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Abstract

Subspace identification is a tool which used for estimate state sequence and system matrices
of model. The method is very useful because with only prior knowledge (y), we can estimate all
unknown state space variables and parameters. The objectives of this study are to estimate the
model from EEG time series data by using subspace method and to examine the estimated model
with Granger causality (GC) test defined on state space equation. To achieve the objectives,
we compared the Granger causality (GC) test of AR model with GC test on state space model
that are generated from ground truth AR model. The result showed that the structure for GC
test on state space model has the same structure as the test on AR model. Also, we compared
GC test on estimated state space that are estimated from time series data generated by ground
truth AR model. The result showed that the structure for GC test on estimated model is not
the same structure as AR model. The estimation in subspace method is one of the cause for
this error.

1 Background
1.1 EEG Model

Located at the brain and spine, Central Nervous System (CNS) is the place where neural activi-
ties occurred. This happened by potential at gap between Axon and Dendrite called Synapse by
stimulated to surround environment. An electroencephalogram (EEG) is one of tools to measure
brain rhythms by measuring ionic current voltage fluctuations from electrodes placed on the scalp
in special position [1] that specified using international 10-20 system. Each position is labeled with
a letter and a number. The letter means area that electrode lied [2]. For example, F7 means node
number 7 at Frontal lobe area.

Fig.2 is the data of 100 single-channel EEG segments of 4097 samples (23.6 seconds duration)
dependence on recording region and brain state.

From the raw data, EEG are spontaneously non-stationary because statistical properties of the
brain processes vary over time. Also, dynamical parameters of EEG are sensitive to time scales
that involved in the process to get an insight in the working of brain [4]. By using EEG to analyze
human brain activity, there are many mathematical model that describe EEG model. One can be
generally described by linear Autoregressive (AR) model, which expressed as [5] :

2(t) = S A(R)a(t — k) + u(t) (1a)

k=1
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Figure 1: Electrode locations of International 10-20 system for EEG recording. The letters F,T,C,P
and O stand for frontal, temporal, central, parietal, and occipital lobes, respectively.
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Figure 2: Raw data of EEG time series with awake state with eyes open (a) and eyes closed (b).
The others were recorded during seizuring interval (c),(d) and during seizure activity (e) [3]

y(t) = Lx(t) + v(t) (1b)

where x € R™ is sample of brain source with n nodes at time ¢ , ¥y € R™ is an EEG measurement
(result show in terms of time series model from Figure 2) contains m sources at time t , A, € R™"
denotes parameters of past data , L € R"*" means the lead field matrix , © and v are noise from
source and noise from measurement, respectively and noise covariance matrix are given by :
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Granger causality is a tool used for analyzing a brain connectivity. This tool is commonly expressed
in terms of prediction error. The result of Granger causality for EEG indicates data from one part
of the brain cause or does not cause to another part data. There are many approaches to examine
GC Test. In this project, We focus on only two Granger causality test : GC test on AR model and
GC test on state space model.

1.2 Granger causality



Granger causality on AR model For linear AR model, Granger causality are performed after we
estimate the system matrices of AR model shown as the following diagram.

AR Model R .
y<t) Least (A1, Az, Ap) Examine
Square GC test
Estimation

For example, x1(t), x2(t) and x3(t) in AR model have relation shown as:

= zp: apxy(t — k) + Ep: brxa(t — k) + Ep: crxs(t — k) +e1(t)
k=1 k=1

p p
xg(t) Z dkxl t — —|— Z gkxg t - ) + Z hkxg(t — k‘) + Ez(t) (3)
k=1 k=1
p p
= mpai(t— k) + Z npwa(t — k) + Y rras(t — k) + e3(t)
Y11 Y12 X3
with covariance of noise as ¥ = [X9; Yo o3| = Cov(e).
Y31 Y32 X33

Then, we assume that x5(%) is not a cause for x;(t) so the new model will be reduced and remain
only x1(t) and z3(t)

x1 Zakwlt— +chx3t—k)+€1()
o ) 4)
x3(t) = ka:vl (t—Fk)+ Zrkacg k) + &5(1)

. . . DT I
with noise covariance of reduced model 7 = [ 11 131

SN
After that, we examine if x2(t) has causality relation to x;(¢) by determining log ratio of residual

error of z1(t) for each model [6].
R

b
fzg—):ﬂl |(E3 1Og 211 (5)

In general, XY > 31 because variance is minimized when data is added. From (5), if Faooszy |o3 =
0, it means ¥4 = Xy;. Therefore, x2(t) is not cause x1(t). On the other hand, z2(t) cause to
r1(t) when Fo, 02, > 0 because x1(t) in full model usually have more fitting than zi(t) in
reduced model so that Eﬁ always more than X11. Also, the result of GC test on AR model can be
derived as (Ay);; = 0 and examine which z; is not a cause for ;.

Granger causality on state space model In case of state space model Granger causality test,
state space equation is

Z(t+1) = Az(t) + w(t) (6a)

y(t) = C=(t) + v(t) (6b)

In this Granger causality test, we examine if y; is a cause for y; by removing y; from the model. To
remove y; from the model, we force j column of C from (6) be zero so that full model become

reduced model. Then, determine residual error of both models. Finally, we determine log ratio of
residual error of z; for each model. [7] :

- 1o 2 7
yj—y; | All others y = 108 ’2‘ ( )
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where |XF| and || are prediction error covariance of z; for reduced model and full model,
respectively. Also, both ¥/ and ¥;; are calculated from optimal mean-squared error estimation
which is Kalman filter (further details in section 3.2). The result of Granger causality test : when
Fy;—y; | All others y > 0 because y;(t) in full model usually have more fitting than y;(t) in reduced
model and F = 0 means X% = ¥;;. Therefore, y;(t) does not cause y;(t).

2 Problem Statement

In this project, There are two main objectives by the following.

e Problem 1 : We estimate the system matrices of state space (6) with free parameters from
time-series data by using subspace method because only measurement variable (y) are given
and signal source (z) are not measured.

e Problem 2 : We examine Granger causality test from any estimated state space model which
are estimated by using subspace method from the previous problem. The test result from (7)
(F) is real source (x). The result from GC test can refer to brain connectivity.

3 Methodology

In this project, we estimate system matrices of state space model without structure from (6). We
choose state space model to examine Granger causality. The scheme of model estimation is shown
in the following diagram :

y(t) Stochastic
Subspace
Identification

(A, C, W, V)
Set structure
for Reduced model
GC test
(A, I,W) (A 17, W)
K solve solve
DARE DARE
P
Coefficient Examine
CAFK GC test(Fi;) pR
f
Statistical Statistical zero pattern
zero pattern Test Test




Our scheme starts with time-series data y(¢) which is the only data we know. y(t) is generated
based on Autoregressive ground truth model. From (6), we do not know sources : z(t) and internal
noise : w(t) which is problem to compute system matrices since we want to estimate 4. No
parameters are known. The variables and parameters describe in the following table.

Table 1: Variables and parameters in this project

Variables Parameters
Measured Unknown Known Unknown
y(t) () A
u(t) C

w, v

We use subspace method to identify all system matrices (.4, C' and noise covariance). Then, set
the estimated structure for Granger causality test by letting C' = I for full model and forced ;"
column of full model C for reduced model, denoted as C* or I"? for C' that remove j** column.
There are two method to examine Granger causality test. First, solve discrete Riccati equation
for both model that the solution is covariance of prediction error and compare the covariance of
prediction of reduced model to full model by using Granger causality test (7), the result (F have
to be verified by statistical test to make sure that the zero pattern of model is satisfy. Another
method is to solve gain matrix from DARE (K and examine coefficient C.A¥K. The result which
verified by statistical test is also zero pattern of model.

3.1 Stochastic subspace method

We estimate sources and system matrices (in this case : A, C,WW,V') by using stochastic subspace
method. The estimation process starts by estimating sources. Since, EEG linear model have no
input so that the estimation will use stochastic subspace method. In this method we focus on
estimate state sequence first. The process starts by dividing data by time to obtain past data and
future data. Then, project the future output (Y}) onto the past output (Y,) space with zero initial

state(X'o:[O o 0 L 0])[8]

A
Oi =Y 2i-1/Yo|i-1 =Y/ Yy (8)

where O; is the oblique projection and Y{|;_; is measurement data from ¢ =0 to ¢ =i — 1. After
that, compute the state from single value decomposition (SVD) factorization.

o e Op V| L T
a_wlwuo(JkJ_m&m 9)
Since O; = Fif(i [9] and there are some non-singular matrix T that I'; = UlE}L/QT so that we
obtain

X, =Trio; (10)

Then, estimate system matrices in least-square sense by forming the equation
Xiq| _|A be
Yiji C

i _ Xi+1 ol
Yija| "

(11)
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3.2 Granger causality test on estimated state space model

This process happens after structured system matrices are solved. We use Granger causality test
to examine brain connectivity of estimated model. In this process, Before the process starts, we
assume that there is no measurement noise and wu(t) is also uncorrelated. In this process, we
examine Granger causality test in two models : full model and reduced model. For full model,
we assume y(t) has the same dimension as x(t). That means we force number of measurement
sources equals to number of brain sources. This means we let C = I. To reduce the full model,
we assume each Cj = 0 (column j of C') which means we assume that value z; does not cause all
others z (since we assume that y(t); = x(t); for all j) . Therefore, y(t) is linear combination of
all z except for ;.

Full model : z(t+1)
Reduced model : z(t+1)

Az(t) +w(t) , y(t)
Az(t) +w(t) , y(t)

Cz(t) (13a)
CR(t) (13b)

where C' = I and C* is reduced matrix that the 5% column of C'is zero.

After that, we find estimation error covariance : ¥ = Cov(z — 2;|4_1) of both model. To obtain
optimal prediction error covariance, we estimate Z by using minimum mean square error because
with this method, the error from noise is minimized. Therefore, we will get & = E{z; | x;_, }where
y;~, is all output data from the past up to time t — 1 and # = E{zf* | /"7 } for reduced model.
After this, we calculate estimation error covariance by using Kalman Filter [10] because of optimal
method in linear model form :

Boy1)e = Ay -1 + ASy —1CT(C%, | 1-1CT + R) "y — Ciy lt—1)

R R (14)
= A&y 41+ K(ye — Geje-1)

where K = A%, |;_1CT(C%,;—1CT 4+ V)~ is Kalman gain K from (6) and w; can be expressed
by y¢+ — 9¢|+—1 where 7 is estimated by MMSE (§ = E{y; | y;_;}) and for reduced model we will
get eft from yft — E{y*| y77}. From (14), time update gives a recursive solution. Therefore, we
can express measurement and time update of ¥ as Riccati recursion [10].

Bip1)e =AYy o1 AT+ W =AY, | —1CT(C%, \ —1CT+V)Tles, \ 1 AT
= ALy it AT+ W — A CT (0%, \ 11CT)7Ien, \ -1 A"
(Assume that V' is zero)

(15)

From (15) , this equation is the optimal way to find state prediction error covariance [11]. However,
we assume observation noise covariance is positive definite, (A, C) are observable and (A, W) are
controllable so that we can solve steady state Kalman filter instead. The estimation of steady state
Kalman filter satisfies Discrete Algebaric Riccati Equation (DARE) :

Y = ASAT + W — AxCT (cxcT) 1en AT (16)

There are two methods to examine Granger causality. The first method is to find log ratio of
covarience of prediction error (3 from solving of Riccati equation). Then, we suggest to determine
the time-domain Granger causality shown as : [7]

-ij—mci | All others x = log ﬁ (17)
ii

where |S5| and || is estimation error covariance of z; for reduced model and full model, respec-
tively. In general, X% is usually larger than X;; because variance is minimized when data is added.
If the result is zero, it means S| = |$;|. Therefore, x; does not affect x; conditioning to all
others x. Otherwise, the value is always positive because reduced model is come up with more



covariance magnitude.

After we solve (16) the solution of DARE remains only T when we assume no measure noise
and u(t) is uncorrelated. (See Appendix 6.1) Thus, K from (14) by this assumption shown as :

K =AxCT(cxc” +v)!
T
—A [lel )3 /S lep} s
Because only Y17 is nonzero matrix (18)
T
= A [I 0 ... o}
T

=[aT 10 ... 0

Another method to examine Granger causality is to find the coefficient C’Z-A’C“Kj when k£ =
0,1,...,p — 1. Denote A. as state observer closed loop observer gain, the results of coefficient
are Ay, for all k which have same structure. Therefore, A, yields the necessary and sufficient
condition by the Cayley-Hamilton Theorem. (See Appendix 6.2)

4 Experiments

There are two experiments in this section. Both experiments are tested from same information,
simultaneously. Also, both experiments are defined from AR ground truth model from (6). The
objectives of the first experiment is to compare F when we solved P by solving DARE from (16)
with P by let P = W. The result should be the same structure from the calculation in the previous
section. The objective of the second experiment is to measure Granger causality test from matrices
that estimated by using subspace identification. The result of this experiment should be the same
structure as previous experiment since we generate from the same ground truth AR model.

The following example, ground truth AR model is generated with three lags (p) with three observer
variables. From Fig. 3, we have structure of A from gen_sparseAR.m.

sparsity of AR coefficients

Figure 3: The sparsity for each A; that generated from gen_sparseAR.m

>> A
A =

-0.1095 -0.0665 0 0.0317 -0.1316 0 -0.0013 -0.2247
0.1239 0.2266 -0.1540 -0.2102 0.1622 -0.0998 -0.0735 -0.0335
0 0 -0.3225 0 0 0.0523 0 0
1.0000 0 0 0 0 0 0 0
0 1.0000 0 0 0 0 0 0
0 0 1.0000 0 0 0 0 0

0
0.0816
0.0154

0

0

0



0 0 0 1.0000 0 0 0 0
0 0 0 0 1.0000 0 0 0
0 0 0 0 0 1.0000 0 0

4.1 Verify GC test result from DARE compare to reduced DARE

The object of this experiment is to show the equivalence of GC tests on AR model and state space
model where ground truth model is AR model. Since we know that the result of GC test from AR
model (5) can be derived as (Aj);; = 0 (that means x;(t) does not cause x;(t)), the expected
outcome of GC test on state space model based on ground truth AR model should be the same as
the result from AR model. In this experiment, ground truth AR model is generated from MATLAB
file: gen_sparseAR.m [12]. The process of this experiment starts with format state space model
from ground truth AR model.

z2(t+1) = Az(t) + w(t) (19a)
y(t) = Cz(t) + () (19b)
where
A Ay A, u(t) v(t)
I 0 0 0
A= : ,C:[L 0 0},w(t): and e(t) =
0 1 0 0 0

Then, we set state space system matrices for GC test by given y(t) = z(t). Therefore, C for
GC test in this experiment becomes C = [I 0 ... O} for full model. For reduced model, the

structure of C'? for reduced model is C for full model which j* column is removed. Moreover,
we let measurement noise (£(t)) to be zero and signal noise are uncorrelated for GC test. After
that, we solve Riccati equation for both model so that we obtained residual error for both models.
Finally, we examine GC test from (17). The process of this section shown as follow :

System matrices
gen_sparseAR.m [~ for —> Reduced model
GC test
(A,C,W) (A, CF, W)
solve solve
DARE DARE
P
Examine
GC test(Fj;) PR
>> F
F =
0.0138 0.1019 0.0000
0.0614 0.0954 0.0423
0.0000 0.0000 0.1232



F r =
0.0138 0.1019 0.0000
0.0614 0.0954 0.0423
0.0000 0.0000 0.1232

where F is function from Granger causality test by solving DARE and F, is function from the test
that given > = W. The result showed that each element of F and F, is the same value so that we
can reduced DARE when there is no measurement noise (V). Another measurement is to measure
coefficient CA*K for k =0,1,...,p— 1.

>> CBK
CBK(:,:,1) =
-0.1095 -0.0665 0.0000
0.1239 0.2266 -0.1540
-0.0000 -0.0000 -0.3225
CBK(:,:,2) =
0.0317 -0.1316 0.0000
-0.2102 0.1622 -0.0998
0.0000 -0.0000 0.0523
CBK(:,:,3) =
-0.0013 -0.2247 0.0000
-0.0735 -0.0335 0.0816
-0.0000 0.0000 0.0154

CBK(:, :,1i) is the result of CAi_lK. The result satisfied that C’A'C“K = Aj,1 which each
A; has the same structure.

4.2 Subspace Identification

After we verified that GC test from state space models with ground truth AR model give the same
result as GC test on AR model, we perform GC test for any estimated state space models in this
experiment. The expected result of GC test on estimated state space model in this experiment is
the same result as GC test on AR model. The estimated state space models were obtained by using
subspace method with time series data from gen_EEG_sources.m based on system matrices
from (19) which were generated from gen_sparseAR.m and lead field matrix L is random with
normal distribution. In procedure of subspace method, we use n4sid.m which is one of the
subspace methods to determine system matrices and also noise variance in terms of innovation
form [13] [14].

2(t+1) = Az(t) + Ke(t) (20a)
y(t) = C(t) + e(t) (20b)

We assume that the dimension of estimated state space matrices are the same as dimension of all
system matrices from (19). After subspace method were done, we obtained all system matrices
(A, C with covariance of noise). Then, we set state space model for GC test (13). Finally, we
examine GC test from (17). The process of this section shown as follow :



We compared Granger causality test result between Autoregressive model (F) and estimated state
space model (F_ss). For estimated state space model, we choose np order because there is the
same dimension as state space model with Autoregressive ground truth model. The results showed
that F from state space model that estimated from subspace identification are not the same value

gen_sparseAR.m

gen_EEG_sources.m

Perform

with covariance

GC test

(A1)

Stochastic
Subspace
Identification

(A,0)

of noise

Set structure
for

of noise

GC test

and not the same structure as AR model GC test result
The following command lines are the result of subspace method by using n4dsid .

>> m_free.A

0.8404
0.0382
-0.2885
0.0272
-0.0250
-0.0961
-0.2600
0.1145
0.0023

>> m_free.C

ans =

-0.1071
-0.0760
-0.0617

>> m_free.K

ans =

0.3378
-0.2572
0.4736
0.0741
-0.3851
0.0074
0.0217
-0.0386

o

.0426
.5104
.7280
.0407
.0103
.2028
.0028
.0036
.0499

.2170
L1371
.3300

.3066
L2233
.3590
.0272
.4753
.0540
.0167
L1176

O O OO O O o o o

o

.3234 0.1713
.4009 -0.2055
.2499 -0.2523
.0019 -0.7313
.2463 0.3598
.1553 0.1651
.2560 0.1142
.0641 -0.0586
.0816 -0.0631
.1305 -0.2884
.0841 -0.1886
L1171 -0.4557
L1211
.3220
.0253
L1319
.0151
.0168
.0100
.1028

10

0.
-0.
-0.
-0.
-0.

0.
-0.

0.
-0.

-0.
-0.

0201 0.1313 0.
8570 0.1781 0.
4335 -0.3711 -0.
1302 0.2104 -0.
8430 -0.2462 -0.
0630 0.4494 -0.
1336 0.7016 0.
2121 -0.4329 -0.
0847 -0.0330 0.
1751 0.0069 -0.
1337 0.0074 -0.
.2822 -0.0049 -0.

with covariance

1585
4212
0421
1701
3005
6612
4565
1152
4278

0754
0535
1486

-0.
-0.
.4549

.0846
.5479
.5630
.2910
.2350
.1000
.0333
.2433
.5835

2888
1948

-0.
-0.
.0420

.1962
.8056
.3287
L1178
.0208
.0288
.11le61
.5690
.1160

0261
0234



-0.1682 0.2019 0.0617

>> m_free.NoiseVariance

ans =
1.0e-03
0.2911 0.1987 0.4106
0.1987 0.1453 0.2778
0.4106 0.2778 0.8115
After we obtain system matrices, we set C' = [I 0 ... 0f, then examine Granger causality

test with function GCTest .m

>> F
F =
0.0138 0.1019 0.0000
0.0614 0.0954 0.0423
0.0000 0.0000 0.1232
>> F_ss
F_ss =
0.1427 2.2088 0.1189
0.0390 0.9191 0.1049
0.9992 1.3230 0.0430
>> CBK_ss

CBK_ss(:,:,1) =

0.1643 -0.0624 -0.1159
0.2141 -0.4245 0.3033
0.5900 -0.5177 -0.0304

CBK_ss(:,:,2) =

0.4062 -0.3262 -0.0625
0.0716 -0.0771 0.0636
-0.1300 0.0751 0.1631

0.2099 -0.1713 0.0321
-0.2578 0.1299 0.1008
-0.6079 0.4997 0.0983

11



The reason can be probably the fitting of estimated model (m_free : §) is not high enough
compared to actual data. The comparison of time series data are shown in Fig. 4
As we look closer at the estimated time series data, the estimated data (§) followed the actual

Simulated Response Comparison

2 T T T T T T
(L z(y1) ]
— m_free: 37.63%
>
0
-1
1 T
0]
B sl z(y2) ]
2o m_free: 42.18%
6_ >
IS 0
<
-0.5
2
;e z(y3) ]
Q m_free: 39.31%
0
Il

_1 1 1 1 1 1 1 1
500 1000 1500 2000 2500 3000 3500 4000

Time (seconds)

Figure 4: Compare time series data with the data that we estimate from subspace identification
with 4097 samples

data (y) until reach 25 datas in which § amplitude started to be unchanged follow to y

Simulated Response Comparison

2 T T T
1 z (y1) |
_ \MWW m_free: 37.63%
>
ot
-1
1
o
© 05F z(y2) B
2o m_free: 42.18%
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S 0
<
0.5
2
1k z(y3) i
o V\/\/WW m_free: 39.31%
ot

5 10 15 20 25 30 35 40 45 50
Time (seconds)

Figure 5: Compare time series data with the data that we estimate from subspace identification at
first 50 datas
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5 Conclusions

Subspace identification is the method used for estimate system matrices and state sequence. This
method can be applied in EEG time series data that could be described in Autoregressive (AR)
model. We learn brain connectivity of state space model by using Granger causality (GC) test. We
performed GC test and compare the result. It showed that GC test from AR model come up with the
same result as GC test from state space model. Therefore, we can apply EEG time series data into
state space model. Moreover, we examine GC test based on state space model that are estimated
from time series data with ground truth AR model by using subspace method. The result of that
GC test is not the same structure as the structure of AR model. From the fitting of estimation
sources (7), we imply that estimation error is one of causes for failure experiments. However, we
need to explore more cause in this experiments and learn about solution leads to expected result.
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6 Appendices

6.1 Simplification of DARE applied to AR model

For AR model case, we examine GC test that x;(t) causes or does not cause x;(t) by comparing
noise covariance of reduced model (3£ : Noise covariance when we remove z; from the model.)
and full model by (5). When we determine GC test on state space model based on AR model (19),
noise covariance can be calculated by using steady state Kalman filter that satisfies discrete Riccati
equation (16). In this section, we demonstrate that the solution of discrete Riccati equation can be

simplified to ¥ = E%pl 12 = Wi 0 We can simplify ¥ that we solve from into more similar
Yy Yoo 0 O
Wiy 0 ... 0
: npXn 0o . 0
form (16) by given | W € R""*"” and W = | ~ '
0 0
Given A = [Al Ay .. Ap,l} and ¥ € R™*™ gre in formation as : where
Ui;j € RP*P denote the (4,5)™ block of U
From
Y =ASAT + W — AxcT(czcT) ton AT
we simplify in each term
T
AnAT — U Vv A I
i vl R || AT| 0
[ AUAT + AVTAT + AVAT + ARAT | AU + AVT (21)
- UAT + VAL U
1
U |4 0
vl U ||o
AU + AVT
= First block column of U
(22)
- p -
> AN
i=1
B Xn
N Yo
L Zp-11
P
CSAT = (ASCTY = | Y2147 | S B2 .. Sip (23)
i=1
cxot =y, (24)

14



Then, combine all above terms (21), (22), (23) and (24) into DARE

AUAT + A, VTAT + AVAT + A,RAT | AU + A,V7

- UAT 4 VAT U
. -
W, 0 0 > A
i=1
0o - 0 211 T2
+ . . - 221 (211) 1[ lel,iAzT 211 212 El,pfl
0 0
L Yp-11 ]
(25)
From (21)
X1 Y12 ... Xip-a1 Ai i
UAT +vAT = | 20 P2p-t = S AT
: . : :
[ 2p-1,1 2p—1,p-1 Ay Xp-1p
~ -
'2121,1‘141- (26)
1=
S gAY
= =1
P
Sp-1:47
Li=1 i

p
Determine X971 Y91 = (First row blocks of UAT + VAg) — 211(21_11) ZEMAiT
i=1

p p
=Y S AT = 84T =0
=1 =1

For the others 7,39 ; = ¥ ; — 211(21,1)_12171- = 0. This means 3; =0 forall i =1,2,...,p

P
Determine Y31 Y31 = (Second row blocks of UAT + VA;) — Ezl(Eﬁl) Z ZLiAiT
i=1

P
= Z EQ’iAZT =0 (2271‘ =0 for all l)
i=1
For the others i,%3; = Yo, — %91 (X11) X2, = 0 where i = 2,3,...,p. This means X5, = 0 for

alli=1,2,...,p
Consequently, ¥; ; =0 foralli=1,2,...,p,j = 1,2,...,p except for X1y

Determine X3 Y1 = AlEuAlT + Wy — A1211(211)712171A?

The result of Riccati equation remains only block 31; = Wj. Therefore, it satisfies that ¥ = W
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6.2 CA*K coefficients

The results of GC test on AR model (5) can be derived as coefficient (Ay);; = 0, Vk which means
xj(t) does not cause z;(t). Meanwhile, the results of GC test on state space model (7) can also be
measured by CA*K coefficient. When C;A*K; = 0,Vk, i =1,...,n—1, it means z;(t) does not
cause x;(t) In this section, we showed that the coefficient from GC test on AR model have same
structure to the coefficient from GC test on state space based on ground truth AR model.

Coefficient of GC test on AR model : (Ar)ij =0,Vk (27a)
Coefficient of GC test on state space model : CiAkKj =0,vk,i=1,...,n—1 (27b)

Given state observer closed loop observer gain A. = A — KC. From (6) we have

AC:A_KC
0 Ay ... A,
00 ... 0 (28)
0O ... I O

Then, multiply by C on the left hand side and K on the right hand side :

0 Ao ... AF|M
I
A o 0 ... O
CAEK =T 0 ... 0 o 0 (29)
0 I 0 0
when k£ =0 CK = A
when k=1 CA.K = Ay

when k = 2 CA’K = As

whenk=p—1 CA'K =A,

Because A; , Ay, ... , A, have the same structure so that if we assume (A;);; = 0 that means
(Ac)12 = 0. Therefore, A. = A — KC yields the necessary and sufficient condition CZ-A?KJ- =0
by the Cayley-Hamilton Theorem.

6.3 MATLAB Code

Here is MATLAB code for experiment from section 4 : main.m that contain subspace method
and GC test

clec; clear all;

S/ S/S/SS/S)S/SS/S/S/S/S/SrS/s/s/S/5//e DATA PARAMETERS %6/8/8/8/8)/s/8/e)/s/8/e/s/s/8/e)/s/S/e/S/S/ /86866858656

n = 3; % state space and observation variable dimension
p = 3; % AR order
density = 0.5; % density of AR matrix

RS/ S/S/SSSS/SS/SS/S/S/s/S//s/5/e DATA GENERATION O//8/s/s/s)s/S/e/s/S/s/s/s/s/e)/s/S//s s/ s/s/s/S/e/s/S/s/s/s/ 5/

[ind_z,ind_nz, Atrue ,ind_z_3D] = gen_sparseAR(n,p,density); %generate AR model
A =[]
for i=1:p
A = [A Atrue( i)]
end
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C = [eye(n) zeros(n,nx(p—1))]: % generate C = [I, 0,...,0 ]
W = zeros(n%p,nxp);
V = zeros(n,n);
E = eye(nxp); % generate V
S = zeros(nxp,n); % generate S
for i= 1:n

W(i,i) = rand();

V(i,i) = 0.00001*rand();
end
8/8/8/8/8/8/8/8//8/8/8% SUBSPACE IDENTIFICATION with GC TEST %8/e/e/e/e/s//s/s/s/s/se
[y,L_true] = gen_EEG_sources(Atrue,n,p);
u = zeros(size(y));
z = iddata(y’,u’,1);
[m_free,x0] = n4sid(z,nxp, 'ssp’, free', ts',1); % Choose order np
C_hatGC = zeros(n,nxp);
C_hatGC(1:n,1:n) = eye(n); %Set C_hat for GC Test
W_hat = m_free.K«m_free. NoiseVariancexm_free .K'; % Ke(t)e(t) 'K’ in né4sid
S_hat = m_free.K«m_free. NoiseVariance; %Ke(t)e(t)' in n4sid
V_hat = m_free. NoiseVariance; %e(t) in né4sid
[F_ss,CBK_ss] = GCTest(m_free.A,C_hatGC,W_hat,V,S E,n,p);
SIS/SISISISISISISISISISISIS/S/S/Sle GC TEST for GIVEN STRUCTURE Y8/8/8/e)/e/e)/e/s/s/s/s/s/s/s/s/s/s/sso
[F.CBK] = GCTest(A,C,W,V,S,E,n,p);
F_r = GCReduced(A,C,W,V,n,p); %GC Test when P=W

We generate A from gen_sparseAR.m

function [ind_z,ind_nz,A,ind_z_3D] = gen_sparseAR(n,p,density)

% gen_sparseARX generates a sparse vector autoregressive model with exogenous

inputs

% [ind_zz ,ind_nz ,A,B] = gen_sparseARX(n,p,m,q, noise_var ,bdensity ,Num)

% This code is generate only p in ARX Model

% ARX

% y(t) = Alxy(t—1) + A2xy(t—2) + ... + Apxy(t—p)+ Blsxu(t—1) + B2xu(t—2) +
Bg+u(t—q) + e(t)

%

% 'A’" represents AR coefficients Al,A2,... ,Ap and is stored as a p—dimensional
array

% 'B’ represents X coefficients B1,B2,... ,Bq and is stored as a g—dimensional
array

% The input arguments are

% 'n’: dimension of output

% 'p': order of 'AR’ in ARX model

% 'm’: dimension of input

% 'q': order of 'X' in ARX model

% 'noise_var ': variance of u(t) (noise)

% 'density ': the fraction of nonzero entries in AR coefficients

% 'Num’: number of data points in time series

%

% The AR coefficients are sparse with a common sparsity pattern. The

% indices of nonzero entries are saved in 'ind_nz'’

%

% 'y’ is a time series generated from the modAel and has size n x Num

% y = [y(1) y(2) ... y(Num)]

%

% if p=20, 'y' is simply a random variable. In this case, A is the

% covariance matrix of u with sparse inverse.

%% Static case

if (p==0),
S = sparse(2xeye(n)+sign(sprandsym(n,density)));

L j]=find (S);
= S+sparse(ceil (max(0,—min(eig(S))))*eye(n));

= chol(phi);

35

[i
S
A = S\eye(n); % covariance matrix with sparse inverse
R
y

= R's«randn(n,Num); % y reduces to a random variable with covariance
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89
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92
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94
95
96
97
98
99

ind_nz = sub2ind ([n n],i,j);he
figure; plot_spy(ind_nz,n, "image’);
title( ' correct sparsity’');
return;

end

%% Randomize AR coefficients

MAX_EIG = 1;

diag_ind = find(eye(n));

k = length(diag_ind);

diag_ind3D = kron(n"2%(0:p—1) ' ,ones(k,1))+kron(ones(p,1),diag_ind);

A = zeros(n,n,p);
S = sprand(n,n,density)+eye(n);

ii = 0;
while MAX_EIG,
ii=ii+1;
for k=1:p,
A(:,:,k) = 0.1xsprandn(S);
end
¥ T T T A AT
poles = —0.7+2x0.7«rand(n,p); % make the poles inside the unit circle
characeq = zeros(n,p+1);
for jj=1:n,
characeq(jj ,:) = poly(poles(jj.:)); % each row is [1 —al —a2 ... —ap]
end
aux = —characeq (:,2:end);
A(diag_ind3D) = aux(:); % replace the diagonal entries with stable
polynomial
¥ T e e A A AL AT AT
AA =[];
for k=1:p,
AA = [AA A(:,: k) ];
end
AA = sparse ([AA ; [eye(nx(p—1)) zeros(nx(p—1),n)]]);
if max(abs(eigs(AA))) < 1
MAX_EIG = 0;
end
end
abs(eigs (AA))
ii
%6 the sparsity pattern of Al,A2,... , Ap
ind_nz = find (S)
ind_z = find (~S);

ind_z_3D = find (~A);

figure;

subplot(1,2,1);

spy(ind_nz, 'r’,n);title( 'sparsity of AR coefficients');

%% Generate time series

% noise_var = 0;
%noise = sqrt(noise_var)xrandn(n,Num);
%u=rand (m,Num) ;

%for i=1:Num
%norm_u=norm(u(:,i));
%if norm_u <=1/3
% u(:,i)=[0;0];
%elseif norm_u <=1/3
% u(:,i)=[1;0];
% else
% u(:,i)=[0;1];
%  end
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100 %end

After we obtain A, we can generate time series data from gen_EEG_sources.m

function [y,L_true] = gen_EEG_sources(A_true,n,p)
%number of EEG

noise_var=0.01;

density =0.5;

xlp=rand(n,p);
[x]=gen_time_series (A_true, noise_var ,xlp);

© 0 N O U A W N

L_true = randn(n,n);
y = L_truexx;

-
o

For state space Granger causality test, we usually test from GCTest .m, which compute both F
and coefficient of CA*K

1| function [F,CBK] = GCTest(A,C,W,V,S,E,n,p)

2| W//8/8/8/8/8/e/8/s/s/s/s/s/s/s/s/s/le Full model Y8/e/e/s/e/s/s/s/s/srs/s/s/ss/s/s/s/s/s/s/s/s/s/s/s/S/s/S/S/s//e/s)/s/e/s/6Vo
3

4| [P,L,K] = dare(A’,C" \W,V,S ,E);% solve RICCATI

5

6| Y /)8/8/6/6/5/// Reduced model Y//e/8/8/8/s/s/s/s/s/s/s/s/s/s/s/s/s/s/s/s/S/s/s/S/s/S//s)/s)/s/e/s/So
7

8|/%————————— solve RICCATI for all reduced model

of for i=1l:n

10 Creduce = C;

11 Creduce(:,i) = [0]; % force ith column of C to be zero

12 [Preduce ,L, Kreduce] = dare(A’, Creduce’ ,\W,V,S E);

13 eig (Preduce)

14 CR(:,:,i) = Creduce;

15 PR(:,:,i) = Preduce;

16 KR(:,:,i) = Kreduce;

17| end

18| %—————— Collect all P(i,i) for all reduced model

10| diagPR = []; % P(i,i) for reduced model

20| for i=1:n

21 diagPR = [diagPR diag(PR(:,:,i))];

22| end

23| diagPR = diagPR"’

24| diagP = diag(P)’ % P(i,i) for full model

25| %

26

27| S S/S/ S/ S/S/S/S/ /S Granger Causality Y888/ /eSS s/s/s/s/s/s/s/s/s/s/S/s/s/s/s/s/s/s/s/sso
28

29| % Calculate GC for all components

|F = []; % GC(i,j) is Granger cause from i to j

3if for i=1l:n

32 for j=1:n

33 F(j.,i) = log((diagPR(i,j))/(diagP(j))); %F from covariance matrix

34 end

35| end

36| for i = 1:p

37 CBK(:,:,i) = Cx(AK'«C)"(i-1)xK";

38| end

39 | VS0V S/S)S S/ S5 S8 S5 S S /S S 8 S S8 8 0 /) 6 6 3 /) 66 86 0686 6 6/ 8/ /663 8/ 666/ 8/ 6)/6/6/ 8/ 5/ 6/ 66/ 8/ /6o
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