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Abstract

Power forecasting of photovoltaic (PV) system using weather data is an important factor for
planning the maintanance operations. This project presents nonlinear power prediction model
based on a single-diode model with series resistance. The model required irradiance and cell
temperature as inputs in order to identify model parameters. The method used to estimate the
model parameters is nonlinear least square method with constraints. The initial guess for this
optimization problem was obtained from analysis of derived model equation and specification
values provided by manufacturer’s documentation. The proposed model were compared to two
polynomial models and an artificial neural network (ANN) model in terms of mean squared
error (MSE). The results indicated that the nonlinear model provided the least MSE compared
to other models.

1 Introduction

With the development of photovoltaic (PV) industry, grid-connected PV systems have been
expanded around the world in recent years. The monitoring and performance assessment on the
grid-connected PV systems is required to ensure reliable power production and thus the modeling
of a PV system is necessary.

Many researches focus on modeling of a PV module based on an equivalent circuit model.
Most of previous studies aimed to determine the current-voltage characteristic of the model. The
identification of model parameters was carried out by using optimization techniques. Some of the
researches proposed that the output power model is a polynomial function of environmental data
such as irradiance and temperature. In the past few years, many reseaches used artificial neural
network (ANN) models to forecast power generation. However, the polynomial models might be
not reliable enough due to the lack of derivation of the model equations and physical meanings of
the systems cannot be explained by the ANN models.

In order to overcome these problems, this project aims to provide a reliable nonlinear model
of a PV module. The nonlinear least square method is used to determine the model parameters.
Moreover, the model are compared to the polynomial models and an ANN model in terms of mean
squared error.

This paper is organized as follows: the next section gives the background on PV models and
reviews of a few literatures. In Section 3, a problem statement is presented, while Section 4 deals
with data preprocessing. Experiments and discussion are shown in Section 5. Lastly, Section 6
shows conclusions of this project.
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2 Background on Photovoltaic Model

Many researchers have developed PV models using many equivalent circuit models. For example,
the PV model can be represented as a ideal equivalent circuit consisting of a diode and a current
source connected in parallel as shown in Figure 1.

Figure 1: Equivalent circuit of the ideal single-diode model.

However, in order to obtain a better representation of the PV model, the second and third
models take account of the ohmic losses represented by only a series resistance Rs and both series
resistance Rs and parallel resistance Rp as shown in Figure 2 and Figure 3 respectively.

Figure 2: Equivalent circuit of the single-diode model with series resistance.

Moreover, the PV model can be represented as the two-diode model which takes into account
the recombination of the minority carriers located both at the surface and within the volume of
the material. The two-diode model is shown in Figure 4.

The most common used model in the literature is a single-diode with both series resistance and
parallel resistance in Figure 3. For example, The studies [1] and [2] used this single-diode model
for modeling PV system. These two studies are reviewed as follows.
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Figure 3: Equivalent circuit of the single-diode model with series resistance and parallel resistance.

Figure 4: Equivalent circuit of the two diodes model with series resistance and parallel resistance.

2.1 Modeling of Photovoltaic Module from Commercial Specification in Datasheet
[1]

The equation which descibes the relationship between the current of PV module and voltage of
the PV model in Figure 3 can be derived as

i = iph − i0
(

exp
(V +Rsi

A

)
− 1
)
− V +Rsi

Rp
(1)

where i is the current of PV module (A), V is the voltaic of PV module (V), iph is the photocurrent
(A), i0 is the diode saturation current (A), A = aNsVth , a is the ideal factor, Ns is number of cells
per module, Vth = kT

q is the threshold voltage (V), k is the Boltzmann constant (1.38×10−23J·K−1),

q is the electronic charge (1.602×10−19C), T is the cell temperature (K), Rs is the series resistance
(Ω) and Rp is the parallel resistance (Ω).

Practically, the reason why the commercial datasheet from PV producers cannot lead to an
accurate modeling is because the datasheet usually do not provide some specfication parameters,
i.e. i0, Rs, Rp and iph. Thus, the study [1] aims to develop a modeling method based on the
given commercial specification in the datasheet. The reviews of this study are divided into 3 parts,
Investigation on the model parameters, Environmental factors and Proposed method.
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2.1.1 Investigation on the model parameters at reference point

The diode reversed saturation in a module is calculated from the open-circuit condition.

i0ref =
isc

exp

(
Voc
Aref

)
− 1

(2)

All parameters (isc, voc and Aref) in the right side of (2) are given from the commercial datasheet.
This means that it can be straightforwardly calculated.

The series resistance in a module can be calculated by using the diffential of PV module power
with respect to PV module voltage at the maximum power point.

Rsref =
Vmax

imax
−

ArefRpref

i0refRprefexp

(
Vmax + imaxRsref

Aref

)
+Aref

(3)

However, the parallel resistance (Rp) is still an unknown. By considering (1) at the maximum
power point, it can be shown that,

Rpref =
Vmax + imaxRsref

iphref − imax − i0ref
[
exp

(
Vmax + imaxRsref

Aref

)
− 1

] (4)

This equation has two unknown parameters, which are Rs and iph
At short circuit condition, the photoelectric current can be approximated by (1) as

iphref ≈
Rpref +Rsref

Rpref
isc (5)

With (3), (4) and (5) all the three unknown parameters (Rs, Rp and iph) at the reference point
of irradiance and temperature can be calculated.

2.1.2 Envionmental factors affecting the PV module

When the irradiance changes, this change has an impact on two parametersm which are photo-
electric current and parallel resistance which can be expressed as

iph = iphref
( I
I0

)
(6)

Rp = Rpref

(I0
I

)
(7)

where I is present irradiation (W/m2) and I0 is the reference irradiation from datasheet.
(1,000 W/m2)

The change in temperature has an impact on three parameters, which are photoelectric current,
diode reversed saturation current and threshold voltage. The affects can be expressed as

iph = iphref + α(T − Tref) (8)

i0 =
isc + α(T − Tref)

exp

(
Voc + β(T − Tref)

Aref

)
− 1

(9)

A = Aref

( T

Tref

)
(10)

where T is present temperature (K), Tref is the reference temperature from datasheet. (298 K)
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2.1.3 Proposed method

Since the three parameters (Rsref, Rpref and iphref) cannot be directly calculated from the equa-
tions (3)-(5) due to the nonlinearity, the paper applied minimization principle in order to find the
mentioned parameters.

First, the objective function of the minimization problem is defined as a sum of squared errors,
that is the minimization problem:

minimize
Rs,Rp,iph

f(Rs, Rp, iph) , e21 + e22 + e23 (11)

where e1, e2 and e3 are the error of Rs, Rp and iph respectively which are defined as follows.

e1 =
Vmax

imax
−

ArefRpref

i0refRprefexp

(
Vmax + imaxRsref

Aref

)
+Aref

−Rsref (12)

e2 =
Vmax + imaxRsref

iphref − imax − i0ref
[
exp

(
Vmax + imaxRsref

Aref

)
− 1

] −Rpref (13)

e3 =
Rpref +Rsref

Rpref
isc − iphref (14)

Next, the process of the method is as following.

1. Retrieve input data of PV datasheet which is composed of eight parameters(Voc, isc, α, β,Ns, i0, iph, Rs

and Rp)

2. Compute i0 using (2)

3. Assume initial value of the three optimization variables

4. Substitute the three optimization variables into (12), (13) and (14).

5. Substitute the value of e1, e2 and e3 into the objective function in (11)

6. Find the value of the three variables which minimize the objective function f

7. Receive the irradiance and temperature data at the moment

8. Update iph, Rp, i0 and Vth using (6) -(10)

Unfortunately, the optimization method for solving the minimization problem are not detailed
in this paper.

2.2 Analysis and Experimental Validation of Various Photovoltaic System Mod-
els [2]

In this paper, there are two proposed models, the ”one-diode model” and the ”polynomial
model”.

2.2.1 The one-diode model

First, the ”one-diode model” is used for modeling the PV system. The equivalent circuit is the
same as in Figure 3. The characteristic equation for the PV can then be derived as:

i = iph − id − iRp (15)

where id is the polarization current of junction PN or the diode current and iRp is the current
thorough the parallel resistance.
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The photocurrent, iph, is proposed by this study that is directly dependent on both irradiance
and temperature, and may be written in the following form:

iph = k1I[1 + k2(I − I0) + k3(T − Tref )] (16)

where I0 is the reference irradiance of 1,000 W/m2 and Tref is the reference temperature of 298 K.
k1, k2 and k3 are constant parameters.

The diode current is given by the relationship between current and voltage (I-V curve) of a
diode:

id = i0

[
exp

(V +Rsi

A

)
− 1

]
(17)

where all parameters are the same as defined in the paper [1].
The saturation current, i0, can be expressed as a function of temperature as follows [3]:

i0 = k4T
3 exp

(
− Eg

kT

)
(18)

where Eg is the gap energy and k4 is a constant parameter.
Lastly, the current thorough the parallel resistance is:

iRp =
V

Rp
(19)

By substituting (10) and (16) - (19) into (15), the final equation of the model can then be expressed
by:

i = k1I[1 + k2(I − I0) + k3(T − Tref )]

− k4T 3 exp
(
− Eg

kT

)[
exp

(
V +Rsi

Aref

(
T

Tref

))− 1

]
− V

Rp
(20)

2.2.2 The polynomial model

The previous model is used to determine the voltage-current characteristic for a given irradiance
and temperature. From this basis, it is possible to determine the maximum power supplied by the
PV system under a set of given weather conditions.

This paper refers that the characteristic for maximum power indicated by manufacturer’s doc-
umentation is as following.

Pmax = k1I(1 + k2(T − Tref)) (21)

Then, this paper added a parameter (k3) to the previous characteristic and proposed a modified
maximum power as:

Pmax = k1(1 + k2(T − Tref))(k3 + I) (22)

Adding k3 in (22) as a bias term, that is the maximum power Pmax can be zero even if irradiance
I is not zero, may improve fitting result.

2.2.3 Determination of Parameter Values - Power Analysis

The identification of parameter values has been carried out by means of a binary genetic algo-
rithm (GA) using experimental measurements. For the one-diode model, the identification process
was performed using the actual PV power-voltage characteristics (P (k), V (k)).

The objective function is then the sum of the errors committed by the model on the power-
voltage characteristics corresponding with the irradiance and temperature of index k:

minimize
k1,k2,k3,k4,Rs,Rp

N∑
k=1

|P (k) − (V (k)i
(k)
model)|

P (k)
(23)
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where imodel is obtained by solving the implicit function iimodel = f(iimodel, V
i
actual, I

i, T i) in the
equation (20). However, the use of GA techniques for identifying parameter values has to repeat
this complex calculation many times. For this reason, imodel may be obtained by solving the
equation: imodel = f(iiactual, V

i
model, I

i, T i).
For the polynomial model, the optimization step was solely carried out on maximum power

values. Thus, the objective function to be minimized is then the sum of the errors between measured
power and predicted power values:

minimize
k1,k2,k3

N∑
k=1

|P (k) − P (k)
model|

P (k)
(24)

where P i
model is the power in (22).

The results showed that all of the models studied displayed the same level of energy precision.
However, the polynomial model did stand out for its simulation speed, i .e. for the same compu-
tation, the one-diode models took several minutes to yield their results whereas the polynomial
model only required in the hundreds of milliseconds.

2.3 Proposed model

In this study, the model used to predict output power generated by PV module is defined
as an equivalent circuit using a single-diode circuit model with only series resistance Rs, shown in
Figure 2. This model was used in [4] and provided fairly accurate results.

The current-voltage (i− V ) relation of a photovoltaic cell is given by:

i = iph − i0

(
exp
(V +Rsi

A

)
− 1

)
(25)

where iph is the photocurrent (A)
i0 is the diode saturation current (A)
A = aNskT/q
a is the diode ideality factor
k is the Boltzmann constant (1.38× 10−23J ·K−1)
q is the electronic charge (1.602× 10−19C)
T is the cell temperature (K)
Rs is the series resistance (Ω)

The reference values of these parameters are usually provided by manufacturers of PV modules
for specified operating point such as STC(Standard Test Conditions: irradiance Iref = 1000 W/m2

and temperature Tref = 25◦C). These values are not accurate enough for real operating conditions
in which the irradiance and the cell temperature are not at STC. However, by assuming Rs is
constant, the values of the other parameters at any condition of irradiance and temperature are
given by [5],[6]:

iph =
I

I0
[iphref + α(T − Tref)] (26)

i0 = i0ref

( T

Tref

)3
exp
(EgNs

Aref
(1− Tref

T
)
)

(27)

A = Aref

( T

Tref

)
(28)

where I is the solar irradiance (W/m2), α is the temperature coefficient (A · K−1), Eg is the
band gap energy of the semiconductor, Ns is the number of solar cells connected in series and the
subscript ref refers to the reference value. Note that iph in (26) is proposed equation but i0 and A
in (27) and (28) can be derived by principles in [3].
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By rewriting (26), (27) and (28), the equations which describe iph, i0 and A as a function of I
and T are as following:

iph = k1I + k2IT (29)

i0 = k3T
3exp

(k4
T

)
(30)

A = k5T (31)

where k1, k2, k3, k4 and k5 are constants.
Typically, the PV systems are connected to the loads by the electronic equipment which are

designed to follow the Maximum Power Point (MPP). In this case, the current of the MPP at
arbitary conditions of irradiance and temperature can be considered to scale proportinally with the
irradiance and linearly with the temperaure and is proposed in [7] as:

im = imref
I

I0
+ α(T − Tref)

or
im = k6I + k7T + k8 (32)

where k6, k7 and k8 are constants.

Next, by assuming that exp
(
V+Rsi

A

)
>> 1, (25) is considered at MPP (im, Vm) and rearranged

as

Vm = A log
( iph − im

i0

)
− imRs (33)

Thus, the maximum power output can be expressed as:

Pm = Vmim

= Aim log
( iph − im

i0

)
− i2mRs (34)

Substitute (29), (30), (31) and (32) into (34) and then simplify the equation. The simplified
maximum power output model as a function of irradiance and temperature can be expressed as
follows.

Pm = (k5T )(k6I + k7T + k8) log

(
k1I + k2IT − k6I − k7T − k8

k3T 3exp
(k4
T

) )
− (k6I + k7T + k8)

2Rs

Pm = (c1IT + c2T
2 + c3T ) log

(
c4
I

T 3
+ c5

I

T 2
+
c6
T 2

+
c7
T 3

)
+ (c8I

2 + c9T
2 + c10IT + c11I + c12T + c13)(35)

3 Problem statement

In this section, the models used for generated power prediction are described, which are the
nonlinear model and the two polynomial models. The parameter estimation methods used can
be expressed as optimization problems with constraints. The constraints and initial guess for the
optimization problems are obtained from Section 4.

3.1 Nonlinear Model

In matrix form, the nonlinear model for generated power prediction are given by the formula:

P̂ = f(X, θ) (36)

where
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• P̂ is an N -by-1 vector of prediction power.

• X is a N -by-2 matrix which each row contains each sample of I and T .

• θ , (c1, c2, ..., c13) is a 13-by-1 vector of coefficients.

• f is a vector-valued function of X and θ which maps each sample of I and T to each prediction
output by using (37)

The prediction output at kth sample of irradiance and temperature can be calculated from:

P̂1
(k)

= (c1I
(k)T (k) + c2(T

(k))2 + c3T
(k)) log

(
c4

I(k)

(T (k))3
+ c5

I(k)

(T (k))2
+

c6

(T (k))2
+

c7

(T (k))3

)
+ (c8(I

(k))2 + c9(T
(k))2 + c10I

(k)T (k) + c11I
(k) + c12T

(k) + c13) (37)

Thus, the measured power P (k) and the prediction power P̂ (k) can be expressed in vector forms
as P = [P (1) P (2) · · · P (N)]T and P̂ = [P̂ (1) P̂ (2) · · · P̂ (N)]T where N is the number of samples,
the generated power P (k), solar irradiance I(k) and temperature T (k) are measurable variables and
the constants c1,...,c13 are unknown parameters.

The parameter estimation method used in this study is non-linear least square method. Thus,
the optimization problem can be expressed as:

minimize
c1,...,c13

1

N

N∑
k=1

(P (k) − P̂1
(k)

)2

subject to c1, c2, c5, c7 ≥ 0

c3, c6, c8, c9, c10, c13 ≤ 0

(38)

where P̂1
(k)

is expressed in (37)
This non-linear least square estimation can be solved by the trust-region algorithm which is

described in [8].

3.2 Polynomial Models

The polynomial model are used to compare results in terms of complexity and accuracy with
the nonlinear model. The polynomial models used are expressed in (21) and (22) and thus can be
rewritten as:

P̂2
(k)

= d1I
(k) + d2I

(k)T (k) (39)

P̂3
(k)

= d3 + d4I
(k) + d5T

(k) + d4I
(k)T (k) (40)

where d1, d2, d3, d4 and d5 are constant parameters which can be determined by solving linear least
square problems:

minimize
d1,d2

1

N

N∑
k=1

(P (k) − P̂2
(k)

)2

subject to d1 ≥ 0, d2 ≤ 0

(41)

minimize
d3,d4,d5,d6

1

N

N∑
k=1

(P (k) − P̂3
(k)

)2

subject to d4 ≥ 0, d6 ≤ 0

(42)
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4 Data Preprocessing

4.1 Measurement Data

The measured data used to train and verify the models are generated energy from 8 kW PV
module located at EE building(Wh), temperature (◦C) and irradiance (W/m2) which are accessed
from CUBEMS. The sample periods for these data are 1 minute, 3 minutes and 3 minutes respec-
tively. Therefore, The generated energy data has to be converted into average generated power by
using 15-min sample period. Moreover, the irradiance and temperature data are also averaged by
using 15-min sample period. An example of the time series plots of these data are shown in Fig
5. In this study, the data are considered only from 6.00 AM to 19.00 PM for each day and are
collected from January 2017 to April 2017.

4.2 Initial values for solving optimization

Since choosing an initial guess is important for solving optimization problems, the initial values
in this study are chose based on manufacturer’s documentation. The specification values of the PV
module provided by the manufacturer’s documentation which can be derived for guessing initial
values of k1, ..., k8 in (29)-(32) are shown in Table 1. For the parameters i0ref and Eg, their initial
values are chose to be 10−6 A and 1.6×10−19 V respectively which are in the ranges of their typical
values, that is µA and eV respectively.

parameter value

iphref 2.20 A
imref 1.91 A
α 0.01 %/K
Ns 50

Table 1: the specification values of the PV module

Therefore, the initial values of the parameters c1, ..., c13 in the nonlinear model and their sign
which are derived from the parameters k1, ..., k8 are shown in Table 2.

parameter value sign

c1 6.51× 10−6 positive
c2 4.31× 10−5 positive
c3 −1.29× 10−2 negative
c4 −6.06× 1010 unknown
c5 2.65× 108 positive
c6 −2.65× 1011 negative
c7 7.88× 1013 positive
c8 −4.56× 10−7 negative
c9 2.00× 10−5 negative
c10 −6.04× 10−6 negative
c11 1.80× 10−3 unknown
c12 1.19× 10−2 unknown
c13 −1.78 negative

Table 2: the initial values and signs of the model parameters

In the case of the polynomial model, by assuming that the output power changes in the same
direction as irradiance changes. Thus k1 in (21) is positive. Moreover, according to the manu-
facturer’s documentation, the temperature coefficient of output power i .e. k2 in (21) is negative.
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Figure 5: Time series plots of the averaged data from January 15 to January 1911



Therefore the sign of the parameters d1 and d4 are positive and the sign of the parameters d2 and
d6 negative. Note that the signs of the parameters are used to determine lower bounds and upper
bounds of the parameters for the optimization with constrains.

5 Experimental Results and Discussion

In this study, the method used to test the models is described as follows. First, the total data
of 5531 samples were randomly divided into training data of 4975 samples (90% of the total data)
and validation data of 556 samples (10% of the total data). Then the training data were used to
estimate the parameters in the nonlinear model and polynomial model. The averaged estimation
parameters of the models are shown in Table 3.

Nonlinear model P̂1 Polynomial model P̂2

c1 3.42× 10−6

c2 17.29× 10−6

c3 −5.42× 10−3

c4 −60.6× 109

c5 264.5× 106

c6 −264.5× 109

c7 78.8× 1012
c8 −3.24× 10−6

c9 −618× 10−6

c10 −62.5× 10−6 d2 −46.7× 10−6

c11 13.7× 10−3 d1 19.8× 10−3

c12 315.3× 10−3

c13 −38.3

Table 3: Estimation parameters of the models

Because of the nonlinearity of the nonlinear model, it will be interesting to apply Artificial-
Neural-Network (ANN) to train and compare results with the nonlinear model. The ANN used in
this study has one hidden layer with 100 nodes. The same training data of 4975 samples are used
to train the ANN model. The features used as inputs to train the ANN model are expressed in
term of [I, T, IT, I2, T 2, log I, log T ].

Next, the models were tested with the validation data of 556 samples. Thus, The objective
function, mean squared error, of the models are shown in Table 4.

Model
Mean Squared Error
Traning Validation

Nonlinear model 0.0072 0.0226
Unbiased-polynomial model 0.0073 0.0232

Biased-polynomial model 0.0073 0.0233
ANN model 0.0078 0.0241

Table 4: Mean squared error of the models

Table 4 supports the fact that the polynomial models are nested model of the nonlinear model
and thus the residual norm of the nonlinear model is always less than the polynomial model. In
addition, according to Table 3, the parameters c10 and c11 in (37) are in the same order as d2
and d1 in (39) respectively because they are parameters corresponding to the features IT and I
respectively.
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Figure 6: An example of fitting for all models

Figure 6 shows an example of time-series fitting of the nonlinear model, polynomial models
and ANN model. The fitting curves obviously indicated that the nonlinear model can estimate the
output power better than other models. Even thought the results showed that the ANN model
were likely to be the worst model for the prediction, the performance of the ANN model could be
improved by adding more number of hidden layers.

6 Conclusions

This project has proposed the nonlinear model which was derived from the single-diode equiv-
alent circuit model with series resistance. The model parameters were determined by solving the
nonlinear optimization problem. The nonlinear model were compared to the polynomial models
and ANN model and the results showed that the nonlinear model gave the least mean squared
error. This could be due to the fact that the polynomial models are nested models of the nonlinear
model.
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Appendix A MATLAB Code

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %% MATLAB CODE FOR PARAMETER ESTIMATION AND FITTING RESULTS %%
3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 %% the non l inea r func t i on f o r the p r e d i c t i o n as shown in (37) %%
5 fun = @(x , xdata ) ( x (1 ) .∗ xdata ( : , 1 ) .∗ xdata ( : , 2 )+x (2) .∗ xdata ( : , 2 ) .ˆ2+x (3)

.∗ xdata ( : , 2 ) ) .∗ r e a l ( l og ( x (4 ) .∗ xdata ( : , 1 ) . / xdata ( : , 2 ) .ˆ3+x (5) .∗ xdata
( : , 1 ) . / xdata ( : , 2 ) .ˆ2+x (6) . / xdata ( : , 2 ) .ˆ2+x (7) . / xdata ( : , 2 ) . ˆ 3 ) )+x (8)
.∗ xdata ( : , 1 ) .ˆ2+x (9) .∗ xdata ( : , 2 ) .ˆ2+x (10) .∗ xdata ( : , 1 ) .∗ xdata ( : , 2 )+x
(11) .∗ xdata ( : , 1 )+x (12) .∗ xdata ( : , 2 )+x (13) ;

6 %% the i n i t i a l guess as shown in Table 2 %%
7 x0 = [ c1 , c2 , c3 , c4 , c5 , c6 , c7 , c8 , c9 , c10 , c11 , c12 , c13 ] ;
8 %% the c o n s t r a i n t s f o r s o l v i n g the non l in ea r model %%
9 l b n o n l i = [0 ,0 ,− In f ,− In f ,0 ,− In f ,0 ,− In f ,− In f ,− In f ,− In f ,− In f ,− I n f ] ;

10 ub non l i = [ Inf , In f , 0 , In f , In f , 0 , In f , 0 , 0 , 0 , In f , In f , 0 ] ;
11 %% the c o n s t r a i n t s f o r s o l v i n g the unbiased−polynomial model %%
12 l b po lyunb ia s ed = [0;− I n f ] ;
13 ub polyunbiased = [ I n f ; 0 ] ;
14 %% the c o n s t r a i n t s f o r s o l v i n g the biased−polynomial model %%
15 l b p o l y b i a s e d = [− I n f ;0;− I n f ;− I n f ] ;
16 ub po lyb iased = [ I n f ; I n f ; I n f ; 0 ] ;
17 %% use the data only when i r r a d i a n c e I > 0 %%
18 ydata = ydata ( xdata ( : , 1 ) >0 ,:) ;
19 xdata = xdata ( xdata ( : , 1 ) >0 ,:) ;
20 %% d e f i n e the matrix A f o r s o l v i n g l i n e a r l e a s t square problems o f the

polynomial models %%
21 A unbiased = [ xdata ( : , 1 ) xdata ( : , 1 ) .∗ xdata ( : , 2 ) ] ; %A=[ I IT ]
22 A biased = [ ones ( l ength ( xdata ) ,1 ) xdata ( : , 1 ) xdata ( : , 2 ) xdata ( : , 1 ) .∗

xdata ( : , 2 ) ] ; %A=[1 I T IT ]
23 %% s p l i t the data in to t r a i n i n g data and v a l i d a t i o n data %%
24 i n d i c e s = c r o s s v a l i n d ( ’ Kfold ’ , ydata , 1 0 ) ; % t r a i n i n g data 90% and

v a l i d a t i o n data 10%
25 t e s t = ( i n d i c e s ==1) ;
26 t r a i n = ˜ t e s t ;
27 x t e s t = xdata ( t e s t , : ) ;
28 xt ra in= xdata ( t ra in , : ) ;
29 y t e s t = ydata ( t e s t , : ) ;
30 yt ra in= ydata ( t ra in , : ) ;
31 Atra in unbiased = A unbiased ( t ra in , : ) ;
32 Atest unb iased = A unbiased ( t e s t , : ) ;
33 Atra in b ia s ed = A biased ( t ra in , : ) ;
34 Ates t b i a s ed = A biased ( t e s t , : ) ;
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35 %% est imate the model parameters us ing l i n e a r and non l inea r l e a s t
square opt imiza t i on %%

36 xpo ly unbiased = l s q l i n ( Atra in unbiased , ytra in , [ ] , [ ] , [ ] , [ ] ,
lb po lyunb iased , ub polyunbiased ) ;

37 xpo ly b ia s ed = l s q l i n ( Atra in b iased , ytra in , [ ] , [ ] , [ ] , [ ] , l b po lyb i a s ed ,
ub po lyb iased ) ;

38 xnon l i = l s q c u r v e f i t ( fun , x0 , xtra in , ytra in , l b n o n l i , ub non l i ) ;
39 %% Resu l t s (MSE) o f t r a i n i n g data %%
40 y p r e d n o n l i t r a i n = fun ( xnonl i , x t r a in ) ;
41 ypred po lyunb ia s ed t ra in = Atra in unbiased ∗ xpo ly unbiased ;
42 y p r e d p o l y b i a s e d t r a i n = Atra in b ia s ed ∗ xpo ly b ia s ed ;
43 X1 = xt ra in ( : , 1 ) ;
44 X2 = xt ra in ( : , 2 ) ;
45 X f i t = [ X1 , X2 , X1 .∗X2 , X1 . ˆ 2 ,X2 . ˆ 2 , l og (X1) , l og (X2) ] ; % d e f i n e the

f e a t u r e s f o r the ANN model
46 ypred ANN train = p r e d i c t ( Theta1 , Theta2 , X f i t ) ;
47 r e snormpo lyunb ia sed t ra in = norm( y t ra in − ypred po lyunb ia s ed t ra in ) /

l ength ( y t ra in ) ;
48 r e sno rmpo lyb ia s ed t ra in = norm( y t ra in − y p r e d p o l y b i a s e d t r a i n ) / l ength (

y t ra in ) ;
49 r e s n o r m n o n l i t r a i n= norm( yt ra in − y p r e d n o n l i t r a i n ) / l ength ( y t ra in ) ;
50 resnormANN train = norm( y t ra in − ypred ANN train ) / l ength ( y t ra in ) ;
51 r e s u l t t r a i n = [ r e s n o r m n o n l i t r a i n re snormpo lyunb iased t ra in

r e sno rmpo lyb ia s ed t ra in resnormANN train ] ;
52 %% Resu l t s (MSE) o f v a l i d a t i o n data %%
53 y p r e d n o n l i t e s t = fun ( xnonl i , x t e s t ) ;
54 ypr ed po lyunb i a s ed t e s t = Atest unb iased ∗ xpo ly unbiased ;
55 y p r e d p o l y b i a s e d t e s t = Ate s t b i a s ed ∗ xpo ly b ia s ed ;
56 X1 = x t e s t ( : , 1 ) ;
57 X2 = x t e s t ( : , 2 ) ;
58 X f i t = [ X1 , X2 , X1 .∗X2 , X1 . ˆ 2 ,X2 . ˆ 2 , l og (X1) , l og (X2) ] ;
59 ypred ANN test = p r e d i c t ( Theta1 , Theta2 , X f i t ) ;
60 r e s n o r m n o n l i t e s t= norm( y t e s t − y p r e d n o n l i t e s t ) / l ength ( y t e s t ) ;
61 r e snormpo lyunb ia sed te s t = norm( y t e s t − ypr ed po lyunb i a s ed t e s t ) / l ength

( y t e s t ) ;
62 r e sno rmpo lyb i a s ed t e s t = norm( y t e s t − y p r e d p o l y b i a s e d t e s t ) / l ength (

y t e s t ) ;
63 resnormANN test = norm( y t e s t − ypred ANN test ) / l ength ( y t e s t ) ;
64 r e s u l t t e s t = [ r e s n o r m n o n l i t e s t r e snormpo lyunb ia sed te s t

r e sno rmpo lyb i a s ed t e s t resnormANN test ] ;
65

66 %% Plot o f f i t t i n g r e s u l t s o f the p r e d i c t i o n models %%
67 r = randi ( [ 1 l ength ( xdata ) −100] ,1) ; % randomly d i s p l a y the f i t t i n g

r e s u l t s
68 y f i t n o n l i = fun ( xnonl i , xdata ( r : r +100 , : ) ) ;
69 y f i t p o l y u n b i a s e d = A unbiased ( r : r +100 , :) ∗ xpo ly unbiased ;
70 y f i t p o l y b i a s e d = A biased ( r : r +100 , :) ∗ xpo ly b ia s ed ;
71 X1 = xdata ( r : r +100 ,1) ;
72 X2 = xdata ( r : r +100 ,2) ;
73 X f i t = [ X1 , X2 , X1 .∗X2 , X1 . ˆ 2 ,X2 . ˆ 2 , l og (X1) , l og (X2) ] ;
74 y ANN = p r e d i c t ( Theta1 , Theta2 , X f i t ) ;
75 f i g u r e
76 p lo t ( ydata ( r : r +100) , ’ k ’ ) ;
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77 hold on
78 p lo t ( y f i t n o n l i , ’−. r ∗ ’ ) ;
79 p lo t ( y f i t p o l y u n b i a s e d , ’ : bs ’ ) ;
80 p lo t ( y f i t p o l y b i a s e d , ’ : gs ’ ) ;
81 p lo t (y ANN, ’−−mo ’ ) ;
82 hold o f f

Appendix B PV Specification
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SF145-S SF150-S SF155-S SF160-S SF165-S SF170-S

Nominal power Pmax 145 W 150 W 155 W 160 W 165 W 170 W

Module efficiency % 11.8 % 12.2 % 12.6 % 13.0 % 13.4 % 13.8 %

Power tolerance +5 W/ 0 W

Open circuit voltage Voc 107.0 V 108.0 V 109.0 V 110.0 V 110.0 V 112.0 V

Short circuit current Isc 2.20 A 2.20 A 2.20 A 2.20 A 2.20 A 2.20 A

Voltage at nominal power Vmpp 81.0 V 81.5 V 82.5 V 84.0 V 85.5 V 87.5 V

Current at nominal power Impp 1.80 A 1.85 A 1.88 A 1.91 A 1.93 A 1.95 A

Standard Test Conditions (STC): 1,000 W/m2 irradiance, module temperature 25 °C, air mass 1.5. Isc and Voc 
are ±10 % tolerance of STC rated values. Module output may rise due to the Light Soaking Effect. Subject 
to simulator measurement uncertainty (using best-in-class AAA solar simulator and applying Solar Frontier 
preconditioning requirements): +10 %/ -5 %.

SF145-S SF150-S SF155-S SF160-S SF165-S SF170-S

Nominal power Pmax 108 W 111 W 115 W 119 W 123 W 126 W

Open circuit voltage Voc 97.4 V 98.3 V 99.2 V 100.0 V 100.0 V 102.0 V

Short circuit current Isc 1.76 A 1.76 A 1.76 A 1.76 A 1.76 A 1.76 A

Voltage at nominal power Vmpp 76.0 V 76.4 V 77.4 V 78.8 V 80.2 V 82.1 V

Current at nominal power Impp 1.43 A 1.47 A 1.49 A 1.51 A 1.53 A 1.55 A

Nominal Operating Cell Temperature Conditions: Module operating temperature at 800 
W/m2 irradiance, air temperature 20 °C, wind speed 1 m/s and open circuit condition.   

Efficiency reduction of maximum power from an irradiance of 1,000 W/m2 to 200 W/m2 at 25 °C is typically 
2.0 %. The standard deviation for the reduction of efficiency is 1.9 %.

NOCT 47 °C

Temperature coefficient of Isc α +0.01 %/K

Temperature coefficient of Voc β -0.30 %/K

Temperature coefficient of Pmax δ -0.31 %/K

I-V Curve

Certificates and Guarantee 

Contact Information

Module Drawing

All new product classes are subject to immediate certification 
Product guarantee: 5 years (extended garantee upon request) 
Power output guarantee: 90 % for 10 years, 80 % for 25 years

Dimensions (L x W x H) 1,257 x 977 x 35 mm (49.5 x 38.5 x 1.4 in.)

Weight 20 kg (44.1 lbs)

Application class (IEC 61730) Class A

Fire rating (IEC 61730) Class C

Safety class (IEC 61140) II

Snow/wind load* 2,400 Pa (IEC 61646) / 1,600 Pa design load (UL 1703)

Cell type CIS glass substrate (cadmium free)

Front cover Clear tempered glass, 3.2 mm

Encapsulant EVA

Back sheet Weatherproof plastic film (color: black & silver)

Frame Anodized aluminum alloy (color: black)

Edge sealant Butyl rubber

Junction box Protection rating: IP67 (with bypass diode)

Adhesive Silicone

Output cables (conductor) 2.5 mm2 / AWG14 (halogen free)

Cable lengths (symmetrical) 1,200 mm (47.2 in.)

Connectors MC4 compatible

Packing information

This preliminary data sheet is provided to assist you in evaluating this product that is under development.  
Solar Frontier reserves the right, at its sole discretion, to change, modify, add or delete portions of the content at any time without notice. Fl
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2.20 AShort circuit current

Current at nominal power 1.91 A

Temperature coefficient of Isc α +0.01 %/K

Temperature coefficient of Pmax δ -0.31 %/K


