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Abstract

In this project, we aim to estimate the system matrices of the real-world building temperature
system via system identification. The building model we considered has 2 rooms which have heat
interactions with walking path and ambient. Only one-dimensional heat transfer and internal energy
change have been concerned while neglecting effects caused by humidity, solar irradiance, and air
leakage. An air-conditioners system is described by first law of thermodynamics and coefficient of
performance (COP) and is expressed as a continuous-time dynamic equation. Since we found that
a state-space equation becomes a nonlinear function, then we propose two models in this project,
which are linearlized model approximate linear model with assumptions that the COP is a constant
obtained by the air-conditioners specifications. Since the data measured by sensors is discretized,
then we define a discrete-time equivalent state- space model by using zero-order-hold equivalent.
Temperature data and air-conditioners electrical input data can be collected by the Chulalongkorn
University Building Energy Management System (CUBEMS) [1]. Since the temperature data and
electrical input data can be measured, we choose a least-squares estimation with constraints as an
estimation method. The results show that the dynamic matrix obtained via least-squares method is
stable. Input matrix is forced to have a same structure as a state-space equation we have derived.
In addition, we validate our model with a validation data set. The results show that the two models
we estimated provide a fitting with moderate performance.

1 Background
1.1 Air-conditioning system
Air-conditioning system is a heat-removing system widely used in many applications. Basic principles of
air-conditioning systems are (i) removing heat from the system to ambient (ii) manipulating an air flow
and humidity (iii) keeping the temperature consistent at the setpoint temperature.

1



cT

acE

hQcQ

hT

Figure 1: Diagram of air-conditioners system

The relationship between electrical input power and heat absorbed by air conditioner can be derived by
using the first law of thermodynamics

Qc + Eac = Qh, (1)

where

• Qc is cooling flow generated by air conditioner.

• Qh is heat pulled out by air conditioner.

• Eac is an electrical energy input.

1.2 Coefficient of performance
Define a coefficient of performance (COP) as a performance index of an air-conditioner [1] [2] [3], i.e,

COP = Qc

Eac
, (2)

where

• Qc is cooling flow generated by an air-conditioner (kWh).

• Eac is an electrical energy used by an air-conditioner(kWh).

1.2.1 Maximum theoritical coefficient of performance

Assume that a thermodynamical process of air-conditioners is the reversed Carnot cycle.

Figure 2: The reversed Carnot cycle
(from http://static.mtdevans.com/)
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The reversed Carnot cycle is said to be the most efficient cooling cycle which means we assume that air-
conditioners operate at its maximum theoritical performance. Under the assumption that air conditioners
can be described by the reversed carnot cycle. According to [1], we can use the carnot equation
|Qh|
|Qc| = Th

Tc
= T∞

T and (2) can be rewritten to

COP = T (t)
T∞(t) − T (t)

, (3)

where

• T (t) is current room temperature (◦C).

• T∞(t) is ambient temperature (◦C).

1.2.2 Practical approximated coefficient of performance

In practical implementation, the maximum theoritical coefficient of performance cannot be reached due
to loss in a cooling process. The coefficient of performance can be obtained by using experiments
based on air-conditioner specifications described in [4] [5]. In this project, we introduce seasonal energy
efficiency ratio (SEER) and energy efficiency ratio (EER) obtained by

SEER = Seasonal cooling capacity (BTU)
total input energy (W·h) ,

EER = Cooling ability (BTU/h)
Input power (W) .

According to [6], a relationship between both effeciency ratios and coefficient of performance can be
expressed as

EER = 1.12 · SEER + 0.02 · SEER2,

COP = 0.293 · EER.
(4)

1.3 Steady heat transfer
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Figure 3: Steady heat transfer
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We assume that there does not exist any heat sinks but the model only consists of one-dimensional heat
conduction through a plane wall. According to [7] [8], the heat transfer can be described by using the
one-dimensional Fourier’s law as

d2T

dx2 = 0.

Denote the temperature at two sides of a wall, T1(t) and T2(t). Therefore, we can derive the linear heat
transfer equation as

Q̇(t) = kA

X
(T1(t) − T2(t)). (5)

1.3.1 Inside-building effect

Inside the building, there exists two factors that cause heat flow: the temperature difference between
two beside rooms and the temperature difference between each room and walkway. From (5), the heat
transfer between two rooms can expressed as

Q̇ij(t) = kijAij(Tj(t) − Ti(t))
Xij

= αij(Tj(t) − Ti(t)), (6)

where

• Qij is heat transferred between room ith and room jth

• kij is a thermal conductivity of the beside wall.

• Aij is an area of the wall.

• Xij is a thickness of the wall.

• Ti(t) is a room ith current temperature (◦C).

• Tj(t) is a room jth current temperature (◦C).

• αij is a physical property constant of the wall.

And we can also derive the heat transfer from walkway to room ith as

Q̇wi(t) = kwiAwi(Tw(t) − Ti(t))
Xwi

= αwi(Tw(t) − Ti(t)), (7)

where

• Qwi is heat transferred from walkway hall to room ith

• k is a thermal conductivity of the beside wall.

• A is an area of the beside wall.

• Xwi is a thickness of the wall.

• Ti(t) is a room ith current temperature (◦C).

• Tw(t) is a walkway current temperature (◦C).

• αwi is a physical property constant of the walkway-side wall.
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1.3.2 Outside-building effect

In this study, we will consider only the heat transfer caused by the temperature diffence (ignore the solar
irradiance effect). Therefore, we can also use (5) to write the heat transfer equation from ambient to
room ith as

Q̇∞i(t) = k∞iA∞i(T∞(t) − Ti(t))
X∞i

= α∞i(T∞(t) − Ti(t)), (8)

where

• Q∞i is heat exchanged between room ith and outside ambient.

• k∞i is a thermal conductivity of the ambient-side wall.

• A∞i is an area of the ambient-side wall.

• X∞i is a thickness of the ambient-side wall.

• α∞i is a physical property constant of the ambient-side wall.

• T∞(t) is an ambient current temperature (◦C).

1.4 Sensible heat effect

Figure 4: Phase change plot of the substance
(from http://www.rgees.com/images/LHvsSH.jpg)

Since there is no phase change in the building temperature system, the change of internal energy of
closed system can be described as

∆Ui = mic∆Ti, (9)

where

• ∆Ui is the change of internal energy in room ith.

• mi is an air mass in room ith.

• c is a specific heat constant of air.

• ∆Ti is the change in temperature in room ith (◦C).
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2 System modelling
2.1 Building temperature system
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Figure 5: Building temperature system

The building that we considered is EE Building, floor 4, Department of engineering, Chulalongkorn
university shown in figure 5.

2.2 Dynamic equation of the building temperature system
The first law of thermodynamics can be used to describe the building temperature system. Assume that
the system is closed. We can use (1) and (9) to show that

∆Ui = mic∆Ti = Qi + Qc,i, (10)

where

• ∆Ui is a change in an internal energy inside the room ith.

• Qi = Qij + Qwi + Q∞i is a total heat flow inside the room ith.

• Qc,i is a total cooling flow generated by ith air conditioner.

Apply the first derivative on both sides, we then have

mic
d∆Ti

dt
= dQi

dt
+ dQc,i

dt
.

Because d∆Ti
dt = d

dt(Ti − Tset) = Ṫi, we can write the dynamic equation as

micṪi = Q̇ij + Q̇wi + Q̇∞i + d

dt
(COPiEac,i), (11)

where d
dt(COPiEac,i) can be expressed by using (2), i.e,

d

dt
(COPiEac,i(t)) = d

dt
(COPi)Eac,i(t) + COPiPac,i(t)

= d

dt
( Ti(t)
T∞(t) − Ti(t)

)Eac,i(t) + Ti(t)
T∞(t) − Ti(t)

Pac,i(t)
(12)
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2.3 State-space model of the building temperature system
2.3.1 Linearized model

Define state variables x1(t) = T1(t)−Tset and x2(t) = T2(t)−Tset.From (11) and (12), It is obvious that
COP1 and COP2 is a nonlinear function in state variables T1(t) and T2(t), thus we do a linearization.

Consider

Ṫ1(t) = (T∞(t) − T1(t))2

m1c(T∞(t) − T1(t))2 − Eac,1(t)
([−(α12 + αw1 + α∞1)T1(t) + α12T2(t) + αw1Tw(t) + α∞1T∞(t)]

+ Ṫ∞(t)Eac,1(t) + T1(t)
T∞(t) − T1(t)

Ėac,1(t))

Ṫ2(t) = (T∞(t) − T2(t))2

m2c(T∞(t) − T2(t))2 − Eac,2(t)
([−(α12 + αw1 + α∞1)T2(t) + α12T1(t) + αw1Tw(t) + α∞1T∞(t)]

+ Ṫ∞(t)Eac,2(t) + T1(t)
T∞(t) − T1(t)

Ėac,2(t))

(13)

Let x =
[
T1(t) − Tset T2(t) − Tset

]T
, u =

[
Eac,1(t) Eac,2(t)

]T
, u̇ =

[
Pac,1(t) Pac,2(t)

]T
, and

w =
[
T∞(t) Tw(t)

]
.T By using concepts of a Taylor expansion about point (xe, ue, u̇e, we), let δẋ =

δf(x, u, u̇, w), Then we have

δẋ = ∂

∂x
f(x, u, u̇, w) |xe,ue,u̇e,we︸ ︷︷ ︸

A

(x − xe) + ∂

∂u
f(x, u, u̇, w) |xe,ue,u̇e,we︸ ︷︷ ︸

B

(u − ue)

+ ∂

∂u̇
f(x, u, u̇, w) |xe,ue,u̇e,we︸ ︷︷ ︸

B̄

(u̇ − u̇e) + ∂

∂w
f(x, u, u̇, w) |xe,ue,u̇e,we︸ ︷︷ ︸

Γ

(w − we)
(14)

After linearization, the result shows that system matrices structure become

A =
[
a11 a12
a21 a22

]
, B1 =

[
b1

11 0
0 b1

22

]
, B2 =

[
b2

11 0
0 b2

22

]
,

C = I, D = 0,

Γ =
[
γ11 γ12
γ21 γ22

]
.

(15)

Thus, (15) can be rewritten in a standard notation as

ẋ = Ax + B1u + B2u̇ + Γw

y = x
(16)

where

• A is an dynamic matrix.

• B1 and B2 are an input matrix of u and u̇.

• C = I is an output matrix.

• x =
[
T1(t) − Tset

T2(t) − Tset

]
is a state vector, u =

[
Eac,1(t)
Eac,2(t)

]
and u̇ =

[
Pac,1(t)
Pac,2(t)

]
are input vectors.

• w =
[
T∞(t)
Tw(t)

]
is a disturbance with a gain matrix Γ.
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2.3.2 Approximate linear model

Assume that COP can be treated as a constant. Thus, nonlinearity of COP is negligible. To derive an
approximate state-space equation, define x1 = T1(t) − Tset, and x2 = T2(t) − Tset where T1(t), T2(t),
and Tset are room 404 current temperature, room 405 current temperature, and setpoint temperature
respectively. According to [9], we can use (6), (7), (8), and (11) to derive a state-space equation of the
building temperature system in a matrix form as[

Ṫ1(t)
Ṫ2(t)

]
=

[
− (α12+αw1+α∞1)

m1c − α12
m1c

− α12
m2c − (α12+αw2+α∞2)

m2c

] [
T1(t) − Tset
T2(t) − Tset

]
+

[COP1
m1c 0
0 COP2

m2c

] [
Pac,1
Pac,2

]

+
[

α∞1
m1c

αw1
m1c

α∞2
m2c

αw2
m2c

] [
T∞(t)
Tw(t)

]
.

(17)

Thus, (17) can be rewritten in a standard notation as

ẋ = Ax + Bu + Γw,

y = x,
(18)

where

• A is an dynamic matrix.

• B is an input matrix of u.

• C = I is an output matrix.

• x =
[
T1(t) − Tset
T2(t) − Tset

]
is a state vector, u =

[
Pac,1(t)
Pac,2(t)

]
is input vectors.

• w =
[
T∞(t)
Tw(t)

]
is a disturbance with a disturbance matrix Γ.

2.4 Discrete state-space model of building temperature system
Since the data measured by sensors is discretized with the sampling rate h, we have defined to a
discrete-time equivalent state-space model. In this project, we introduce (i) zero-order-hold equivalent
(ii) forward-Euler method.
Let

H(s) =
[
A B
C D

]
,

and h be a sampling time.

• Zero-order-hold equivalent is computed by

H(z) =
[
eAh

∫ h
0 eAτ Bdτ

C D

]
,

or

H(z) = (1 − z−1)Z{L−1{H(s)
s

}}.

• Forward-Euler method is computed by subtituting

s = z − 1
h

.
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After applied ZOH equivalent and forward-Euler method on (16) and (18), we found that the structure
of both system of the system matrices can be described as

• Linearized model

A =
[
a11 a12
a21 a22

]
, B1 =

[
b11,1 0

0 b22,1

]
, B2 =

[
b11,2 0

0 b22,2

]
, Γ =

[
γ11 γ12
γ21 γ22

]
,

• Approximate linear model

A =
[
a11 a12
a21 a22

]
, B =

[
b11 0
0 b22

]
, Γ =

[
γ11 γ12
γ21 γ22

]
,

with
C = I, D = 0.

As results, the stuctures of discrete-time system matrices of these two model are same as (16) and (18).

3 Data
3.1 Variables and parameters

Table 1: Variables and parameters of the building temperature system
variables parameters

measured unknown measured unknown
T1(t), T2(t) Pac,1(t), Pac,2(t) Tset α12
T∞(t) c α∞1, α∞2
Tw(t) COP1, COP2 αw1, αw2
Eac,1(t), Eac,2(t) mi

c

Table 1 shows variables and parameters of the building temperature system and classifies those into 2
classes: measurable class and unknown class.

3.2 Preprocessing
Since we collected temperature of room 404 and 405, ambient temperature, walk-way temperature, and
input energy of air-conditioner from [10] while almost all data have one-minute sampling time. Thus,
we will adjust sampling rate corresponding to all measured data at 1 minute.

Since room 404 temperature and 405 temperature do not have a constant rate of sampling and their
sampling rates are not equal to 1. Thus we will assume that some data that missing are equal to the
past data as follows.
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(a) Raw data of room 404 temperature

0 500 1000 1500

datapoint

25.5

26

26.5

27

27.5

28

28.5

29

T
em

pe
ra

tu
re

room 404 temperature (PREPROCESSING)

(b) 1 minute sampling time of room 404 temperature
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(c) Raw data of room 405 temperature
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(d) 1 minute sampling time of room 405 temperature

3.3 Data
Since we adjust settling time at 1 minute, each one-week data set contains 10,080 points. All temper-
ature data, and electricity input data are collected during 16 Oct 2017 - 22 Oct 2017 (one-week data)
from [10] shown as follows.

• Temperature data
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(e) Room 404 temperature
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(f) Room 405 temperature
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(g) Ambient temperature
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(h) Walkway temperature

• Energy input data
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(i) Room 404 A/C energy input
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(j) Room 405 A/C energy input (phase 1)
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(k) Room 404 A/C energy input (phase 2)
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(l) Room 404 A/C energy input (phase 3)
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4 Problem statement
In this project, we use system identification to determine the discrete-time system matrices in section
2.4, then transform them back to continuous-time system. The models we aim to identify are (16), and
(18). Since T1[t] and T2[t] which are both states and outputs can be measured. Therefore, we can use
a least-squares estimation with constraints to determine the discrete-time system matrices.
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4.1 Least-squares estimation
In this project, room temperature, ambient temperature, walkway temperature, electrical input energy
which also leads to approximate electrical input power can be measured directly via sensors, Thus we can
simply use these measurements to formulate least-squares problems to determine discrete-time system
matrices as follows.

Least-squares problem formulation
• linearized model in section 2.3.1

min
Â,B̂1,B̂2,Γ̂

∥∥∥x[t + 1] − Âx[t] − B̂1u[t] − B̂2u̇[t] − Γ̂w[t]
∥∥∥2

s.t. Structures of B̂1, B̂2, Ĉ, D̂ are fixed.
(19)

• approximate linear model in section 2.3.2

min
Â,B̂,Γ̂

∥∥∥x[t + 1] − Âx[t] − B̂u[t] − Γ̂w[t]
∥∥∥2

s.t. Structures of B̂, Ĉ, D̂ are fixed.
(20)

5 Experiments
First, we use the one-week data (10,800 samples) in section 3.3 as a model-training set. Assume that
the state sequences are generated by (16) and (18), then we can apply a least-squares method to
determine the system matrices under the constraints. In these experiments, we used 2 sets of data, a
training set, and a validation set collected during 23-29 Oct 2017. After solving least-squares problems
with constraints by using CVX toolbox, state sequences had been generated via system matrices we have
obtained.

5.1 Result
5.1.1 Discrete-time system matrices

the discrete-time system matrices obtained from CVX are shown as follows. Optimal values were calcu-
lated by ∥Qx − p∥2 shown in table 2 where Q is

[
room temperature data electrical input data disturbance data

]
,

p is a state matrix, and x is an augmented system matrices.

Table 2: values of the objective function at optimal points
Data set Linearized model Approximate linear model
Optimal value 11.9677 11.9677

• Linearized model

Â =
[
0.9929 0.0005
0.0019 0.9895

]
, B̂1 =

[
−0.0009 0

0 −0.0033

]

B̂2 =
[
0 0
0 0

]
, Γ̂ =

[
0.0034 0.0015
0.0011 0.0071

]
.

(21)

Eigenvalues of Â = 0.9932, 0.9892. (Â is stable.)

• Approximated linear model

Â =
[
0.9929 0.0005
0.0019 0.9895

]
, B̂ =

[
−0.0592 0

0 −0.2036

]
, Γ̂ =

[
0.0034 0.0015
0.0011 0.0071

]
. (22)

Eigenvalues of Â = 0.9932, 0.9892. (Â is stable.)
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5.2 Fittings based on linearized model
In this section, the fitting based on linearized model on a validation data set has been shown as follows.
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Figure 6: room temperature plot of a linearized model on a validation set

5.3 Fittings based on approximate linear model
In this section, the fitting based on approximate linear model on a validation data set has been shown
as follows.
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Figure 7: room temperature plot of an approximated linear model on a validation set
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5.4 Discussion
After solving least-squares estimation with constraints, we found that the dynamic matrix we had
obtained is stable (∥λ∥ < 1, where λ is an eigenvalue of the dynamic matrix). Since the input matrix
B2 of the linearized model equals to a zero matrix, it shows that electrical energy input and electrical
power input are dependent which are obviously shown in the section 3.2. The results show that both
linearized model and approximate linear model provide moderate fitting performance.

6 Conclusions
In this project, we aim to estimate system matrices of the building temperature system by using system
identification. The data we measured are temperature data, and electrical input data. After we formulate
a state-space equation and determine a structure of system matrices, system matrices can be obtained
by a least-squares estimation. In this project, we propose that the building temperature system can be
described by two different models which are linearized model and approximate linear model. The results
show that approximate linear model provides a better fitting performance than the linearized model since
it gives a smaller value of mean-squares errors.
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7 Appendices
7.1 Appendix A: MATLAB code

• Least-squares estimation with constraints
1 c l c ; c l e a r a l l ;
2 %===========T r a i n i n g data s e t==========
3 da ta t = load ( ’ t r a i n i n g d a t a . mat ’ ) ;
4 %number o f data o f t r a i n i n g s e t
5 l t = l e n g t h ( da ta t . room404Temp ) ;
6 %Temperature data o f EE404 o f t r a i n i n g s e t
7 T1t ( 1 : l t , 1 ) = da ta t . room404Temp ( 1 : l t ) ;
8 %Temperature data o f EE405 o f t r a i n i n g s e t
9 T2t ( 1 : l t , 1 ) = da ta t . room405Temp ( 1 : l t ) ;

10 %Temperature data o f ambient o f t r a i n i n g s e t
11 T i n f t = da ta t . ambientTemp ( 1 : l t ) ;
12 %Temperature data o f walkway o f t r a i n i n g s e t
13 Twt = data t .W( 1 : l t ) ;
14

15 %===========V a l i d a t i o n data s e t==========
16 datav = load ( ’ v a l i d d a t a . mat ’ ) ;
17 %number o f data o f v a l i d a t i o n s e t
18 l v = l e n g t h ( datav . v r404 ) ;
19 %Temperature data o f EE404 o f v a l i d a t i o n s e t
20 T1v = datav . v r404 ( 1 : l v ) ;
21 %Temperature data o f EE405 o f v a l i d a t i o n s e t
22 T2v = datav . v r405 ( 1 : l v ) ;
23 %Temperature data o f ambient o f v a l i d a t i o n s e t
24 Tin f v = datav . vambient ( 1 : l v ) ;
25 %Temperature data o f walway o f v a l i d a t i o n s e t
26 Twv = datav . vw ( 1 : l v ) ;
27

28 %=====load power========
29 P1t ( 1 : l t , 1 ) = da ta t . room404Energy ( 1 : l t ) . ∗ ( 1/60 ) ;
30 P2t ( 1 : l t , 1 ) = ( da ta t . EE1 + data t . EE2 + data t . EE3) . ∗ ( 1/60 ) ;
31 P1v ( 1 : l v , 1 ) = datav . vE404 ( 1 : l v ) . ∗ ( 1/60 ) ;
32 P2v ( 1 : l v , 1 ) = datav . vsumee . ∗ ( 1/60 ) ;
33

34 %======load ene rgy======
35 E1t ( 1 : l t , 1 ) = da ta t . room404Energy ;
36 E2t ( 1 : l t , 1 ) = da ta t . EE1 + data t . EE2 + data t . EE3 ;
37 E1v ( 1 : l v , 1 ) = datav . vE404 ( 1 : l t ) ;
38 E2v ( 1 : l v , 1 ) = datav . vsumee ;
39

40 %==========l i n e a r==============
41 Q = [ T1t ( 1 : l t −1 ,1) T2t ( 1 : l t −1 ,1) E1t ( 1 : l t −1 ,1) E2t ( 1 : l t −1 ,1) . . .
42 P1t ( 1 : l t −1 ,1) P2t ( 1 : l t −1 ,1) T i n f t ( 1 : l t −1 ,1) Twt ( 1 : l t −1 ,1) ] ;
43 p = [ T1t ( 2 : l t , 1 ) T2t ( 2 : l t , 1 ) ] ;
44 %cvx_beg in
45 % v a r i a b l e x (8 , 2 )
46 % min imize ( norm ( Q ∗ x − p ) )
47 % s u b j e c t to
48 % x (3 , 2 ) == 0
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49 % x (4 , 1 ) == 0
50 % x (5 , 2 ) == 0
51 % x (6 , 1 ) == 0
52 %cvx_end
53 % x ( : , 1 ) = l s q l i n (Q, p ( : , 1 ) , [ 0 0 0 0 0 0 0 0 ] , 0 , [ 0 0 0 1 0 0 0 0 ;0 0

0 0 0 1 0 0 ] , [ 0 ; 0 ] )
54 % x ( : , 2 ) = l s q l i n (Q, p ( : , 2 ) , [ 0 0 0 0 0 0 0 0 ] , 0 , [ 0 0 1 0 0 0 0 0 ;0 0

0 0 1 0 0 0 ] , [ 0 ; 0 ] )
55 % Al = x ( 1 : 2 , : ) ; Bl_1=x ( 3 : 4 , : ) ; Bl_2 =x ( 5 : 6 , : ) ; gammal = x ( 7 : 8 , : ) ;
56

57 %==========Approximate==============
58 R = [ T1t ( 1 : l t −1 ,1) T2t ( 1 : l t −1 ,1) P1t ( 1 : l t −1 ,1) P2t ( 1 : l t −1 ,1) . . .
59 T i n f t ( 1 : l t −1 ,1) Twt ( 1 : l t −1 ,1) ] ;
60 p = [ T1t ( 2 : l t , 1 ) T2t ( 2 : l t , 1 ) ] ;
61 % cvx_beg in
62 % v a r i a b l e x (6 , 2 )
63 % min imize ( norm ( R ∗ x − p ) )
64 % s u b j e c t to
65 % x (3 , 2 ) == 0
66 % x (4 , 1 ) == 0
67 % cvx_end
68 % y ( : , 1 ) = l s q l i n (R , p ( : , 1 ) , [ 0 0 0 0 0 0 ] , 0 , [ 0 0 0 1 0 0 ] , 0 )
69 % y ( : , 2 ) = l s q l i n (R , p ( : , 2 ) , [ 0 0 0 0 0 0 ] , 0 , [ 0 0 1 0 0 0 ] , 0 )
70 % Aa = x ( 1 : 2 , : ) ; Ba=x ( 3 : 4 , : ) ; gammaa = x ( 5 : 6 , : ) ;

• Preprocessing for EE404 room
1 %Sampl ing data to 1 miute o f data i n room404
2

3 %=========I n i t i a l pa ramete r===========
4 day = 7 ; % use data o f 1 week
5 EE404 = z e r o s (24∗60∗ day , 1 ) ; %empty v e c t o r o f ene rgy o f room404
6 RT404 = z e r o s (24∗60∗ day , 1 ) ; %empty v e c t o r o f room tempe ra tu r e 404
7 AB = z e r o s (24∗60∗ day , 1 ) ; %empty v e c t o r o f ambient t empe ra tu r e
8 WW = z e r o s (24∗60∗ day , 1 ) ;%empty v e c t o r o f walkway tempe ra tu r e
9 DT = date t ime ( DateTime ) ;%DateTime i s column v e c t o r r e c i e v e from

CUBEMS
10 l = 1 ;
11 [ a b ] = s i z e (DT) ;
12 [ q r ] = s i z e ( date ) ; %date i s colume v e c t o r from ge n e r a t e t im e
13

14 %============F i l t r a t e data======================
15 f o r i = 1 : a
16 D = day (DT( i ) ) ;
17 H = hour (DT( i ) ) ;
18 MT = minute (DT( i ) ) ;
19 f o r j = l : q
20 D1 = day ( date ( j ) ) ;
21 H1 = hour ( date ( j ) ) ;
22 MT1 = minute ( date ( j ) ) ;
23 i f H == H1 && MT == MT1 &&D == D1 %the data i s t ha t t ime we

need
24 EE404 ( j ) = ene rgy ( i ) ; %colume v e c t o r o f ene rgy r e c i e v e from

CUBEMS
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25 RT404( j ) = room ( i ) ;%colume v e c t o r o f room tempe ra tu r e o f
room404 r e c i e v e from CUBEMS

26 AB( j ) = ambient ( i ) ;%colume v e c t o r o f ambient t empe ra tu r e
r e c i e v e from CUBEMS

27 WW( j ) = walkway ( i )%colume v e c t o r o f walkway r e c i e v e from
CUBEMS

28 l = j +1;
29 break
30 end
31 end
32 end
33 [ x y ] = s i z e ( EE404 ) ;
34 f o r i = 2 : x
35 i f EE404 ( i )== 0
36 EE404 ( i ) = EE404 ( i −1) ;
37 end
38 end
39 f o r i = 2 : x
40 i f AB( i )== 0
41 AB( i ) = AB( i −1) ;
42 end
43 end
44 f o r i = 2 : x
45 i f WW( i )== 0
46 WW( i ) = WW( i −1) ;
47 end
48 end
49 f o r i = 2 : x
50 i f RT404 ( i )== 0
51 RT404( i ) = RT404( i −1) ;
52 end
53 end
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