) + C2e(t+ h− 2) + C3e(t+ h− 3) + · · ·+ Cqe(t+ h− q)+

A1ŷ(t+ h− 1|t) +A2ŷ(t+ h− 2|t) + · · ·+Apŷ(t+ h− p|t)
(28)

where

ŷ(t+ h|t) =

{
ŷ(t+ h|t) t > 0

y(t+ h) t ≤ 0
(29)

e(t+ h|t) =

{
0 t > 0

e(t+ h) t ≤ 0
(30)

MATLAB have command to forecast the h-step prediction after estimated the model. There are

1. Infer
Infer gives the residual error and conditional variance from the data which we use. Then the
fitted numerical value can find from the different between the data which use in this command
and residual error.

2. Forecast
Forecast give the predicted value from the estimated model and the data.

4 Experiments

In this section we used solar irradiance data since January 2017 to May 2017 for model estimation
and solar irradiance data at June 2017 for model validation. This data set has sampling rate 3
minutes.

4.1 Seasonal Decompose
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Power Spectral Density by using Fast Fourier Transform

Figure 3: Power Spectral Density by using Fast Fourier Transform
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First, we use fast fourier transform finding the power spectrum density. Then we choose only
high energy frequency and give them ωi. Figure 4.1 show that the solar irradiance data has 5 peaks
frequency at ω1 = 0.002π, ω2 = 0.004π, ω3 = 0.006π, ω4 = 0.008π,and ω5 = 0.01π
After choosing frequency ωi, we can find each ai, bi and α in equation 8 and 10 from the least square
method. Then we will get the seasonal trend in figure 4.1.
Finally, we get the data with removing seasonal trend in figure 4.1.
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Figure 4: Seasonal trend of training data set

Figure 4.1 show that there is the residual error between the data and the fitting seasonal trend.
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Figure 5: Data with removing seasonal trend

We use this error to find ARIMA model. This section conclude that the data has a periodic every
50 hours, 100 hours, 150 hours, 200 hour and 250 hours.
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4.2 Differencing

After removing the seasonal trend, the autocorrelation function(ACF) of the estimation error are
shown in figure 6(a). Figure 6(a) show that there is non-stationary data because autocorrelation
function is depend on time. So that we must differentiate the data before using maximum likelihood
estimation to find the ARMA model. The autocorrelation function of one time differencing data
and two time differencing data are shown in figure 6.
From figure 6, we can conclude that d = 1 is the best choice because it has more similar to white
noise than d = 2.
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Figure 6: ACF of both one and two time differencing

4.3 Estimation of the ARMA model and Model Selection

From the two section above, we choose SARIMA(p, 1, q)(0, 1, 1)1000.
This section we use maximum likelihood estimation to estimate the parameter . Then use each
model to find AIC and BIC scores for finding the optimal model.
The result of both AIC and BIC score and RMSE are shown in table 4.3.
From the table 4.3 show that SARIMA(3, 1, 6)(0, 1, 1)1000 has the least AIC and BIC score. Thus,

we choose SARIMA(3, 1, 6)(0, 1, 1)1000 to forecast the data which can write into equation 31.
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p,q
RMSE on valida-
tion data set

AIC(×105) BIC(×105)

1,1 127.9871 8.4790 8.4791

1,2 127.8967 8.4789 8.4792

1,3 127.8874 8.4789 8.4793

1,4 128.0809 8.4769 8.4773

1,5 127.8158 8.4788 8.4794

1,6 127.8368 8.4788 8.4795

2,1 150.6522 9.0281 9.0284

2,2 127.9526 8.4790 8.4793

2,3 127.8996 8.4789 8.4794

2,4 127.8824 8.4789 8.4795

2,5 128.0494 8.4786 8.4793

2,6 127.6021 8.4755 8.4762

3,1 127.8743 8.4789 8.4793

3,2 127.8466 8.4762 8.4766

3,3 127.7314 8.4758 8.4764

3,4 127.9108 8.4787 8.4793

3,5 127.9746 8.4786 8.4794

3,6 127.4815 8.4714 8.4722

4,1 127.8806 8.4789 8.4794

4,2 127.8780 8.4788 8.4795

4,3 127.9541 8.4753 8.4792

4,4 128.0137 8.4786 8.4793

4,5 127.5999 8.4753 8.4761

4,6 127.9630 8.4787 8.4796

Table 1: Candidate score and RMSE of each order

(1− L1000)(1− L)(1− (1.29L+ 0.42L2 − 0.71L3))I(t) =

(1− 0.91L1000))(1− 1.82L+ 0.18L2 + L3 − 0.29L4 − 0.03L5 − 0.04L6))e(t)
(31)

5 Conclusions

The result in the experimant show that we can find the solar irradiance model by using time series
model which the process is following in figure 3. This model is conclude a seasonal trend which has
50 hours seasonal period. Finally, the equation 31 can write the h-step forecasting equation which
are shown in equation 32

Î(t+ h|t) =− 0.29Î(t+ h− 1|t) + 1.71Î(t+ h− 2|t)− 0.29Î(t+ h− 3|t)− 0.71Î(t+ h− 4|t)
+ 0.29Î(t+ h− 1001|t)− 1.71Î(t+ h− 1002|t) + 0.29Î(t+ h− 1003|t) + 0.71Î(t+ h− 1004|t)
+ e(t+ h)− 1.82e(t+ h− 1) + 0.18e(t− 2) + e(t+ h− 3)− 0.29e(t+ h− 4)

− 0.03e(t+ h− 5)− 0.04e(t+ h− 6)− 0.91e(t+ h− 1000) + 1.6562e(t+ h− 1001)

− 0.1638e(t+ h− 1002)− 0.91e(t+ h− 1003) + 0.2639e(t+ h− 1004)

+ 0.0273e(t+ h− 1005) + 0.0364e(t+ h− 1006)

(32)
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6 Appendix

6.1 Matlab Code

Find power spectrum density

1 % Find power s p e c t r a l d e n s i t y
2 y=f f t ( IMean5m) ;
3 N=numel ( y ) ;
4

5 % Use FFT to f i n d power spectrum d e n s i t y
6 PSD = abs ( y ) .ˆ2/N;
7 PSD = PSD/max(PSD) ;
8 logPSD = log (PSD) ;
9 f =1/N∗ ( 1 :N) ;

10 plot ( f ( 1 :N/2) , logPSD ( 1 :N/2) )

Find the seasonal trend

1 %F i t t i n g Seasonal Trend
2 t =1: length ( IMean5m) ;
3 t=t ’ ;
4 A=[cos (0 . 002∗ pi∗ t ) cos (0 .004∗ pi∗ t ) cos (0 .006∗ pi∗ t ) cos (0 . 008∗ pi∗ t ) cos

(0 . 01∗ pi∗ t ) sin (0 . 002∗ pi∗ t ) sin (0 .004∗ pi∗ t ) sin (0 .006∗ pi∗ t ) sin
(0 . 008∗ pi∗ t ) sin (0 . 01∗ pi∗ t ) ones ( length ( IMean5m) ,1) ] ;

5 x l s = A\IMean5m ;
6 yes t = A∗ x l s ;
7

8 r e s i d = IMean5m−yes t ;

Find the order d

1 % c r e a t e d i f f e r e n c i n g opera tor
2 D1=LagOp({1 −1} , ’ Lags ’ , [ 0 , 1 ] ) ;
3 % D i f f e r e n t i a t e 1 time
4 d i f f 1=f i l t e r (D1 , r e s i d ) ;
5 autocor r ( d i f f 1 )

Find the candidate models

1 % S p l i t to t r a i n i n g data s e t and v a l i d a t i o n data s e t
2 dataTra = IMean (1 : 72400 ) ;
3 dataVad = IMean ( length ( dataTra ) +1: length ( IMean ) ) ;
4

5 % p and q are the h i g h e s t order o f AR and MA polynomia l
6 SpecMdl = arima ( ’ Constant ’ , 0 , ’ARLags ’ , 1 : p , ’D ’ ,1 , ’MALags ’ , 1 : q , ’

S e a s o n a l i t y ’ ,1000 , ’SMALags ’ ,1000) ;
7

8 [ EstMdl , EstParamCov , logL , info ] = es t imate ( SpecMdl , dataTra ) ;
9 % Find AIC and BIC

10 AIC(p , q ) = −2∗ logL+2∗(4+q ) ;
11 BIC(p , q ) = −2∗ logL+(4+q ) ∗ log (N) ;
12 % Find r e s i d u a l e r ror
13 [ Et , Vt ] = i n f e r ( EstMdl , dataTra ) ;
14 MAEt(p , q )=sum(abs ( Et ) ) / length ( dataTra ) ;
15 RMSEt(p , q )=sqrt (sum( Et . ˆ 2 ) / length ( dataTra ) ) ;
16 % Find es t imated err or
17 [ Ev ,Vv ] = i n f e r ( EstMdl , dataVad ) ;
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18 MAEv(p , q )=sum(abs (Ev) ) / length ( dataVad ) ;
19 RMSEv(p , q )=sqrt (sum(Ev . ˆ 2 ) / length ( dataVad ) ) ;
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