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Abstract

Subspace identification is a tool which used for estimate state sequence and system matrices
of model. The method is very useful because with only prior knowledge (y), we can estimate all
unknown state space variables and parameters. The objectives of this study are to estimate the
model from EEG time series data by using subspace method and to examine the estimated model
with Granger causality (GC) test defined on state space equation. To achieve the objectives,
we compared the Granger causality (GC) test of AR model with GC test on state space model
that are generated from ground truth AR model. The result showed that the structure for GC
test on state space model has the same structure as the test on AR model. Also, we compared
GC test on estimated state space that are estimated from time series data generated by ground
truth AR model. The result showed that the structure for GC test on estimated model is not
the same structure as AR model. The estimation in subspace method is one of the cause for
this error.

1 Background

1.1 EEG Model

Located at the brain and spine, Central Nervous System (CNS) is the place where neural activi-
ties occurred. This happened by potential at gap between Axon and Dendrite called Synapse by
stimulated to surround environment. An electroencephalogram (EEG) is one of tools to measure
brain rhythms by measuring ionic current voltage fluctuations from electrodes placed on the scalp
in special position [1] that specified using international 10-20 system. Each position is labeled with
a letter and a number. The letter means area that electrode lied [2]. For example, F7 means node
number 7 at Frontal lobe area.
Fig.2 is the data of 100 single-channel EEG segments of 4097 samples (23.6 seconds duration)
dependence on recording region and brain state.
From the raw data, EEG are spontaneously non-stationary because statistical properties of the

brain processes vary over time. Also, dynamical parameters of EEG are sensitive to time scales
that involved in the process to get an insight in the working of brain [4]. By using EEG to analyze
human brain activity, there are many mathematical model that describe EEG model. One can be
generally described by linear Autoregressive (AR) model, which expressed as [5] :

x(t) =
p∑

k=1
A(k)x(t− k) + u(t) (1a)
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Figure 1: Electrode locations of International 10-20 system for EEG recording. The letters F,T,C,P
and O stand for frontal, temporal, central, parietal, and occipital lobes, respectively.

Figure 2: Raw data of EEG time series with awake state with eyes open (a) and eyes closed (b).
The others were recorded during seizuring interval (c),(d) and during seizure activity (e) [3]

y(t) = Lx(t) + v(t) (1b)

where x ∈ Rn is sample of brain source with n nodes at time t , y ∈ Rm is an EEG measurement
(result show in terms of time series model from Figure 2) contains m sources at time t , Ak ∈ Rn×n

denotes parameters of past data , L ∈ Rm×n means the lead field matrix , u and v are noise from
source and noise from measurement, respectively and noise covariance matrix are given by :[

Q S
ST R

]
= E

{[
u(t)
v(t)

] [
u(t)
v(t)

]ᵀ}
(2)

1.2 Granger causality

Granger causality is a tool used for analyzing a brain connectivity. This tool is commonly expressed
in terms of prediction error. The result of Granger causality for EEG indicates data from one part
of the brain cause or does not cause to another part data. There are many approaches to examine
GC Test. In this project, We focus on only two Granger causality test : GC test on AR model and
GC test on state space model.
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Granger causality on AR model For linear AR model, Granger causality are performed after we
estimate the system matrices of AR model shown as the following diagram.

AR Model
Least
Square

Estimation

Examine
GC test

y(t) (Â1, Â2, . . . , Âp)

For example, x1(t), x2(t) and x3(t) in AR model have relation shown as:

x1(t) =
p∑

k=1
akx1(t− k) +

p∑
k=1

bkx2(t− k) +
p∑

k=1
ckx3(t− k) + ε1(t)

x2(t) =
p∑

k=1
dkx1(t− k) +

p∑
k=1

gkx2(t− k) +
p∑

k=1
hkx3(t− k) + ε2(t)

x3(t) =
p∑

k=1
mkx1(t− k) +

p∑
k=1

nkx2(t− k) +
p∑

k=1
rkx3(t− k) + ε3(t)

(3)

with covariance of noise as Σ =

Σ11 Σ12 Σ13
Σ21 Σ22 Σ23
Σ31 Σ32 Σ33

 = Cov(ε).

Then, we assume that x2(t) is not a cause for x1(t) so the new model will be reduced and remain
only x1(t) and x3(t)

x1(t) =
p∑

k=1
a′kx1(t− k) +

p∑
k=1

c′kx3(t− k) + ε′1(t)

x3(t) =
p∑

k=1
m′kx1(t− k) +

p∑
k=1

r′kx3(t− k) + ε′2(t)
(4)

with noise covariance of reduced model ΣR =
[
ΣR

11 ΣR
13

ΣR
31 ΣR

33

]
.

After that, we examine if x2(t) has causality relation to x1(t) by determining log ratio of residual
error of x1(t) for each model [6].

Fx2→x1 | x3 = log ΣR
11

Σ11
(5)

In general, ΣR
11 > Σ11 because variance is minimized when data is added. From (5), if Fx2→x1 | x3 =

0, it means ΣR
11 = Σ11. Therefore, x2(t) is not cause x1(t). On the other hand, x2(t) cause to

x1(t) when Fx2→x1 | x3 > 0 because x1(t) in full model usually have more fitting than x1(t) in
reduced model so that ΣR

11 always more than Σ11. Also, the result of GC test on AR model can be
derived as (Ak)ij = 0 and examine which xj is not a cause for xi.

Granger causality on state space model In case of state space model Granger causality test,
state space equation is

z(t+ 1) = Az(t) + w(t) (6a)
y(t) = Cz(t) + v(t) (6b)

In this Granger causality test, we examine if yj is a cause for yi by removing yj from the model. To
remove yj from the model, we force jth column of C from (6) be zero so that full model become
reduced model. Then, determine residual error of both models. Finally, we determine log ratio of
residual error of xi for each model. [7] :

Fyj→yi | All others y = log |Σ
R
ii |
|Σii|

(7)

3



where |ΣR
ii | and |Σii| are prediction error covariance of xi for reduced model and full model,

respectively. Also, both ΣR
ii and Σii are calculated from optimal mean-squared error estimation

which is Kalman filter (further details in section 3.2). The result of Granger causality test : when
Fyj→yi | All others y > 0 because yi(t) in full model usually have more fitting than yi(t) in reduced
model and F = 0 means ΣR

ii = Σii. Therefore, yj(t) does not cause yi(t).

2 Problem Statement
In this project, There are two main objectives by the following.

• Problem 1 : We estimate the system matrices of state space (6) with free parameters from
time-series data by using subspace method because only measurement variable (y) are given
and signal source (z) are not measured.

• Problem 2 : We examine Granger causality test from any estimated state space model which
are estimated by using subspace method from the previous problem. The test result from (7)
(F) is real source (x). The result from GC test can refer to brain connectivity.

3 Methodology
In this project, we estimate system matrices of state space model without structure from (6). We
choose state space model to examine Granger causality. The scheme of model estimation is shown
in the following diagram :

Stochastic
Subspace

Identification

Set structure
for

GC test

solve
DARE

Reduced model

solve
DARE

Examine
GC test(Fij)

Coefficient
CAk

c K

Statistical
Test

Statistical
Test

(A, C, W, V )

(A, I, W ) (A, IR, W )

P R

P

K

F

zero pattern
zero pattern

y(t)
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Our scheme starts with time-series data y(t) which is the only data we know. y(t) is generated
based on Autoregressive ground truth model. From (6), we do not know sources : x(t) and internal
noise : u(t) which is problem to compute system matrices since we want to estimate A. No
parameters are known. The variables and parameters describe in the following table.

Table 1: Variables and parameters in this project

Variables Parameters
Measured Unknown Known Unknown

y(t) x(t) A
u(t) C

W,V

We use subspace method to identify all system matrices (A, C and noise covariance). Then, set
the estimated structure for Granger causality test by letting C = I for full model and forced jth

column of full model C for reduced model, denoted as CR or IR for C that remove jth column.
There are two method to examine Granger causality test. First, solve discrete Riccati equation
for both model that the solution is covariance of prediction error and compare the covariance of
prediction of reduced model to full model by using Granger causality test (7), the result (F have
to be verified by statistical test to make sure that the zero pattern of model is satisfy. Another
method is to solve gain matrix from DARE (K) and examine coefficient CAk

cK. The result which
verified by statistical test is also zero pattern of model.

3.1 Stochastic subspace method

We estimate sources and system matrices (in this case : A, C,W ,V ) by using stochastic subspace
method. The estimation process starts by estimating sources. Since, EEG linear model have no
input so that the estimation will use stochastic subspace method. In this method we focus on
estimate state sequence first. The process starts by dividing data by time to obtain past data and
future data. Then, project the future output (Yf ) onto the past output (Yp) space with zero initial
state (X̂0 =

[
0 . . . 0 . . . 0

]
) [8].

Oi
∆= Yi | 2i−1/Y0 | i−1 = Yf/Yp (8)

where Oi is the oblique projection and Y0 | i−1 is measurement data from t = 0 to t = i− 1. After
that, compute the state from single value decomposition (SVD) factorization.

Oi =
[
U1 U2

] [Σn 0
0 0

] [
V T

1
V T

2

]
= U1ΣnV

T
1 (9)

Since Oi = ΓiX̂i [9] and there are some non-singular matrix T that Γi = U1Σ1/2
n T so that we

obtain
X̂i = Γ†iOi (10)

Then, estimate system matrices in least-square sense by forming the equation[
X̂i+1
Yi |i

]
=
[
A
C

]
X̂i +

[
ρw

ρv

]
[
Â

Ĉ

]
=
[
X̂i+1
Yi | i

]
X̂†i

(11)

with noise covariance as [
Ŵ Ŝ

ŜT V̂

]
= (1/j)

[
ρw

ρv

] [
ρw

ρv

]T

(12)
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3.2 Granger causality test on estimated state space model

This process happens after structured system matrices are solved. We use Granger causality test
to examine brain connectivity of estimated model. In this process, Before the process starts, we
assume that there is no measurement noise and u(t) is also uncorrelated. In this process, we
examine Granger causality test in two models : full model and reduced model. For full model,
we assume y(t) has the same dimension as x(t). That means we force number of measurement
sources equals to number of brain sources. This means we let C = I. To reduce the full model,
we assume each Cj = 0 (column j of C) which means we assume that value xj does not cause all
others x (since we assume that y(t)j = x(t)j for all j) . Therefore, y(t) is linear combination of
all x except for xj .

Full model : z(t+ 1) = Az(t) + w(t) , y(t) = Cz(t) (13a)
Reduced model : z(t+ 1) = Az(t) + w(t) , y(t) = CRz(t) (13b)

where C = I and CR is reduced matrix that the jth column of C is zero.
After that, we find estimation error covariance : Σ = Cov(z − ẑt | t−1) of both model. To obtain
optimal prediction error covariance, we estimate ẑ by using minimum mean square error because
with this method, the error from noise is minimized. Therefore, we will get x̂ = E{xt | x−t−1}where
y−t−1 is all output data from the past up to time t − 1 and x̂ = E{xR

t | xR−
t−1} for reduced model.

After this, we calculate estimation error covariance by using Kalman Filter [10] because of optimal
method in linear model form :

x̂t+1 | t = Ax̂t | t−1 +AΣt | t−1C
T (CΣt | t−1C

T +R)−1(yt − Cx̂t | t−1)
= Ax̂t | t−1 +K(yt − ŷt | t−1)

(14)

where K = AΣt | t−1C
ᵀ(CΣt | t−1C

T + V )−1 is Kalman gain K from (6) and wt can be expressed
by yt − ŷt | t−1 where ŷ is estimated by MMSE (ŷ = E{yt | y−t−1}) and for reduced model we will
get εR from yR

t −E{yR
t | yR−

t−1}. From (14), time update gives a recursive solution. Therefore, we
can express measurement and time update of Σ as Riccati recursion [10].

Σt+1 | t = AΣt | t−1AT +W −AΣt | t−1C
T (CΣt | t−1C

T + V )−1CΣt | t−1AT

= AΣt | t−1AT +W −AΣt | t−1C
T (CΣt | t−1C

T )−1CΣt | t−1AT

(Assume that V is zero)
(15)

From (15) , this equation is the optimal way to find state prediction error covariance [11]. However,
we assume observation noise covariance is positive definite, (A, C) are observable and (A,W ) are
controllable so that we can solve steady state Kalman filter instead. The estimation of steady state
Kalman filter satisfies Discrete Algebaric Riccati Equation (DARE) :

Σ = AΣAT +W −AΣCT (CΣCT )−1CΣAT (16)

There are two methods to examine Granger causality. The first method is to find log ratio of
covarience of prediction error (Σ from solving of Riccati equation). Then, we suggest to determine
the time-domain Granger causality shown as : [7]

Fxj→xi | All others x = log |Σ
R
ii |
|Σii|

(17)

where |ΣR
ii | and |Σii| is estimation error covariance of xi for reduced model and full model, respec-

tively. In general, ΣR
ii is usually larger than Σii because variance is minimized when data is added.

If the result is zero, it means |ΣR
ii | = |Σii|. Therefore, xj does not affect xi conditioning to all

others x. Otherwise, the value is always positive because reduced model is come up with more
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covariance magnitude.

After we solve (16) the solution of DARE remains only W when we assume no measure noise
and u(t) is uncorrelated. (See Appendix 6.1) Thus, K from (14) by this assumption shown as :

K = AΣCT (CΣCT + V )−1

= A
[
ΣT

11 ΣT
12 . . . ΣT

1p

]T
Σ−1

11

Because only Σ11 is nonzero matrix

= A
[
I 0 . . . 0

]T
=
[
AT

1 I 0 . . . 0
]T

(18)

Another method to examine Granger causality is to find the coefficient CiAk
cKj when k =

0, 1, . . . , p − 1. Denote Ac as state observer closed loop observer gain, the results of coefficient
are Ak+1 for all k which have same structure. Therefore, Ac yields the necessary and sufficient
condition by the Cayley-Hamilton Theorem. (See Appendix 6.2)

4 Experiments
There are two experiments in this section. Both experiments are tested from same information,
simultaneously. Also, both experiments are defined from AR ground truth model from (6). The
objectives of the first experiment is to compare F when we solved P by solving DARE from (16)
with P by let P = W . The result should be the same structure from the calculation in the previous
section. The objective of the second experiment is to measure Granger causality test from matrices
that estimated by using subspace identification. The result of this experiment should be the same
structure as previous experiment since we generate from the same ground truth AR model.
The following example, ground truth AR model is generated with three lags (p) with three observer
variables. From Fig. 3, we have structure of A from gen_sparseAR.m.

sparsity of AR coefficients

Figure 3: The sparsity for each Ai that generated from gen_sparseAR.m

>> A

A =

-0.1095 -0.0665 0 0.0317 -0.1316 0 -0.0013 -0.2247 0
0.1239 0.2266 -0.1540 -0.2102 0.1622 -0.0998 -0.0735 -0.0335 0.0816

0 0 -0.3225 0 0 0.0523 0 0 0.0154
1.0000 0 0 0 0 0 0 0 0

0 1.0000 0 0 0 0 0 0 0
0 0 1.0000 0 0 0 0 0 0
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0 0 0 1.0000 0 0 0 0 0
0 0 0 0 1.0000 0 0 0 0
0 0 0 0 0 1.0000 0 0 0

4.1 Verify GC test result from DARE compare to reduced DARE

The object of this experiment is to show the equivalence of GC tests on AR model and state space
model where ground truth model is AR model. Since we know that the result of GC test from AR
model (5) can be derived as (Ak)ij = 0 (that means xj(t) does not cause xi(t)), the expected
outcome of GC test on state space model based on ground truth AR model should be the same as
the result from AR model. In this experiment, ground truth AR model is generated from MATLAB
file : gen_sparseAR.m [12]. The process of this experiment starts with format state space model
from ground truth AR model.

z(t+ 1) = Az(t) + w(t) (19a)
y(t) = Cz(t) + ε(t) (19b)

where

A =


A1 A2 . . . Ap

I 0 . . . 0
. . . . . . ...

0 . . . I 0

 , C =
[
L 0 . . . 0

]
, w(t) =


u(t)

0
...
0

 and ε(t) =


v(t)

0
...
0


Then, we set state space system matrices for GC test by given y(t) = x(t). Therefore, C for
GC test in this experiment becomes C =

[
I 0 . . . 0

]
for full model. For reduced model, the

structure of CR for reduced model is C for full model which jth column is removed. Moreover,
we let measurement noise (ε(t)) to be zero and signal noise are uncorrelated for GC test. After
that, we solve Riccati equation for both model so that we obtained residual error for both models.
Finally, we examine GC test from (17). The process of this section shown as follow :

gen_sparseAR.m
System matrices

for
GC test

solve
DARE

Reduced model

solve
DARE

Examine
GC test(Fij)

A

(A, C, W ) (A, CR, W )

P R

P

>> F

F =

0.0138 0.1019 0.0000
0.0614 0.0954 0.0423
0.0000 0.0000 0.1232
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>> F_r

F_r =

0.0138 0.1019 0.0000
0.0614 0.0954 0.0423
0.0000 0.0000 0.1232

where F is function from Granger causality test by solving DARE and Fr is function from the test
that given Σ = W . The result showed that each element of F and Fr is the same value so that we
can reduced DARE when there is no measurement noise (V ). Another measurement is to measure
coefficient CAk

cK for k = 0, 1, . . . , p− 1.

>> CBK

CBK(:,:,1) =

-0.1095 -0.0665 0.0000
0.1239 0.2266 -0.1540

-0.0000 -0.0000 -0.3225

CBK(:,:,2) =

0.0317 -0.1316 0.0000
-0.2102 0.1622 -0.0998
0.0000 -0.0000 0.0523

CBK(:,:,3) =

-0.0013 -0.2247 0.0000
-0.0735 -0.0335 0.0816
-0.0000 0.0000 0.0154

CBK(:,:,i) is the result of CAi−1
c K. The result satisfied that CAk

cK = Ak+1 which each
Ai has the same structure.

4.2 Subspace Identification

After we verified that GC test from state space models with ground truth AR model give the same
result as GC test on AR model, we perform GC test for any estimated state space models in this
experiment. The expected result of GC test on estimated state space model in this experiment is
the same result as GC test on AR model. The estimated state space models were obtained by using
subspace method with time series data from gen_EEG_sources.m based on system matrices
from (19) which were generated from gen_sparseAR.m and lead field matrix L is random with
normal distribution. In procedure of subspace method, we use n4sid.m which is one of the
subspace methods to determine system matrices and also noise variance in terms of innovation
form [13] [14].

x(t+ 1) = Ax(t) +Ke(t) (20a)
y(t) = Cx(t) + e(t) (20b)

We assume that the dimension of estimated state space matrices are the same as dimension of all
system matrices from (19). After subspace method were done, we obtained all system matrices
(Â, Ĉ with covariance of noise). Then, we set state space model for GC test (13). Finally, we
examine GC test from (17). The process of this section shown as follow :
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gen_sparseAR.m gen_EEG_sources.m

Stochastic
Subspace

Identification

Set structure
for

GC test

Perform
GC test

A

y(t)

(Â, Ĉ)
with covariance

of noise

(Â, I)
with covariance

of noise

F

We compared Granger causality test result between Autoregressive model (F) and estimated state
space model (F_ss). For estimated state space model, we choose np order because there is the
same dimension as state space model with Autoregressive ground truth model. The results showed
that F from state space model that estimated from subspace identification are not the same value
and not the same structure as AR model GC test result
The following command lines are the result of subspace method by using n4sid .

>> m_free.A

ans =

0.8404 0.0426 0.3234 0.1713 0.0201 0.1313 0.1585 -0.0846 0.1962
0.0382 -0.5104 0.4009 -0.2055 -0.8570 0.1781 0.4212 -0.5479 -0.8056

-0.2885 -0.7280 0.2499 -0.2523 -0.4335 -0.3711 -0.0421 -0.5630 0.3287
0.0272 -0.0407 0.0019 -0.7313 -0.1302 0.2104 -0.1701 0.2910 0.1178

-0.0250 0.0103 0.2463 0.3598 -0.8430 -0.2462 -0.3005 0.2350 0.0208
-0.0961 -0.2028 0.1553 0.1651 0.0630 0.4494 -0.6612 0.1000 0.0288
-0.2600 -0.0028 -0.2560 0.1142 -0.1336 0.7016 0.4565 0.0333 -0.1161
0.1145 0.0036 0.0641 -0.0586 0.2121 -0.4329 -0.1152 -0.2433 -0.5690
0.0023 0.0499 -0.0816 -0.0631 -0.0847 -0.0330 0.4278 0.5835 -0.1160

>> m_free.C

ans =

-0.1071 0.2170 0.1305 -0.2884 -0.1751 0.0069 -0.0754 -0.2888 -0.0261
-0.0760 0.1371 0.0841 -0.1886 -0.1337 0.0074 -0.0535 -0.1948 -0.0234
-0.0617 0.3300 0.1171 -0.4557 -0.2822 -0.0049 -0.1486 -0.4549 -0.0420

>> m_free.K

ans =

0.3378 -0.3066 -0.1211
-0.2572 0.2233 0.3220
0.4736 -0.3590 -0.0253
0.0741 -0.0272 -0.1319

-0.3851 0.4753 -0.0151
0.0074 0.0540 -0.0168
0.0217 -0.0167 0.0100

-0.0386 0.1176 -0.1028
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-0.1682 0.2019 0.0617

>> m_free.NoiseVariance

ans =

1.0e-03 *

0.2911 0.1987 0.4106
0.1987 0.1453 0.2778
0.4106 0.2778 0.8115

After we obtain system matrices, we set C =
[
I 0 . . . 0

]
, then examine Granger causality

test with function GCTest.m

>> F

F =

0.0138 0.1019 0.0000
0.0614 0.0954 0.0423
0.0000 0.0000 0.1232

>> F_ss

F_ss =

0.1427 2.2088 0.1189
0.0390 0.9191 0.1049
0.9992 1.3230 0.0430

>> CBK_ss

CBK_ss(:,:,1) =

0.1643 -0.0624 -0.1159
0.2141 -0.4245 0.3033
0.5900 -0.5177 -0.0304

CBK_ss(:,:,2) =

0.4062 -0.3262 -0.0625
0.0716 -0.0771 0.0636

-0.1300 0.0751 0.1631

CBK_ss(:,:,3) =

0.2099 -0.1713 0.0321
-0.2578 0.1299 0.1008
-0.6079 0.4997 0.0983

11



The reason can be probably the fitting of estimated model (m_free : ŷ) is not high enough
compared to actual data. The comparison of time series data are shown in Fig. 4
As we look closer at the estimated time series data, the estimated data (ŷ) followed the actual
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Figure 4: Compare time series data with the data that we estimate from subspace identification
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Figure 5: Compare time series data with the data that we estimate from subspace identification at
first 50 datas
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5 Conclusions
Subspace identification is the method used for estimate system matrices and state sequence. This
method can be applied in EEG time series data that could be described in Autoregressive (AR)
model. We learn brain connectivity of state space model by using Granger causality (GC) test. We
performed GC test and compare the result. It showed that GC test from AR model come up with the
same result as GC test from state space model. Therefore, we can apply EEG time series data into
state space model. Moreover, we examine GC test based on state space model that are estimated
from time series data with ground truth AR model by using subspace method. The result of that
GC test is not the same structure as the structure of AR model. From the fitting of estimation
sources (ŷ), we imply that estimation error is one of causes for failure experiments. However, we
need to explore more cause in this experiments and learn about solution leads to expected result.
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6 Appendices

6.1 Simplification of DARE applied to AR model

For AR model case, we examine GC test that xj(t) causes or does not cause xi(t) by comparing
noise covariance of reduced model (ΣR

ii : Noise covariance when we remove xj from the model.)
and full model by (5). When we determine GC test on state space model based on AR model (19),
noise covariance can be calculated by using steady state Kalman filter that satisfies discrete Riccati
equation (16). In this section, we demonstrate that the solution of discrete Riccati equation can be

simplified to Σ =
[
Σ11 Σ12
ΣT

12 Σ22

]
=
[
W1 0
0 0

]
We can simplify Σ that we solve from into more similar

form (16) by given
(
W ∈ Rnp×np and W =


W1 0 . . . 0

0 . . . 0
... . . . ...
0 0


)

Given A =
[
A1 A2 . . . Ap−1

]
and Σ ∈ Rnp×np are in formation as :

 U V

V T R

 where

Uij ∈ Rp×p denote the (i, j)th block of U
From

Σ = AΣAT +W −AΣCT (CΣCT )−1CΣAT

we simplify in each term

AΣAT =


A Ap

I 0


 U V

V T R


 AT I

AT
p 0



=


AUAT +ApV

TAT + AV AT
p +ApRA

T
p AU +ApV

T

UAT + V AT
p U

...


(21)

AΣCT =


A Ap

I 0


 U V

V T U



I

0

0



= First block column of


AU +ApV

T

U



=



p∑
i=1

AiΣi,1

Σ11
Σ21

Σp−1,1



(22)

CΣAT = (AΣCT )T =
[ p∑

i=1
Σ1,iA

T
i Σ11 Σ12 . . . Σ1,p−1

]
(23)

CΣCT = Σ11 (24)
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Then, combine all above terms (21), (22), (23) and (24) into DARE U V

V T R

 =


AUAT +ApV

TAT + AV AT
p +ApRA

T
p AU +ApV

T

UAT + V AT
p U



+


W1 0 . . . 0

0 . . . 0
... . . . ...
0 0

−


p∑
i=1

AiΣi,1

Σ11
Σ21
...

Σp−1,1


(Σ11)−1

[ p∑
i=1

Σ1,iA
T
i Σ11 Σ12 . . . Σ1,p−1

]

(25)

From (21)

UAT + V AT
p =


Σ11 Σ12 . . . Σ1,p−1

Σ21
. . . Σ2,p−1

... . . . ...
Σp−1,1 Σp−1,p−1



AT

1
AT

2
...

AT
p−1

+


Σ1,p

Σ2,p
...

Σp−1,p

AT
p

=



p∑
i=1

Σ1,iA
T
i

p∑
i=1

Σ2,iA
T
i

...
p∑

i=1
Σp−1,iA

T
i



(26)

Determine Σ21 Σ21 = (First row blocks of UAT + V AT
p )− Σ11(Σ−1

11 )
p∑

i=1
Σ1,iA

T
i

=
p∑

i=1
Σ1,iA

T
i −

p∑
i=1

Σ1,iA
T
i = 0

For the others i,Σ2,i = Σ1,i − Σ11(Σ1,1)−1Σ1,i = 0. This means Σ2,i = 0 for all i = 1, 2, . . . , p

Determine Σ31 Σ31 = (Second row blocks of UAT + V AT
p )− Σ21(Σ−1

11 )
p∑

i=1
Σ1,iA

T
i

=
p∑

i=1
Σ2,iA

T
i = 0 (Σ2,i = 0 for all i)

For the others i,Σ3,i = Σ2,i − Σ21(Σ11)−1Σ2,i = 0 where i = 2, 3, . . . , p. This means Σ3,i = 0 for
all i = 1, 2, . . . , p
Consequently, Σi,j = 0 for all i = 1, 2, . . . , p, j = 1, 2, . . . , p except for Σ11

Determine Σ11 Σ11 = A1Σ11A
T
1 +W1 −A1Σ11(Σ11)−1Σ1,1A

T
1

= W1

The result of Riccati equation remains only block Σ11 = W1. Therefore, it satisfies that Σ = W
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6.2 CAk
c K coefficients

The results of GC test on AR model (5) can be derived as coefficient (Ak)ij = 0,∀k which means
xj(t) does not cause xi(t). Meanwhile, the results of GC test on state space model (7) can also be
measured by CAk

cK coefficient. When CiAkKj = 0,∀k, i = 1, . . . , n− 1, it means xj(t) does not
cause xi(t) In this section, we showed that the coefficient from GC test on AR model have same
structure to the coefficient from GC test on state space based on ground truth AR model.

Coefficient of GC test on AR model : (Ak)ij = 0 , ∀k (27a)
Coefficient of GC test on state space model : CiAkKj = 0 , ∀k, i = 1, . . . , n− 1 (27b)

Given state observer closed loop observer gain Ac = A−KC. From (6) we have

Ac = A−KC

=


0 A2 . . . Ap

0 0 . . . 0
. . . . . . ...

0 . . . I 0

 (28)

Then, multiply by C on the left hand side and K on the right hand side :

CAk
cK =

[
I 0 . . . 0

]


0 A2 . . . Ap

0 0 . . . 0
. . . . . . ...

0 . . . I 0


k

A1
I
0
...
0

 (29)

when k = 0 CK = A1
when k = 1 CAcK = A2
when k = 2 CA2

cK = A3
...

...
when k = p− 1 CAp−1

c K = Ap

Because A1 , A2 , . . . , Ap have the same structure so that if we assume (A1)ij = 0 that means
(Ac)12 = 0. Therefore, Ac = A −KC yields the necessary and sufficient condition CiAk

cKj = 0
by the Cayley-Hamilton Theorem.

6.3 MATLAB Code

Here is MATLAB code for experiment from section 4 : main.m that contain subspace method
and GC test

1 c l c ; c l e a r a l l ;
2

3 %%%%%%%%%%%%%%%%%%%%%%%%% DATA PARAMETERS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4

5 n = 3 ; % s t a t e space and o b s e r v a t i o n v a r i a b l e d imens ion
6 p = 3 ; % AR o rd e r
7 d e n s i t y = 0 . 5 ; % d e n s i t y o f AR mat r i x
8

9 %%%%%%%%%%%%%%%%%%%%%%%% DATA GENERATION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
10

11 [ ind_z , ind_nz , Atrue , ind_z_3D ] = gen_sparseAR (n , p , d e n s i t y ) ; %gene r a t e AR model
12 A = [ ] ;
13 f o r i =1:p
14 A = [A Atrue ( : , : , i ) ] ;
15 end
16 A = [A; eye ( n∗(p−1) ) , z e r o s ( n∗(p−1) , n ) ] ;
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17

18 C = [ eye ( n ) z e r o s (n , n∗(p−1) ) ] ; % gene r a t e C = [ I , 0 , . . . , 0 ]
19 W = ze r o s ( n∗p , n∗p ) ;
20 V = ze r o s (n , n ) ;
21 E = eye ( n∗p ) ; % gene r a t e V
22 S = ze r o s ( n∗p , n ) ; % gene r a t e S
23 f o r i= 1 : n
24 W( i , i ) = rand ( ) ;
25 V( i , i ) = 0.00001∗ rand ( ) ;
26 end
27 %%%%%%%%%%%%% SUBSPACE IDENTIFICATION with GC TEST %%%%%%%%%%%%%%
28 [ y , L_true ] = gen_EEG_sources ( Atrue , n , p ) ;
29 u = z e r o s ( s i z e ( y ) ) ;
30 z = i dda t a ( y ’ , u ’ , 1 ) ;
31 [ m_free , x0 ] = n4 s i d ( z , n∗p , ’ s sp ’ , ’ f r e e ’ , ’ t s ’ , 1 ) ; % Choose o r d e r np
32 C_hatGC = ze r o s (n , n∗p ) ;
33 C_hatGC ( 1 : n , 1 : n ) = eye ( n ) ; %Set C_hat f o r GC Test
34 W_hat = m_free .K∗m_free . No i s eVa r i an c e ∗m_free .K ’ ; % Ke( t ) e ( t ) ’K’ i n n4 s i d
35 S_hat = m_free .K∗m_free . No i s eVa r i an c e ; %Ke( t ) e ( t ) ’ i n n4 s i d
36 V_hat = m_free . No i s eVa r i an c e ; %e ( t ) i n n4 s i d
37 [ F_ss , CBK_ss ] = GCTest ( m_free .A, C_hatGC ,W_hat ,V, S , E , n , p ) ;
38 %%%%%%%%%%%%%%%%%%% GC TEST f o r GIVEN STRUCTURE %%%%%%%%%%%%%%%%%%%
39 [ F ,CBK] = GCTest (A,C ,W,V, S , E , n , p ) ;
40 F_r = GCReduced (A,C ,W,V, n , p ) ; %GC Test when P=W

We generate A from gen_sparseAR.m

1 f u n c t i o n [ ind_z , ind_nz ,A, ind_z_3D ] = gen_sparseAR (n , p , d e n s i t y )
2 % gen_sparseARX gen e r a t e s a s p a r s e v e c t o r a u t o r e g r e s s i v e model w i th exogenous

i n p u t s
3 % [ ind_zz , ind_nz ,A,B] = gen_sparseARX (n , p ,m, q , no i s e_var , d en s i t y ,Num)
4 % This code i s g en e r a t e on l y p i n ARX Model
5 % ARX
6 % y ( t ) = A1∗y ( t−1) + A2∗y ( t−2) + . . . + Ap∗y ( t−p )+ B1∗u ( t−1) + B2∗u ( t−2) + . . . +

Bq∗u ( t−q ) + e ( t )
7 %
8 % ’A’ r e p r e s e n t s AR c o e f f i c i e n t s A1 , A2 , . . . , Ap and i s s t o r e d as a p−d imen s i o n a l

a r r a y
9 % ’B’ r e p r e s e n t s X c o e f f i c i e n t s B1 , B2 , . . . , Bq and i s s t o r e d as a q−d imen s i o n a l

a r r a y
10 % The i npu t arguments a r e
11 % ’n ’ : d imens ion o f output
12 % ’p ’ : o r d e r o f ’AR’ i n ARX model
13 % ’m’ : d imens ion o f i n pu t
14 % ’q ’ : o r d e r o f ’X’ i n ARX model
15 % ’ no i s e_var ’ : v a r i a n c e o f u ( t ) ( n o i s e )
16 % ’ den s i t y ’ : the f r a c t i o n o f nonzero e n t r i e s i n AR c o e f f i c i e n t s
17 % ’Num’ : number o f data p o i n t s i n t ime s e r i e s
18 %
19 % The AR c o e f f i c i e n t s a r e s p a r s e w i th a common s p a r s i t y p a t t e r n . The
20 % i n d i c e s o f nonzero e n t r i e s a r e saved i n ’ ind_nz ’ .
21 %
22 % ’ y ’ i s a t ime s e r i e s g ene r a t ed from the modAel and has s i z e n x Num
23 % y = [ y (1 ) y (2 ) . . . y (Num) ]
24 %
25 % i f p = 0 , ’ y ’ i s s imp l y a random v a r i a b l e . I n t h i s case , A i s the
26 % cov a r i a n c e mat r i x o f u w i th s p a r s e i n v e r s e .
27

28 %% S t a t i c ca s e
29 i f ( p==0) ,
30 S = spa r s e (2∗ eye ( n )+s i g n ( sprandsym (n , d e n s i t y ) ) ) ;
31 [ i , j ]= f i n d (S) ;
32 S = S+spa r s e ( c e i l (max(0 ,−min ( e i g (S) ) ) ) ∗ eye ( n ) ) ;
33 A = S\ eye ( n ) ; % co v a r i a n c e mat r i x w i th s p a r s e i n v e r s e
34 R = cho l ( ph i ) ;
35 y = R’∗ randn (n ,Num) ; % y r educ e s to a random v a r i a b l e w i th c o v a r i a n c e ’ phi ’

17



36 ind_nz = sub2 ind ( [ n n ] , i , j ) ; he
37 f i g u r e ; p l o t_spy ( ind_nz , n , ’ image ’ ) ;
38 t i t l e ( ’ c o r r e c t s p a r s i t y ’ ) ;
39 r e t u r n ;
40 end
41

42 %% Randomize AR c o e f f i c i e n t s
43 MAX_EIG = 1 ;
44 d iag_ ind = f i n d ( eye ( n ) ) ;
45 k = l e ng t h ( d iag_ ind ) ;
46 diag_ind3D = kron ( n ^2∗ (0 : p−1) ’ , ones ( k , 1 ) )+kron ( ones (p , 1 ) , d i ag_ ind ) ;
47

48 A = ze r o s (n , n , p ) ;
49 S = sprand (n , n , d e n s i t y )+eye ( n ) ;
50 i i = 0 ;
51 wh i l e MAX_EIG,
52 i i = i i +1;
53 f o r k=1:p ,
54 A( : , : , k ) = 0 .1∗ sprandn (S) ;
55 end
56 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
57

58 p o l e s = −0.7+2∗0.7∗ rand (n , p ) ; % make the p o l e s i n s i d e the u n i t c i r c l e
59 cha raceq = z e r o s (n , p+1) ;
60 f o r j j =1:n ,
61 cha raceq ( j j , : ) = po l y ( p o l e s ( j j , : ) ) ; % each row i s [ 1 −a1 −a2 . . . −ap ]
62 end
63 aux = −cha raceq ( : , 2 : end ) ;
64 A( diag_ind3D ) = aux ( : ) ; % r e p l a c e the d i a g on a l e n t r i e s w i th s t a b l e

po l ynom i a l
65

66 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
67 AA = [ ] ;
68 f o r k=1:p ,
69 AA = [AA A( : , : , k ) ] ;
70 end
71 AA = spa r s e ( [AA ; [ eye ( n∗(p−1) ) z e r o s ( n∗(p−1) , n ) ] ] ) ;
72 i f max( abs ( e i g s (AA) ) ) < 1
73 MAX_EIG = 0 ;
74 end
75 end
76 abs ( e i g s (AA) )
77 i i
78

79 %% the s p a r s i t y p a t t e r n o f A1 , A2 , . . . , Ap
80 ind_nz = f i n d (S)
81 ind_z = f i n d (~S) ;
82 ind_z_3D = f i n d (~A) ;
83 f i g u r e ;
84 s u bp l o t ( 1 , 2 , 1 ) ;
85 spy ( ind_nz , ’ r ’ , n ) ; t i t l e ( ’ s p a r s i t y o f AR c o e f f i c i e n t s ’ ) ;
86

87 %% Genera te t ime s e r i e s
88 % no i s e_va r = 0 ;
89 %no i s e = s q r t ( no i s e_va r ) ∗ randn (n ,Num) ;
90 %u=rand (m,Num) ;
91 %f o r i =1:Num
92 %norm_u=norm (u ( : , i ) ) ;
93 %i f norm_u <=1/3
94 % u ( : , i ) = [ 0 ; 0 ] ;
95 %e l s e i f norm_u <=1/3
96 % u ( : , i ) = [ 1 ; 0 ] ;
97 % e l s e
98 % u ( : , i ) = [ 0 ; 1 ] ;
99 % end
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100 %end

After we obtain A, we can generate time series data from gen_EEG_sources.m

1 f u n c t i o n [ y , L_true ] = gen_EEG_sources ( A_true , n , p )
2 %number o f EEG
3 no i s e_va r =0.01;
4 d e n s i t y =0.5 ;
5

6 x1p=rand (n , p ) ;
7 [ x ]= gen_t ime_se r i e s ( A_true , no i s e_var , x1p ) ;
8

9 L_true = randn (n , n ) ;
10 y = L_true ∗x ;

For state space Granger causality test, we usually test from GCTest.m, which compute both F
and coefficient of CAk

cK

1 f u n c t i o n [ F ,CBK] = GCTest (A,C ,W,V, S , E , n , p )
2 %%%%%%%%%%%%%%%%%%%%%%%% Fu l l model %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3

4 [ P , L ,K] = dare (A’ , C ’ ,W,V, S , E) ;% s o l v e RICCATI
5

6 %%%%%%%%%%%%%%%%%%%%%%%% Reduced model %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
7

8 %−−−−−−−−−−− s o l v e RICCATI f o r a l l r educed model −−−−−−−−−−−−−−−−−−−−−−−−−−
9 f o r i =1:n

10 Creduce = C ;
11 Creduce ( : , i ) = [ 0 ] ; % f o r c e i t h column o f C to be z e r o
12 [ Preduce , L , Kreduce ] = dare (A’ , Creduce ’ ,W,V, S , E) ;
13 e i g ( Preduce )
14 CR ( : , : , i ) = Creduce ;
15 PR ( : , : , i ) = Preduce ;
16 KR( : , : , i ) = Kreduce ;
17 end
18 %−−−−−−−−−− Co l l e c t a l l P( i , i ) f o r a l l r educed model −−−−−−−−−−−−−−−−−−−−−−
19 diagPR = [ ] ; % P( i , i ) f o r r educed model
20 f o r i =1:n
21 diagPR = [ diagPR d i ag (PR ( : , : , i ) ) ] ;
22 end
23 diagPR = diagPR ’
24 diagP = d iag (P) ’ % P( i , i ) f o r f u l l model
25 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
26

27 %%%%%%%%%%%%%%%%%%%%%%%% Granger C a u s a l i t y %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
28

29 %−−−−−−−−−−−−−−−−−−− Ca l c u l a t e GC f o r a l l components −−−−−−−−−−−−−−−−−−−−−−
30 F = [ ] ; % GC( i , j ) i s Granger cause from i to j
31 f o r i =1:n
32 f o r j =1:n
33 F( j , i ) = l og ( ( diagPR ( i , j ) ) /( diagP ( j ) ) ) ; %F from co v a r i a n c e mat r i x
34 end
35 end
36 f o r i = 1 : p
37 CBK( : , : , i ) = C∗(A−K’∗C) ^( i −1)∗K ’ ;
38 end
39 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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