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1 Introduction

The energy crisis is the biggest problem in the world today. There are many ideas on how to find new
renewable energy sources to provide a sustainable energy supply... Another interesting idea is energy
management. In this idea, demand side management is a popular technique to use electrical energy
according to the demand of important consumers. However, for this it is also necessary to understand
the performance of the energy consumption of the load in the grid or in the building. Predicting the
energy load can help to make a good decision to improve the efficiency of energy management technique.

According to [HAG+21], both statistical and time series approaches as well as machine learning and
other artificial intelligence approaches are the most popular prediction models seen in many previous
works. Starting from the simplest linear regression model [LWvS18], multi-linear regression (MLR)
[MMC19] through autoregressive integrated moving average (ARIMA) [FL16] [NMC+18], support
vector regression (SVR) [CCB13] [JZM+16] to the most advanced artificial neural networks (ANN)
[MMC19]. Since many models exist, many authors propose to compare different statistical and machine
learning methods, such as MLR, SVR and ANN, which were studied by the authors for different household
aggregations [HWVA13]. The result shows that SVR performs best at the aggregate level (by 32
households), while MLR performs best at the household level. Some hybrid modeling approaches are
also mentioned in the review paper [HAG+21]. In this part, it is mentioned that ARIMA and ANN
models are common components in model combinations. For example, in [BSL14], the authors use a
hybrid model that uses ARIMA and ANN to produce point forecasts for total energy and peak load at
the low-voltage transformer level for 128 residential customers. They conclude that ANN is more likely
to account for small fluctuations, while ARIMAX is better suited for modeling large peak loads. This
was the reason for the authors to propose a hybrid model where the load was first forecast using ANNs.
When the forecasted demand was above a threshold, ARIMAX was used as the final forecasting model..

In [CPR19], the author mentions that ARIMAX is better at capturing temporal dependence com-
pared to MLR and has better interpretive ability compared to SVR or ANN. This shows the advantage of
ARIMAX model compared to other time series models. Since electric load prediction is a non-stationary
problem ARIMA model is the best candidates. We know that ARIMA is an extension of ARMA models
for non-stationary time series, which can be made stationary by taking a difference (of a certain order)
from the original time series. Moreover, as can be seen in [CPR19] and [EF18], the outdoor tempera-
ture profile is integrated as an input variable, which has a dominant impact on the electric load, rather
than the other variables. These reasons lead to the ARIMAX model being superior to another model.

Project description The aim of this project is to obtain a good time series model for hourly prediction
of electrical load for each floor of Chamchuri5 building. The SARIMAX (Seasonal Auto Regressive
Integral Moving Average with Exogenous Input) model is used in our work to represent the model
prediction. The exogenous input here is outdoor temperature. The data for the electricity consumption
of each floor come from CUBEM, as you can see in [PCS+20] while the outdoor temperature data is
got from webist of hptt://meteostate.net in daily.

2 System modelling

In this project, a seasonal ARIMA model with exogenous input (outdoor temperature) is used as the
model for load forecasting for each floor of the building. Therefore, the model is presented here as a
general equation for ith floor, i = 1, ..., 7 (the number of floors in Chamchuri5 building). We know
that SARIMAX is given by the time series patterns within the series and captures the linear covariance
between the target variable and the exogenous variables.

ARIMAX (p, d, q)× (P,D,Q)S represents the standard seasonal ARIMAX model, where p = non-
seasonal autoregressive (AR) order, d = non-seasonal differencing, q = non-seasonal moving average
(MA) order, P = seasonal AR order, D = seasonal differencing, Q = seasonal MA order, S = time
span of the repeating seasonal pattern.This pattern we will discuss more in the methodology part by
seeing the time-series graph of our data.
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In case of our model, let yi(t) as the ith floor load value at time t, ei(t) is white noise of floor
ith, and x(t) denotes as outdoor temperature covariate at time t. The ARIMAX model of ith floor
can be mathematically expressed by equation below where ∇iSyi(t) = yi(t)− yi(t− S) and ∇iyi(t) =
yi(t)− yi(t− 1) represent differencing operations. While L is known as the backshit operator.

Ai(L
S)ai(L)∇D

iS∇d
i yi(t) = Bix(t) + Ci(L

S)ci(L)ei(t), i = 1, 2, ..., 7

where:

Ai(L
S) = 1−Ai1L

S − ...−AiPL
PS

ai(L) = 1− ai1L− ...− aiPL
p

Ci(L
S) = 1 + Ci1L

S + ...+ CiQL
QS

ci(L) = 1 + ci1L+ ...+ ciqL
q

3 Methodology

According to [HAG+21], the most important for developing an appropriate forecasting model is to select
the correct input features. As mentioned in the model chosen, the exogenous variable is the outdoor
temperature. In this part, we will discuss more the way to obtain it through an iterative process of
plotting, interpreting, and testing.

Figure 3 presents the load-temperature scatter plot of all floors for the period July 01, 2018, until
December 31, 2019. The figure shows that the peak of load demand of each floor exists while the
temperature is high (in the summer season). This demonstrates that electricity is used for cooling
in summer. Moreover, base on the correlation between load consumption of each floor and outdoor
temperature are not than 0.34. The linear effect from temperature can be used as exogenous input
correctly to our electricity model. However, we should also denote that some of zero ac load see in
second floor until the seventh floor scatter graph which indicated that electrical usage in the build each
floor depending on the week day and weekend or holiday. We also can see the effect of weekly seasonality
by see in the figure 2.

As mentioned in the model section, SARIMAX model is proposed to be forecast model in our
project. From the paper [FL16] state the general scheme for ARIMA model includes the following
four steps starting from the model structure identification, The second step is to identify the order of
the ARMA model by Autocorrelation function (ACF) and partial autocorrelation function (PACF). The
parameters of the model are estimated by a maximum likelihood (ML) function. Next step is testing
on the estimated model residuals to find the goodness of fit. In the last step, The estimated model can
be used to conduct forecast which is obvious that forecasts are less accurate as the forecasting horizon
gets larger.

When evaluating which tentative model best fits the data, the Akakike Information Criterion (AIC)
and Bayesian Information Criterion are a measure to compare them. The AIC can reward models for
a good fit and penalize model for complexity while BIC is related to the AIC but has a larger penalty
term then in the AIC. Both AIC and BIC apply a likelihood function to select the best fitted model.
They stand for a trade-off between ’fit’ measured by log likelihood value and ’parsimony’ as measured
by the number of free parameters. The target is to choose the model orders that result is in min-
imum values of AIC and BIC. The most appropriate model for the data set of each floor are found
as ARIMAX(3, 1, 2) model seasonally Integrated with Seasonal AR(12) and MA(6), ARIMAX(3, 1, 2)
model seasonally Integrated with Seasonal AR(7), ARIMAX(3, 1, 0) model seasonally Integrated with
Seasonal AR(7), ARIMAX(2, 1, 1) model seasonally Integrated, ARIMAX(3, 1, 1) model seasonally Inte-
grated, ARIMAX(2, 1, 0) model seasonally Integrated,and ARIMAX(4, 1, 0) model seasonally Integrated,
respectively from first to top floor. The estimated significant parameters are illustrated in Table 1.

In this study, we compare the accuracy of each models by out-of-sample test which means the data
used in model fitting are different from those used in forecasting evaluation. For our case, the period
from July 1, 2018 to July 21, 2019 is used for estimation purposes, and the data from August 1, 2019
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Table 1: SARIMAX model estimation results of each floor

Variable Value t-Statistic Variable Value t-Statistic

1st Floor 4th Floor

Constant 1.0699 -1.1874 Constant 0.24343 1.1687
AR{1} 0.73811 8.6956 AR{1} 0.035362 0.88603
AR{2} -0.33345 -4.8357 AR{2} -0.072149 -1.2021
AR{3} -0.35191 -6.1017 MA{1} -1 -47.2507
SAR{6} -0.28035 -5.1566 Beta(TempOut) -0.0081339 -1.1513
SAR{12} -0.11218 -1.9794 AIC 2447.7043
MA{1} -1.2603 -15.0261 BIC 2470.6248
MA{2} 0.65779 8.3865 5th Floor
SMA{6} -0.94654 -40.8751 Constant 0.36722 1.4611
Beta(TempOut) 0.034944 1.1483 AR{1} 0.056385 1.3992
AIC 2909.8355 AR{2} -0.095576 -1.2472
BIC 2953.0023 AR{3} 0.078836 1.9443

2nd Floor MA{1} -1 -103.5754
Constant -0.12515 -0.19714 Beta(TempOut) -0.012247 -1.4445
AR{1} -0.71558 -15.7629 AIC 2769.0419
AR{2} 0.24502 3.9467 BIC 2796.6964
AR{3} -0.0394 -0.71914 6th Floor
SAR{7} -0.48235 -14.9103 Constant -11.0799 -1.7741
MA{2} -1 -75.5377 AR{1} -0.24516 -6.3187
Beta(TempOut) 0.0040809 0.19086 AR{2} -0.10077 -1.9697
AIC 2659.1407 Beta(TempOut) 0.3757 1.7696
BIC 2690.5987 AIC 2760.3117

3rd Floor BIC 2780.0909

Constant 1.6566 0.099526 7th Floor
AR{1} -0.4795 -5.649 Constant -4.5209 -0.363
AR{2} -0.42935 -5.6573 AR{1} -0.66046 -14.1837
AR{3} -0.27578 -3.8988 AR{2} -0.63307 -11.5899
SAR{7} 0.55415 7.6595 AR{3} -0.3664 -7.6187
Beta(TempOut) -0.055981 -0.10485 AR{4} -0.22095 -4.9785
AIC 1053.422 Beta(TempOut) 0.15185 0.36776
BIC 1074.0135 AIC 3113.0607

BIC 3140.7152

are left for forecast evaluation for all floor except the 7th floor that estimate set is chosen from January
1, 2019 to May 31, 2019 and other is used for forecast evaluation.

Serveral measurement statistic can be used to examine the forecast accuracy of different models.
Rot mean squared error (RMSE), mean absolute percentage error (MAPE), and Thil’s inequality
coefficient (TIC) are use very often to evaluate the performance of the forecasting model. The above
mentioned statistical quantities are computed as below:

RMSE =

√√√√ 1

N

N∑
i=1

(ŷt − yt)2 (1)

MAPE =

(
1

N

N∑
t=1

(
|ŷt − yt|

yt

))
.100% (2)

TIC =

√
1
N

∑N
t=1 (ŷt − yt)

2√
1
N

∑N
t=1 y

2
t +

√
1
N

∑N
t=1 ŷ

2
t

(3)
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Figure 1: Daily electrical load plot of each floor

RMSE statistics depend on the scale of the scale of the variables. In such cases smaller errors indicate
the better forecasting accuracy. MAPE and TIC are insensitive to the scale of the variables. Similarly,
smaller MAPE and TIC indicate a better forecasting performance. TIC yields a number of values ranging
from 0 to 1, where zero indicates a perfect fit of the forecasted values to the actual.

4 Data description

As previously stated, historical load consumption data for this project was derived from the CUBEMs
data of the Chamuri5 building (see in [PCS+20]). The data was provided in a csv file that contained
the electricity consumption of AC loads in (Kw) for each level (from 1st to 7th floor) for each minute.
The data was converted to daily as shown in figure 1 because the goal of this project is to estimate load
demand a day ahead of time.

From July 1, 2018 to December 31, 2019, the data for each level is shown in 1. According to the
graph, the electrical load consumption in each level begins to rise in April, reaches a high in May, and
then begins to decline before July. This is show the annual seasonality of data relate to season (weather
effect) and to economic and social events during different months (e.g., public and national holidays).
Figure 2 show weekly seasonality. The weekly pattern reflects the variation in load on weekdays versus
weekends.
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Figure 2: Daily electrical load plot of each floor for random Month
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Figure 3: Daily electrical load plot of each floor
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5 Experimental results
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6 Appendices

6.1 Appendix A

Autocorrelation function (ACF) and Partial Autocorrelation function (PACF):
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Figure 4: Autocorrelation function (ACF) of each floor
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Figure 5: Partial Autocorrelation function (PACF) of each floor
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6.2 Appendix B

Matrix Correlation of AC load each floor and Outdoor Temperature:
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