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14. Recursive Identification Methods

• introduction

• recursive least-squares method

• recursive instrumental variable method

• recursive prediction error method
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Introduction

features of recursive (online) identification

• θ̂(t) is computed by some ’simple modification’ of θ̂(t− 1)

• used in central part of adaptive systems

• not all data are stored, so a small requirement on memory

• easily modified into real-time algorithms

• used in fault detection, to find out if the system has changed significantly

How to estimate time-varying parameters

• update the model regularly

• make use of previous calculations in an efficient manner

• the basic procedure is to modify the corresponding off-line method

Recursive Identification Methods 14-2



Desirable properties of recursive algorithms

• fast convergence

• consistent estimates (time-invariant case)

• good tracking (time-varying case)

• computationally simple

Trade-offs

• convergence vs tracking

• computational complexity vs accuracy
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Recursive least-squares method (RLS)

Recursive estimation of a constant: Consider the model

y(t) = b+ ν(t), ν(t) is a disturbance of variance λ2

the least-squares estimate of b is the arithmetic mean:

θ̂(t) =
1

t

t
∑

k=1

y(k)

this expression can be reformulated as

θ̂(t) = θ̂(t− 1) +
1

t
[y(t)− θ̂(t− 1)]

• the current estimate is equal to the previous estimate plus a correction

• the correction term is the deviation of the predicted value from what is
actually observed
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RLS algorithm for a general linear model

y(t) = H(t)θ + ν(t)

The recursive least-squares algorithm is given by

e(t) = y(t)−H(t)θ̂(t− 1)

P (t) = P (t− 1)− P (t− 1)HT (t)[I +H(t)P (t− 1)H(t)T ]−1H(t)P (t− 1)

K(t) = P (t)H(t)T = P (t− 1)H(t)T [I +H(t)P (t− 1)H(t)T ]−1

θ̂(t) = θ̂(t− 1) +K(t)e(t)

• interprete e(t) as a prediction error and K(t) as a gain factor

• the update rule in P (t) has an efficient matrix inversion for scalar case
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Proof of the update formula the least-square estimate is given by

θ̂(t) =

(

t
∑

k=1

H(k)TH(k)

)

−1(
t
∑

k=1

H(k)Ty(k)

)

denote P (t) as

P (t) =

(

t
∑

k=1

H(k)TH(k)

)

−1

=⇒ P−1(t) = P−1(t− 1) +H(t)TH(t)

then it follows that

θ̂(t) = P (t)

[

t−1
∑

k=1

H(k)Ty(k) +H(t)Ty(t)

]

= P (t)
[

P−1(t− 1)θ̂(t− 1) +H(t)Ty(t)
]
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θ̂(t) = P (t)
[

(P−1(t)−H(t)TH(t))θ̂(t− 1) +H(t)Ty(t)
]

= θ̂(t− 1) + P (t)H(t)T
[

y(t)−H(t)θ̂(t− 1)
]

to obtain the update rule for P (t), we apply the matrix inversion lemma:

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1

to
P−1(t) = P−1(t− 1) +H(t)TH(t)

where we use

A = P−1(t− 1), B = H(t)T , C = I D = H(t)

Recursive Identification Methods 14-7



Initial conditions

• θ̂(0) is the initial parameter estimate

• P (0) is an estimate of the covariance matrix of the initial parameter

• if P (0) is small then K(t) will be small and θ̂(t) will not change much

• if P (0) is large, θ̂(t) will quickly jump away from θ̂(0)

• it is common in practice to choose

θ̂(0) = 0, P (0) = ρI

where ρ is a constant

• using a large ρ is good if the initial estimate θ̂(0) is uncertain
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Effect of the initial values

we simulate the following system

y(t)− 0.9y(t− 1) = 1.0u(t− 1) + ν(t)

• u(t) is binary white noise

• ν(t) is white noise of zero mean and variance 1

• identify the system using RLS with 250 points of data

• the parameters are initialized by

θ̂(0) = 0, P (0) = ρ

[

1 0
0 1

]

for ρ = 0.01, 0.1, 1, 10
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the graphs show the influence of the initial values
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• large and moderate values of ρ (i.e., ρ = 1, 10) lead to similar results

• for large ρ, little confidence is given to θ̂(0), so quick transient response

• a small value of ρ leads to a small K(t), so it gives a slower convergence
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Forgetting factor

the loss function in the least-squares method is modified as

f(θ) =
t
∑

k=1

λt−k‖y(k)−H(k)θ‖2
2

• λ is called the forgetting factor and take values in (0, 1)

• the smaller the value of λ, the quicker the previous info will be forgotten

• the parameters are adapted to describe the newest data

Update rule for RLS with a forgetting factor

P (t) =
1

λ

{

P (t− 1)− P (t− 1)H(t)T [λI +H(t)P (t− 1)H(t)T ]−1H(t)P (t− 1)
}

K(t) = P (t)H(t)T = P (t− 1)H(t)T [λI +H(t)P (t− 1)H(t)T ]−1

θ̂(t) = θ̂(t− 1) +K(t)[y(t)−H(t)θ̂(t− 1)]
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the solution θ̂(t) that minimizes f(θ) is given by

θ̂(t) =

(

t
∑

k=1

λt−kH(k)TH(k)

)

−1(
t
∑

k=1

λt−kH(k)Ty(k)

)

the update formula follow analogously to RLS by introducing

P (t) =

(

t
∑

k=1

λt−kH(k)TH(k)

)

−1

the choice of λ is a trade-off between convergence and tracking performance

• λ small =⇒ old data is forgotten fast, hence good tracking

• λ close to 1 =⇒ good convergence and small variances of the estimates

Recursive Identification Methods 14-12



Effect of the forgetting factor

consider the problem of tracking a time-varying system

y(t)− 0.9y(t− 1) = b0u(t) + ν(t), b0 =

{

1.5 t ≤ N/2

0.5 t > N/2

• u(t) is binary white noise

• ν(t) is white noise of zero mean and variance 1

• identify the system using RLS with 250 points of data

• the parameters are initialized by

θ̂(0) = 0, P (0) =

[

1 0
0 1

]

• the forgetting factors are varied by these values λ = 1, 0.99, 0.95
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graphs show the influence of the forgetting factors
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â

k
0 50 100 150 200 250

−0.5

0

0.5

1

1.5

2

 

 

λ = 1

λ = 0.99

λ = 0.95

b̂

k

a decrease in the forgetting factor leads to two effects:

• the estimates approach the true value more rapidly

• the algorithm becomes more sensitive to noise

as λ decreases, the oscillations become larger
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summary:

• one must have λ = 1 to get convergence

• if λ < 1 the parameter estimate can change quickly, and the algorithm
becomes more sensitive to noise

for this reason, it is often to allow the forgetting factor to vary with time

a typical choice is to let λ(t) tends exponentially to 1

λ(t) = 1− λt

0
(1− λ(0))

this can be easily implemented via a recursion

λ(t) = λ0λ(t− 1) + (1− λ0)

typical values for λ0 = 0.99 (|λ0| must be less than 1) and λ(0) = 0.95
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Kalman Filter interpretation

consider a state-space of a time-varying system

x(t+ 1) = A(t)x(t) +Bu(t) + ν(t)

y(t) = C(t)x(t) + η(t)

where ν(t), η(t) are independent white noise with covariances R1, R2

Kalman filter:

x̂(t+ 1) = A(t)x̂(t) +B(t)u(t) +K(t)[y(t) − C(t)x̂(t)]

K(t) = A(t)P (t)C(t)T [C(t)P (t)C(t)T + R2]
−1

P (t+ 1) = A(t)P (t)A(t)T +R1

−A(t)P (t)C(t)T [C(t)P (t)C(t)T + R2]
−1C(t)P (t)A(t)T
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the linear regression model

y(t) = H(t)θ + ν(t)

can be written as a state-space equation

θ(t+ 1) = θ(t) (= θ)

y(t) = H(t)θ(t) + ν(t)

apply the Kalman filter to the state-space equation with

A(t) = I, B(t) = 0, C(t) = H(t), R1 = 0

when R2 = I , it will give precisely the basic RLS algorithm in page 14-5

the tracking capability is affected by R2
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Recursive instrument variable method

the IV estimate of a scalar linear system

y(t) = H(t)θ + ν(t)

is given by

θ̂(t) =

[

t
∑

k=1

Z(k)TH(k)

]

−1 [
t
∑

k=1

Z(k)Ty(k)

]

the IV estimate can be computed recursively as

θ̂(t) = θ̂(t− 1) +K(t)[y(t)−H(t)θ̂(t− 1)]

K(t) = P (t)Z(t)T = P (t− 1)Z(t)T [I +H(t)P (t− 1)Z(t)T ]

P (t) = P (t− 1)− P (t− 1)Z(t)T [I +H(t)P (t− 1)Z(t)T ]−1H(t)P (t− 1)

(analogous proof to RLS by using P (t) = (
∑t

k=1
Z(k)TH(k))−1)
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Recursive prediction error method

we will use the cost function

f(t, θ) =
1

2

t
∑

k=1

λt−ke(k, θ)TWe(k, θ)

where W ≻ 0 is a weighting matrix

• for λ = 1, f(θ) = tr(WR(θ)) where R(θ) = 1

2

∑t

k=1
e(k, θ)e(k, θ)T

• the off-line estimate of θ̂ cannot be found analytically (except for the LS case)

• it is not possible to derive an exact recursive algorithm

• some approximation must be used, and they hold exactly for the LS case

Recursive Identification Methods 14-19



main idea: assume that

• θ̂(t− 1) minimizes f(t− 1, θ)

• the minimum point of f(t, θ) is close to θ̂(t− 1)

using a second-order Taylor series approximation around θ̂(t− 1) gives

f(t, θ) ≈ f(t, θ̂(t− 1)) +∇f(t, θ̂(t− 1))T (θ − θ̂(t− 1))

+
1

2
[θ − θ̂(t− 1)]T∇2f(t, θ̂(t− 1))[θ − θ̂(t− 1)]

minimize the RHS w.r.t. θ and let the minimizer be θ̂(t):

θ̂(t) = θ̂(t− 1)− [∇2f(t, θ̂(t− 1))]−1∇f(t, θ̂(t− 1))

(Newton-Raphson step)

we must find ∇f(t, θ̂(t− 1)) and P (t) = [∇2f(t, θ̂(t− 1))]−1
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details: to proceed, the gradients of f(t, θ) w.r.t θ are needed

f(t, θ) = λf(t− 1, θ) +
1

2
e(t, θ)TWe(t, θ)

∇f(t, θ) = λ∇f(t− 1, θ) + e(t, θ)TW∇e(t, θ)

∇2f(t, θ) = λ∇2f(t− 1, θ) +∇e(t, θ)TW∇e(t, θ) + e(t, θ)TW∇2e(t, θ)

first approximations:

• ∇f(t− 1, θ̂(t− 1)) = 0 (θ̂(t− 1) minimizes f(t− 1, θ)

• ∇2f(t− 1, θ̂(t− 1)) = ∇2f(t− 1, θ̂(t− 2)) (∇2f varies slowly with θ)

• e(t, θ)TW∇2e(t, θ) is negligible

after inserting the above equations to

θ̂(t) = θ̂(t− 1)− [∇2f(t, θ̂(t− 1))]−1∇f(t, θ̂(t− 1))
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we will have

θ̂(t) = θ̂(t− 1)− [∇2f(t, θ̂(t− 1)]−1[e(t, θ̂(t− 1))TW∇e(t, θ̂)(t− 1)]

∇2f(t, θ̂(t− 1)) = λ∇2f(t− 1, θ̂(t− 2)) +∇e(t, θ̂(t− 1))TW∇e(t, θ̂(t− 1))

(still not suited well as an online algorithm due to the term e(t, θ̂(t− 1))

second approximations: let

e(t) ≈ e(t, θ̂(t− 1)), H(t) ≈ −∇e(t, θ̂(t− 1))

(the actual way of computing these depends on model structures), then

θ̂(t) = θ̂(t− 1) + P (t)HT (t)We(t)

where we denote P (t) = [∇2f(t, θ̂(t− 1))]−1 which satisfies

P−1(t) = λP−1(t− 1) +H(t)TWH(t)
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apply the matrix inversion lemma to the recursive formula of P−1(t)

we arrive at recursive prediction error method (RPEM)

algorithm:

θ̂(t) = θ̂(t− 1) +K(t)e(t)

K(t) = P (t)H(t)T

P (t) =
1

λ

{

P (t− 1)− P (t− 1)H(t)T [λW−1 +H(t)P (t− 1)H(t)T ]−1P (t− 1)
}

where the approximations

e(t) ≈ e(t, θ̂(t− 1)), H(t) ≈ −∇e(t, θ̂(t− 1))

depend on the model structure
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Example of RPEM: ARMAX models

consider the scalar ARMAX model

A(q−1)y(t) = B(q−1)u(t) + C(q−1)ν(t)

where all the polynomials have the same order

A(q−1) = 1 + a1q
−1 + · · ·+ anq

−n

B(q−1) = b1q
−1 + · · ·+ bnq

−n

C(q−1) = 1 + c1q
−1 + · · ·+ cnq

−n
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define

ỹ(t, θ) =
1

C(q−1)
y(t), ũ(t, θ) =

1

C(q−1)
u(t), ẽ(t, θ) =

1

C(q−1)
e(t)

we can derive the following relations

e(t, θ) =
A(q−1)y(t)−B(q−1)u(t)

C(q−1)

∇e(t, θ) = (ỹ(t− 1, θ), . . . , ỹ(t− n, θ),−ũ(t− 1, θ), . . . ,−ũ(t− n, θ),

− ẽ(t− 1, θ), . . . ,−ẽ(t− n, θ))

to compute e(t, θ), we need to process all data up to time t
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we use the following approximations

e(t, θ) ≈ e(t) = y(t) + â1(t− 1)y(t− 1) + · · ·+ ân(t− 1)y(t− n)

− b̂1(t− 1)u(t− 1)− · · · − b̂n(t− 1)u(t− n)

− ĉ1(t− 1)e(t− 1)− · · · − ĉn(t− 1)e(t− n)

−∇e(t, θ) ≈ H(t) = (−ȳ(t− 1), . . . ,−ȳ(t− n),

ū(t− 1), . . . , ū(t− n), ē(t− 1), . . . , ē(t− n))

where

ȳ(t) = y(t)− ĉ1(t)ȳ(t− 1)− · · · − ĉn(t)ȳ(t− n)

ū(t) = u(t)− ĉ1(t)ū(t− 1)− · · · − ĉn(t)ū(t− n)

ē(t) = e(t)− ĉ1(t)ē(t− 1)− · · · − ĉn(t)ē(t− n)
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Comparison of recursive algorithms

we simulate the following system

y(t) =
1.0q−1

1− 0.9q−1
u(t) + ν(t)

• u(t), ν(t) are indepentdent white noise with zero mean and variance 1

• we use RLS,RIV, RPEM to identify the system

model structure for RLS and RIV:

y(t) + ay(t− 1) = bu(t− 1) + ν(t), θ = (a, b)

model structure for RPEM:

y(t) + ay(t− 1) = bu(t− 1) + ν(t) + cν(t− 1), θ = (a, b, c)
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Numerical results
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• RLS does not give consistent estimates for systems with correlated noise

• this is because RLS is equivalent to an off-line LS algorithm

• in contrast to RLS, RIV gives consistent estimates

• this result follows from that RIV is equivalent to an off-line IV method
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â
b̂
ĉ

• RPEM gives consistent estimates of a, b, c

• the estimates â and b̂ converge more quickly than ĉ
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Common problems for recursive identification

• excitation

• estimator windup

• P (t) becomes indefinite

excitation it is important that the input is persistently excitation of sufficiently
high order
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Estimator windup

some periods of an identification experiment exhibit poor excitation

consider when H(t) = 0 in the RLS algorithm, then

θ̂(t) = θ̂(t− 1), P (t) =
1

λ
P (t− 1)

• θ̂ becomes constant as t increases

• P increases exponentially with time for λ < 1

• when the system is excited again (H(t) 6= 0), the gain

K(t) = P (t)H(t)T

will be very large and causes an abrupt change in θ̂
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• this is referred to as estimator windup

Solution: do not update P (t) if we have poor excitation
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Indefinite P (t)

P (t) represents a covariance matrix

therefore, it must be symmetric and positive definite

rounding error may accumulate and make P (t) indefinite

this will make the estimate diverge

the solution is to note that any positive definite matrix can be factorized as

P (t) = S(t)S(t)T

and rewrite the algorithm to update S(t) instead
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