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Figure 1: Publication on PubMed in topic related to brain connectivity each year, keywords: Brain
connectivity OR functional brain connectivity OR effective brain connectivity.

1 Introduction

In past few decades, there are an enormous increment in publication per year in PubMed database
on topics related with brain connectivity as in Figure 1. The PubMed database indicated that there
are 4,290 publications related with brain connectivity in 2018. The rising demands of information
extraction from biosignal such as fMRI (functional Magnetic Resonance Imaging), EEG (Electroen-
cephalography), MEG(Magnetoenchephalography) to discover how brain regions interact to each
other have drew us to attention in this topic.

The term brain connectivity refers to a pattern of links across brain regions that indicates
causal interaction or statistical dependencies [12], [9]. There are three types of brain connectivity
definition. The first is Structural brain connectivity which refers to the links that anatomically
connected between brain regions. The second is functional connectivity which is the links between
brain regions that can be anatomically unconnected regions defined by statistical dependencies. But
statistical dependencies cannot be interpreted alone in general because statistical measures such
as correlations cannot be interpreted as causality. The causal interaction is the others. Between
brain regions the causal interaction are described in the last type of connectivity, the effective brain
connectivity. The detection of brain network differences between normal groups and TBI (Traumatic
Brain Injury) groups is our main interests because the classification of road accident patients, that
they have undetected long-term brain injuries or not, are crucial. Our framework is based on two
approaches, statistical framework and sparse estimation frame work. In statistical framework, the
connectivity matrices are computed from each patient in each group individually and compute
statistical measure such as average value of brain connectivity measures for representing the whole
group to perform hypothesis test between group whether the statistical measure is difference or not.
In sparse estimation framework in [11] exploits the sparsity patterns in brain connectivity matrix
and used to regularize the estimation while controlling the difference of all subjects in the group
resulting in representation of group brain connectivity. The difference can be directly identified
from group brain connectivity.

In this project, we will use Multivariate Granger Causality toolbox (MVGC) [1] to compute
Granger causality matrix as a measure of effective brain connectivity denoted as GC matrix. The
GC matrix is based on vector autoregressive model because of model simplicity. In statistical
framework, The average value of GC matrices in all trials of a group will be represent as a group
GC matrix. The difference will be determined by Hotelling T-squared test. Overall process is
described in 1 and the detail are in section 4
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Figure 2: Group difference pathway in this project.
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2 Problem statement

Given that brain time series data (EEG + fMRI) collected from two groups, Healthy group and
TBI group. We aim to

1. Learn brain networks based on GC of two classes of brain signals.

2. Analyze brain network difference of two groups.

3 Background

3.1 Granger causality estimation

Fij = log
det ΣR

ii

det Σii
(1)

Granger causality is a concept that test if the past of one time series can help to predict another
time series in sense of reducing the residual variance of the predicted time series. In this project,
we will compute Granger causality on vector autoregressive model.

Vector autoregressive model order p is defined as

y(t) =

p∑
k=1

Aky(t− k) + e(t) (2)

y(t), e(t) ∈ Rn, Ak ∈ Rn×n which can be expressed in state-space representation as

x(t+ 1) =


A1 A2 . . . Ap−1 Ap
I 0 . . . 0 0
...

. . .
...

...

0 0
. . . 0 0

0 0 . . . I 0

x(t) +


e(t+ 1)

0
...
0
0

 (3)

with x(t) =
[
y(t− 1)T y(t− 2)T . . . y(t− p)T

]T
and the output equation is

y(t) =
[
I 0 . . . 0 0

]
x(t) (4)

VAR model parameter can be estimated by ordinary least square methods or solve via Yule-Walker
equation [3].

Let’s considered multivariate AR(1) process yi(t), yj(t), note that both are vector. We want to
investigate if yi(t) is depended only in its own past value, not from past of yj(t). The full fitted
VAR model is

ŷi(t) = Aiiyi(t− 1) +Aijyj(t− 1)

ŷj(t) = Ajiyi(t− 1) +Ajjyj(t− 1)

which can be expressed as

ŷ(t) =

[
Aii Aij
Aji Ajj

]
y(t− 1)

noted that y(t) =
[
yi(t)

T yj(t)
T
]T

And the reduced model is

ŷR(t) =

[
ARii 0
ARji ARjj

]
yR(t− 1)

Granger causality can be tested by a ratio of the generalized variance [2] of reduced model and
full model.
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This measure is, in general, defined by equation (1) which is multivariate version of Granger
causality with ΣR

ii as the residual covariance matrix of reduced model and Σii as residual covariance
matrix of full model. In this case, both yi, yj are vector of time series, and it has physical meaning
as a test of multiple time series to another multiple time series.

Intuitively, if past of yj help to predict yi, the generalized variance of full model, which included
yj , will less than the one that does not include, which is the reduced model, then the value of
log-ratio will be nonzero and the value can be interpreted as connectivity value. Conversely, if past
of yj does not help to predict yi, the generalized variance of two model should be equal and leads
log-ratio (1) to zero.

One of the effective brain connectivity measure is Granger causality which is the test for direc-
tional causal inference between two multivariate variables [1] which can be computed from Vector
autoregressive model (VAR).

Granger causality inference can be achieved by equation (1) with generalized residual covariance
ΣR
ii = E((yi−ŷiR)(yi−ŷiR)T ), Σii = E((yi−ŷi)(yi−ŷi)T ), which can be estimated by using unbiased

sample residual covariance.
In this case if the log ratio (1) is zero, the generalized variance of yi is unchanged which means

the past of yj have no connection with current yi.

3.2 Hotelling’s T-squared test

The effective brain connectivity matrix is usually sparse due to the sparsity of connection in struc-
tural brain [12] . In numerical computation, there will be no real zeros which emphasizes the reason
to perform significant test whether the value inside connectivity matrix is actually zero. However,
this project aims to detect a difference between groups, the significant test should not be performed
in order to preserve distribution of GC matrices.

The difference is defined as the difference in the mean of GC matrix of trials drawn from first
group and second group.

This equality will be tested by vectorizing the average value of GC matrices with dimension
n×n into vector mean of a group yielding X̄1, X̄2 which, by central limit theorem, is n2−n-variate
normal distributed, the n subtraction came from causal inference in the same channel.

two samples Hotelling’s T-squared is used to test whether the vector mean of two samples are
equal. The test statistics is defined as

T 2 = (X̄1 − X̄2)
T (
s1
n1

+
s2
n2

)−1(X̄1 − X̄2) (5)

where X̄i is sample vector mean of Xi, si is unbiased sample covariance matrix of Xi respectively.
The test required that both X1, X2 are drawn from Normal distribution with common covariance
matrix and test statistics T 2 will have distribution as

T 2 ∼ pv

v − p+ 1
Fp,v−p+1 (6)

where p is dimension of vector, v = nx + ny − 2 is degree of freedom [6].
In practical uses, The two samples are mostly drawn from normal distribution with unequal

covariance matrix, this problem is called multivariate Behrens-Fisher problem. There are many
solutions, one of them is to estimate distribution of T 2 by modifying degree of freedom v in 6. In
this project, the degree of freedom is used as in [7] which proved that

v =
p+ p2

A1 +A2

where

Ai =
tr[(s̃is

−1
p )2] + [tr(s̃is

−1
p )]2

ni
; i = 1, 2

s̃i =
si
ni
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sp = s̃1 + s̃2

Hotelling T-squared test can be explained intuitively as the multivariate version of student’s t
statistics that used to compare mean in scalar version. But in multivariate sense, the vector mean
cannot be compared element-wise because there are many components which are not necessarily
independent to each other such as normal distribution with non-diagonal covariance matrix. The
T 2 brings mean vector into scalar representation as quadratic loss function. If value of T 2 is low,
the vector mean of two samples are more likely to be equal.

3.3 Group differences test

In this project, the mean of Granger causality based brain connectivity matrices of all trials in a
class is used to represent brain connectivity of the class and The hypothesis is if brain connectivity of
two groups are different, their population mean of brain connectivity matrix will not equal. Hence,
the group differences can be determined by comparing element-wise mean of all trials between TBI
and healthy group. The element-wise mean of all trials will be asymptotically normal distributed
by the virtue of Central Limit Theorem. The Hotelling T-squared test is used to test hypothesis
that the mean of two groups are equal under normality assumption.

4 Methodology

There are 4 steps to compute group difference test in statistical framework, which are

1. data preparation

The data preparation method will described how data was collected.

2. Model estimation

This section will involve model order selection and VAR coefficient estimation which includes
2 methods of estimation, Ordinary least square and solve via Yule-walker equation [3].

3. GC matrix computation This section will explain how the Granger causality matrix was
estimated for all available data

4. Group difference test The statistical test in 6 will be performed in this step. This step will
required asymptotic normality of sample mean, the testing samples must be large enough.

In step 2-3 will used MVGC toolbox to implement.

4.1 Data preparation

By the reason that the statistical group difference test uses central limit theorem to assume nor-
mality of the means of Granger causal inference in element-wise of all subjects, implies that the
number of sample must be maximize. One way is to augment the data by splitting into multiple
trials of each subject but in VAR model parameter estimation has number of parameter to be
estimated as NV AR = n2p, n is number of EEG channel, p is time lag, we will use p = 3. So it
will be 63× 63× 3 ≈ 12, 000 which need atleast 12, 000 data points but we will use rule of thumb,
data points will be 10 times more than the number of parameters. Hence, it will be 2 trials per
subject.

However, the real data set contained the channel that are highly correlated. After filtered out
by remove the channel that have correlation with another channel more than 0.9. There are 22
remaining channel causing the number of parameters to be estimated reduced to approximately
1, 000, hence, the number of trials can increase to 29 sample per subject.

4.2 Model estimation

The estimation is based on assumption that the EEG time series are wide-sense stationary, the
dynamic matrix in (3) must be stable.
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4.2.1 Model order selection

Model order is selected by AIC, BIC value which, in general, described by equation (7)

AIC = −2L+ 2k (7)

BIC = −2L+ k logN (8)

where L is log-likelihood function of VAR(p) process, k is number of parameters to be estimated,
in this case k = n2p, and N is number of all observation.

In the MVGC’s source code, AIC implementation is based on [8] and BIC is the same as (8).
Maximum log-likelihood function is used.

AIC = −2L+ 2k
N

N − k − 1
(9)

L = −N
2

log det Σ̂ (10)

where Σ̂ = 1
N−1ee

T is unbiased estimator of residual covariance matrix, e = y − ŷ.
In this project, the amount of data are not sufficient to select higher order model, due to the

trade-off between parameter estimation and the usage of central limit theorem in statistical test.
So, the order candidates are p = 1, 2, 3.

4.2.2 VAR coefficients estimation

There are two main methods to estimate the coefficients,

1. Ordinary least square

Ordinary least square is a solution of the overdetermine system. In this case, the linear system
is

[
y(p+ 1) y(p+ 2) . . . y(N)

]
=
[
A1 . . . Ap

]

y(p) y(p+ 1) . . . y(N − 1)

...
... . . .

...
y(2) y(3) . . . y(N − p+ 1)
y(1) y(2) . . . y(N − p)


(11)

This is in the form Y = βX, Y ∈ Rn×(N−p), X ∈ Rpn×(N−p), Ai ∈ Rn×n where n is the
number of channel and N is number of timepoints, p is model order.

Then the least square optimization formulation is

minimize
β

||Y − βX||2F (12)

The least square solution β̂ can be solved analytically by solving the normal equation.

β̂(XXT ) = Y XT (13)

In the MVGC toolbox, Least square method was implemented by MATLAB function mr-
divide that simply computes least square solution via QR factorization. In this case, the
regressor matrix in (13) is mostly rank deficient which caused by highly correlated EEG
channel, hence, there will be infinitely many exact solution. However, the highly correlated
channel must be excluded.

2. Solve via Yule-Walker equation

[
Γ(1) Γ(2) . . . Γ(p)

]
=
[
A1 A2 . . . Ap

]


Γ(0) Γ(−1) . . . Γ(−p+ 1)
Γ(1) Γ(0) . . . Γ(−p+ 2)

... . . .
. . .

...
Γ(p− 1) Γ(p− 2) . . . Γ(0)

 (14)
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Yule walker equation described in (14) is a system of linear equation that came from taking
autocovariance of equation(2) with multiple lags. where Γ(k) is autocovariance matrix that
can be estimated by its unbiased sample autocovariance. If the datapoints are large enough,
by the law of large number, the XXT in equation 13 will converge to autocovariance matrix
in equation 14. The autocovariance matrix in (14) is in Toeplitz form that can be solve
efficiently by LWR (Levinson Wiggins Robinson) algorithm which has been proven that this
algorithm will yield stable VAR coefficients [14].

4.3 GC matrix computation

Granger causality is implemented by estimating full model and reduced model from the data set
directly instead of compute via autocovariance sequence that recommended by MVGC toolbox
[1]. The reason of this recommendation is to increase computation accuracy in frequency domain
Granger causality calculation but in this project, only time domain Granger causality is used. The
significant test of Granger causality measure is to perform hypothesis test. The null hypothesis
is that the entry in Granger causality matrix is actually zero with asymptotic distribution as chi-
squared distribution [1], [5] (N − p)Fij ∼ χ2

p(ni+nj)
where N, p, ni, nj denotes sample size, lags,

dimension of yi, yj respectively.
The null hypothesis will be rejected if p-value of the GC measure is below 0.05 which p-value

is probability that the null hypothesis is true. Hence, the GC measure will be set to zero if the
p-value more than 0.05.

But in statistical framework, the significant test will not be performed due to the hypothesis
test on group difference test. Setting zero in GC matrices may cause assumed test distribution to
change.

4.4 Group difference test

The group differences of brain connectivity is determined by comparing element-wise GC matrices
mean of all trials between healthy group and TBI group. the mean of GC matrices has to be
vectorized into vector mean in order to use the Hotelling T-squared test that compare vector mean
of two samples, that assumed to be drawn from Gaussian distribution with common covariance
matrix.

5 Data description

The EEG datasets are achieved from USM (University Sains Malaysia). There are two groups of
data, TBI vs. Healthy. Each groups has 7 subjects. each subjects performed N-back test, emotion
and real-time task. the EEG data are measured before and after those tasks with 2 different
condition, eyes-open and eyes-closed. For example, data with label after REC is the EEG data
that measured After given tasks during Resting state with Eyes-Closed. The Figure 3 is conclusion
of data structure.

5.1 Electrode placement system

Electrode placement systems are standard methods to measure EEG signal from scalp. The example
are 10-20 system and 10-10 system. The number denotes distance in % from front to back, in this
case there are 10% and 20% distance between electrodes. The 10-10 system has more spatial
resolution [10].

5.2 Measurement

The data was measured by 64 channel 10-10 EEG electrode placement system with sampling rate
1000 Hz. Only channel 32 (EOG channel) has to be removed before analysis because it is not
connected. All channel’s EEG signal was a voltage difference between the the EEG electrode and

9



Figure 3: Data structure

Figure 4: actual 10-10 system electrode placement system that used to measure EEG signal.

reference electrode, which is channel CPz. the Ground (GND) channel described in the datasheet
in figure 5.1 is not presented in data file.

However, the real data set contained the channel that are highly correlated. After filtered out
by remove the channel that have correlation with another channel more than 0.9. There are 22
remaining channel causing the number of parameters to be estimated reduced to approximately
1, 000, hence, the number of trials can increase to 29 sample per subject.

5.3 Data Problem

The abnormality of data are investigated by the plot comparison of fitting The hypothesis is the
data that contains abnormality such as spikes in the signal should be detected when fitting the
model by MSE value as described in figure 6, 7 which the MSE seems to be very high at those
trials. The example of signal that contains spikes is from trial 6, which denoted as data6 in the
Figure 7, is Figure 8

Another problem on data is the high linearly correlated channel which is the cause of rank
deficient least square and non unique solution of VAR coefficient which should not be acceptable.

10



Figure 5: Actual 10-10 system electrode placement system that used to measure EEG signal.

One way to solve the problem is to remove the highly channel correlated channel which measured
by sample correlation.

By removing highly correlated channels, another problem is every subjects has different highly
correlated channels position and amount. The solution may be remove the channel by extracting
each region of EEG electrode as one channel.

6 Experiment

6.1 Model order selection

Model order is selected by lowest BIC score, because it will generally return simpler model than
AIC. In the range of p = 1, 2, 3 the BIC value is minimum when p=3 in all data.

6.2 VAR coefficient estimation

The goodness of fit is compared by mean square error. The result is in figure 10 which both methods
seem to be equally fitted. The spike should be an error in estimation. But this is the result from
minimum norm solution, the effect of highly correlated channel data needs further investigation.

6.2.1 Model estimation problem

In VAR parameters estimation, the AR coefficient matrix seem to be unstable, residual covariance
matrix is singular. The stability problem is solved by using LWR algorithm from which has been
proved that the VAR process from LWR algorithm always stable [14].

6.2.2 Solution of correlated data channel & Rank deficiency in regressor matrix

The channels of an example data were selected by correlation criteria which is to remove all channel
that correlated with some another channels with correlation greater than 0.9. The number of
channel is drop from 63 to 34 channels after this procedure.

The model order was reduced to 2 because the regressor matrix with higher order needs more
data points to be full rank, even the channels are not highly correlated.

6.3 Granger causality matrix computation

The GC measure is computed by fitting full and reduce model directly but in this case, the univariate
Granger causality is used because we want to indicate causal interaction between ”one” channel to

11



Figure 6: MSE of LWR algorithm in all trials.

Figure 7: MSE of OLS algorithm in all trials.

Figure 8: Example plot of abnormal data
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Figure 9: fitting comparison of OLS method & LWR algorithm that implemented in MVGC toolbox

another. So, the equation (1) is reduced into scalar equation. The test was done by performing
Granger causality test in each pair of channels. And the significant test used chi-squared test to
compute p-value for hypothesis test to test if the causal is actually zero.

Our result is in the Figure 11

6.4 Group difference test

The test was performed in 2 condition

1. Crossing test between TBI and Healthy with number of GC matrices sample of 29. This can
measure number of true positive and false negative of the test.

2. Test among the same group, between TBI and TBI or Healthy and Healthy with number of
GC matrices sample of 29. This can measure number of true negative and false positive of
the test.

6.4.1 Experimental results

The results of group differences test are in Figure 12. The true positive rate is 81.73 %, overall true
negative rate is 48.19 %. True negative rate in TBI vs TBI is 66.67 % but in Healthy vs Healthy
is 0 %.

The test in the same class can detect the differences 3 from 4 class.
True negative rate is decreased mainly because of healthy vs healthy, the reason might be

1. The different class in healthy group have different brain connectivity.

2. The EEG signal in healthy group contained artifacts such as spikes.

3. The number of trials are not enough for statistical testing because it is the comparison of
n2 dimensional vector, where n is number of channel. In this scenario, the dimension of
vectorized GC matrices is 22 × 22 − 22 = 462, subtracted NaNs. And the samples are vary

13



Figure 10: Difference in mean squared error of model fitted by OLS method and LWR algorithm

in ranges of 29-145 which may be not enough. In [7] denoted that the sample size should be
atleast 4 times more than vector dimension.

7 Conclusions

The Hotelling T squared-test is able to detect the difference between TBI and healthy group but
number of trials and data abnormality may cause error in hypothesis testing.
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Figure 11: Example of Granger causality matrix from EEG data with highly correlated channels
removed.

Figure 12: Group differences results.
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8 Matlab Code

8.1 Granger causality matrices computation

1 c l e a r
2 c l c
3 c l f
4 c l o s e a l l
5

6 %% f e t c h data
7 n = input ( ’ Enter number o f f i l e s to be imported\n ’ ) ;
8 f d i r = d i r ( ’C:\ Users \ r i t t h \Desktop\SELECTED ’ ) ;
9 addpath ( ’C:\ Users \ r i t t h \Desktop\SELECTED ’ )

10 load ( ’C:\ Users \ r i t t h \Dropbox\ Sen i o rPro j e c t \M a t l a b f i l e \ chan data reo rde r
. mat ’ ) %newchanindex

11 load ( ’C:\ Users \ r i t t h \Dropbox\ Sen i o rPro j e c t \M a t l a b f i l e \ chorder . mat ’ )
12 load ( ’C:\ Users \ r i t t h \Dropbox\ Sen i o rPro j e c t \M a t l a b f i l e \ i n d e x e q u a l i z e .

mat ’ )
13 %% Main program
14 f o r i =3:n+2 % a c c e s s i n g each c l a s s
15 % i =7;
16 zz =1;
17 r i = i −2;
18 f i l e n a m e = f d i r ( i ) . name ;
19 di sp ( f i l e n a m e )
20 s = load ( f i l e n a m e ) ;
21 fname = f i e ldnames ( s ) ;
22 fname = fname {1} ;
23 di sp ( f i l e n a m e ( 1 : end−4) )
24 d = s . ( fname ) ; % use dynamic f i e l d , d i s acce s s ed f i l e ’ s s t r u c t u r e

data
25 dim = length (d) ;
26 F = ze ro s (22 ,22 ,29∗dim) ; % GC matrix s i z e 22x22 with 29∗d t r i a l s
27 f o r j =1:dim %Extract ing t r i a l from f i l e
28 tmpindex = newchanindex ;
29 data = d( j ) . data ;
30 data = data ( order , : , : ) ; %Reorder channel
31 data ( 4 1 , : , : ) = [ ] ; %remove EOG
32 tmpindex ( 4 1 , : ) = [ ] ;
33 data ( ind , : , : ) = [ ] ; %remove high co r r equa l l y in a l l f i l e
34 tmpindex ( ind , : ) = [ ] ;
35 f o r k=1:29 % i t e r a t e through t r i a l s in each c l a s s
36 di sp ( k )
37 data k = data ( : , : , k ) ;
38 t i c
39 F ( : , : , zz ) = GC( data k ) ; % Compute GC matr i ce s
40 zz=zz +1;
41 toc
42 end
43 end
44

45 i f strcmp ( fname , ’HAC’ )
46 save ( ’F HAC. mat ’ , ’F ’ )

16



47 e l s e i f strcmp ( fname , ’HAO’ )
48 save ( ’F HAO. mat ’ , ’F ’ )
49 e l s e i f strcmp ( fname , ’HBC’ )
50 save ( ’F HBC. mat ’ , ’F ’ )
51 e l s e i f strcmp ( fname , ’HBO’ )
52 save ( ’F HBO. mat ’ , ’F ’ )
53 e l s e i f strcmp ( fname , ’PAC’ )
54 save ( ’F PAC. mat ’ , ’F ’ )
55 e l s e i f strcmp ( fname , ’PAO’ )
56 save ( ’F PAO. mat ’ , ’F ’ )
57 e l s e i f strcmp ( fname , ’PBC’ )
58 save ( ’F PBC . mat ’ , ’F ’ )
59 e l s e i f strcmp ( fname , ’PBO’ )
60 save ( ’F PBO. mat ’ , ’F ’ )
61 end
62 end

8.2 Difference test computation

1 c l e a r
2 c l c
3 %% s i e v e GC matr i ce s from each cond i t i on and channel index
4 load ( ’F HAC. mat ’ )
5 F HAC = F;
6 load ( ’F HAO. mat ’ )
7 F HAO = F;
8 load ( ’F HBC. mat ’ )
9 F HBC = F;

10 load ( ’F HBO. mat ’ )
11 F HBO = F;
12 load ( ’F PAC. mat ’ )
13 F PAC = F;
14 load ( ’F PAO. mat ’ )
15 F PAO = F;
16 load ( ’F PBC . mat ’ )
17 F PBC = F;
18 load ( ’F PBO. mat ’ )
19 F PBO =F;
20 load ( ’ F channel . mat ’ )
21

22 %% Data d e t a i l
23 %HAC : 58 t r i a l s , 2 s u b j e c t s
24 %HAO : 29 t r i a l s , 1 s u b j e c t
25 %HBC : 58 t r i a l s , 2 s u b j e c t s
26 %HBO : 87 t r i a l s , 3 s u b j e c t s
27 %PAC : 58 t r i a l s , 2 s u b j e c t s
28 %PAO : 145 t r i a l s , 5 s u b j e c t s
29 %PBC : 116 t r i a l s , 4 s u b j e c t s
30 %PBO : 58 t r i a l s , 2 s u b j e c t s
31 PERM H(1) . data = F HAC;
32 PERM H(2) . data = F HAO;
33 PERM H(3) . data = F HBC;
34 PERM H(4) . data = F HBO;
35
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36 PERM P(1) . data = F PAC;
37 PERM P(2) . data = F PAO;
38 PERM P(3) . data = F PBC ;
39 PERM P(4) . data = F PBO;
40

41 %% Cross ing Healthy vs TBI
42 %Stat t e s t AC
43 [ pval AC , T2 AC ] =Tsq (F HAC,F PAC) ;
44 %Stat t e s t AO
45 [ pval AO , T2 AO ] =Tsq (F HAO,F PAO) ;
46 %Stat t e s t BC
47 [ pval BC , T2 BC ] =Tsq (F HBC, F PBC) ;
48 %Stat t e s t BO
49 [ pval BO , T2 BO ] =Tsq (F HBO,F PBO) ;
50 %% Non−c r o s s i n g Healthy
51 [ pval HACAO ,T2 HACAO] =Tsq (F HAC,F HAO) ;
52 [ pval HACBC ,T2 HACBC] =Tsq (F HAC,F HBC) ;
53 [ pval HACBO ,T2 HACBO] =Tsq (F HAC,F HBO) ;
54 [ pval HAOBC ,T2 HAOBC] =Tsq (F HAO,F HBC) ;
55 [ pval HAOBO ,T2 HAOBO] =Tsq (F HAO,F HBO) ;
56 [ pval HBCBO ,T2 HBCBO] =Tsq (F HBC,F HBO) ;
57 %% Non−c r o s s i n g TBI
58 [ pval PACAO ,T2 PACAO] =Tsq (F PAC,F PAO) ;
59 [ pval PACBC ,T2 PACBC] =Tsq (F PAC, F PBC) ;
60 [ pval PACBO ,T2 PACBO] =Tsq (F PAC,F PBO) ;
61 [ pval PAOBC ,T2 PAOBC] =Tsq (F PAO, F PBC) ;
62 [ pval PAOBO ,T2 PAOBO] =Tsq (F PAO,F PBO) ;
63 [ pval PBCBO ,T2 PBCBO] =Tsq (F PBC,F PBO) ;
64 %% Permutation t e s t
65 Tpos=0;
66 Fneg=0;
67 FposH=0;
68 TnegH=0;
69 FposP=0;
70 TnegP=0;
71 f o r i =1:4
72 f o r j =1:4
73 [ Tpos tmp , Tneg tmp , Fpos tmp , Fneg tmp ] = permute tes t (PERM H( i ) .

data ,PERM P( j ) . data , 1 ) ;
74 Tpos =Tpos+Tpos tmp ; % t e l l that the re i s a d i f f e r e n c e which i s

t rue
75 Fneg =Fneg+Fneg tmp ; %Te l l that no d i f f e r e n c e which i s f a l s e
76 end
77 end
78 f o r i =1:4
79 f o r j=i +1:4
80 [ Tpos tmp , Tneg tmp , Fpos tmp , Fneg tmp ] = permute tes t (PERM H( i ) .

data ,PERM H( j ) . data , 0 ) ;
81 TnegH =TnegH+Tneg tmp ;
82 FposH =FposH+Fpos tmp ;
83 end
84 end
85 f o r i =1:4
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86 f o r j=i +1:4
87 [ Tpos tmp , Tneg tmp , Fpos tmp , Fneg tmp ] = permute tes t (PERM P( i ) .

data ,PERM P( j ) . data , 0 ) ;
88 TnegP =TnegP+Tneg tmp ;
89 FposP =FposP+Fpos tmp ;
90 end
91 end
92 Fpos =FposH+FposP ;
93 Tneg = TnegH+TnegP ;
94 TPR = Tpos /( Tpos+Fneg ) ;
95 FPR = Fpos /( Fpos+Tneg ) ;
96 PPV = Tpos /( Tpos+Fpos ) ;

8.3 Function definition

1 f unc t i on F = GC(X)
2 [m, ˜ ] = s i z e (X) ;
3 F = ze ro s (m,m) ;
4 f o r i =1:m
5 f o r j =1:m
6 i f i==j
7 F( i , j ) = NaN;
8 e l s e
9 F( i , j ) = GCCA tsdata to mvgc (X, i , j , 2 , ’OLS ’ ) ;

10 end
11 end
12 end
13 end

1 f unc t i on [ pval , T2 ] = Tsq (X,Y)
2 [ nx , ny , nz ] = s i z e (X) ;
3 [mx,my,mz ] = s i z e (Y) ;
4 Xvec = reshape (X, nx∗ny , nz ) ;
5 Yvec = reshape (Y,mx∗my,mz) ;
6 Xvec (˜ any ( Xvec , 2 ) , : ) = [ ] ;
7 Yvec (˜ any ( Yvec , 2 ) , : ) = [ ] ;
8 tmpX = Xvec ;
9 tmpY = Yvec ;

10 muX = mean(tmpX, 2 ) ;
11 muY = mean(tmpY, 2 ) ;
12 sx = cov (tmpX’ ) ;
13 sy = cov (tmpY’ ) ;
14 sp = ( sx /nz+sy /mz +0.00001∗ eye ( nx∗ny−nx ) ) ; %r e g u l a r i z e d covar iance

matrix 0 .00001
15 p = length (muX) ;
16

17 %% Modif ied Nel and Van der Merwe t e s t
18 A = tra c e ( ( ( sx /nz ) ∗( sp\ eye ( nx∗ny−nx ) ) ) ˆ2) ;
19 B = ( t ra c e ( ( sx /nz ) ∗( sp\ eye ( nx∗ny−nx ) ) ) ) ˆ2 ;
20 C = tra c e ( ( ( sy /mz) ∗( sp\ eye ( nx∗ny−nx ) ) ) ˆ2) ;
21 D = ( t r a c e ( ( sy /mz) ∗( sp\ eye ( nx∗ny−nx ) ) ) ) ˆ2 ;
22 v = (p+pˆ2) / ( (A+B) /nz+(C+D) /mz) ;
23 d1 = p ;
24 d2 = v−p+1;
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25 % disp ( d2 /(p∗v ) )
26 T2 = (muX−muY) ’∗ ( sp\ eye ( nx∗ny−nx ) ) ∗(muX−muY) ;
27 pval = 1−cd f ( ’F ’ ,T2∗d2 /(p∗v ) , d1 , d2 ) ;
28 end

1 f unc t i on [ Tpos , Tneg , Fpos , Fneg ] = permute tes t (X,Y, opt ) %opt = 1 i s
d i f f e r e n t , opt=0 i s not d i f f e r e n t

2 % n=0;
3 [ ˜ , ˜ , nx ] = s i z e (X) ;
4 [ ˜ , ˜ , ny ] = s i z e (Y) ;
5 kx = nx /29 ;
6 ky = ny /29 ;
7 Tpos = 0 ;
8 Fpos = 0 ;
9 Tneg = 0 ;

10 Fneg = 0 ;
11 i t r = 0 ;
12 f o r i =1:kx
13 f o r j =1:ky
14 i t r=i t r +1;
15 [ pval , ˜ ] = Tsq (X( : , : , 2 9 ∗ ( i −1)+1:29∗ i ) ,Y( : , : , 2 9 ∗ ( j−1)+1:29∗ j

) ) ;
16 i f pval <0.05 && opt== 1 % Reject Nul l Hypothes is ( True

p o s i t i v e )
17 Tpos = Tpos+1;
18 e l s e i f pval <0.05 && opt== 0
19 Fpos = Fpos+1;
20 e l s e i f pval >0.05 && opt ==1 %
21 Fneg = Fneg+1;
22 e l s e i f pval >0.05 && opt ==0
23 Tneg = Tneg+1;
24 end
25 end
26 end
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