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14. Recursive ldentification Methods

e introduction
e recursive least-squares method
e recursive instrumental variable method

e recursive prediction error method
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Introduction

features of recursive (online) identification

e (t) is computed by some 'simple modification’ of A(t — 1)
e used in central part of adaptive systems
e not all data are stored, so a small requirement on memory
e casily modified into real-time algorithms

e used in fault detection, to find out if the system has changed significantly
How to estimate time-varying parameters

e update the model regularly
e make use of previous calculations in an efficient manner

e the basic procedure is to modify the corresponding off-line method
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Desirable properties of recursive algorithms

e fast convergence
e consistent estimates (time-invariant case)
e good tracking (time-varying case)

e computationally simple

Trade-offs

e convergence vs tracking

e computational complexity vs accuracy

Recursive Identification Methods
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Recursive least-squares method (RLS)

Recursive estimation of a constant: Consider the model
y(t) = b+ uv(t), wv(t) is a disturbance of variance \?

the least-squares estimate of b is the arithmetic mean:

0t = > u(h)

k=1

this expression can be reformulated as
" " 1 ~
0(t) =0t — 1) + - [y(t) — 0t — 1)

e the current estimate is equal to the previous estimate plus a correction

e the correction term is the deviation of the predicted value from what is
actually observed
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RLS algorithm for a general linear model

y(t) = H(t)0 + v(t)

The recursive least-squares algorithm is given by

e(t) = y(t)—H®)O({-1)

Pt) = Pt—1)—Pt—-1)H"O)I+HPt—-1)H)' | ' HO)P({t—1)
Kit) = PHOH®M)' = Pt—1VDHWO)'I+HOPt—-1DH@)]!

o(t) = 6(t—1)+ K(t)e(t)

e interprete e(t) as a prediction error and K (t) as a gain factor

e the update rule in P(¢) has an efficient matrix inversion for scalar case
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Proof of the update formula the least-square estimate is given by

dt) = (z H<k>TH<k>) (z H<k>Ty<k>)
k=1 k=1

denote P(t) as

P(t) = (Z H(k)TH(k)> — Pl =P lt-1)+HW) H®)
k=1

then it follows that
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0(t) = P(t) [(P~(t) — H(®)TH®)O(E 1) + H(t)y(t)

= 0(t — 1)+ P(t)H ()" [y(t) — H®)(t — 1)}

to obtain the update rule for P(t), we apply the matrix inversion lemma:

(A+ BCD) '=A"1—-A"'B(C"'+ DA 'B)'DA™!
to

Prt)y=P 't—-1)+H) H{

where we use

A=PY(t—-1), B=HW", C=1 D=H()
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Initial conditions

e A(0) is the initial parameter estimate

e P(0) is an estimate of the covariance matrix of the initial parameter

e if P(0) is small then K (¢) will be small and 6(t) will not change much
o if P(0) is large, 0(t) will quickly jump away from 6(0)

e it is common in practice to choose

where p is a constant

e using a large p is good if the initial estimate A(0) is uncertain
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Effect of the initial values

we simulate the following system
y(t) —0.9y(t — 1) = 1.0u(t — 1) + v(t)

e u(t) is binary white noise
e (%) is white noise of zero mean and variance 1
e identify the system using RLS with 250 points of data

e the parameters are initialized by

for p = 0.01,0.1, 1,10
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the graphs show the influence of the initial values
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e large and moderate values of p (i.e., p = 1,10) lead to similar results
e for large p, little confidence is given to é(O) so quick transient response

e a small value of p leads to a small K(t), so it gives a slower convergence
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Forgetting factor

the loss function in the least-squares method is modified as
t
f(0) =2 X lly(k) — H(k)0l3
k=1

e )\ is called the forgetting factor and take values in (0, 1)
e the smaller the value of A, the quicker the previous info will be forgotten

e the parameters are adapted to describe the newest data

Update rule for RLS with a forgetting factor

P(t)

% {(P(t—1)—Pt—1DHW)'N+HGPt—-1)H)' ' HO)P(t—1)}
Kt =Pt)Ht)' =Pt —-1DHO ' N +Ht)P(t—1)H(t)']™!
0(t) = 0(t — 1) + K()[y(t) — H(t)0(t — 1)]
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the solution 0(t) that minimizes f(0) is given by

() = <§t: )\t""H(k)TH(k)> <§t: xka(k)Ty(k)>

the update formula follow analogously to RLS by introducing
; ~1
P(t) = (Z Atkﬂ(k)TH(k)>
k=1

the choice of A\ is a trade-off between convergence and tracking performance

e )\ small = old data is forgotten fast, hence good tracking

e )\ close to 1 = good convergence and small variances of the estimates
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Effect of the forgetting factor

consider the problem of tracking a time-varying system

1.5 ¢t < N/2

y(t) — Ogy(t — 1) = boU(t) + V(t), b() = {05 P> N/2

e wu(t) is binary white noise
e v(t) is white noise of zero mean and variance 1
e identify the system using RLS with 250 points of data

e the parameters are initialized by

0(0) = 0, P(O):[(l) (1)]

e the forgetting factors are varied by these values A =1,0.99,0.95
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graphs show the influence of the forgetting factors
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a decrease in the forgetting factor leads to two effects:

e the estimates approach the true value more rapidly

e the algorithm becomes more sensitive to noise

as A decreases, the oscillations become larger
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summary:

e one must have A = 1 to get convergence

e if A < 1 the parameter estimate can change quickly, and the algorithm
becomes more sensitive to noise

for this reason, it is often to allow the forgetting factor to vary with time

a typical choice is to let A(¢) tends exponentially to 1
At) =1 - 251 — X(0))
this can be easily implemented via a recursion
A(t) = AoA(t—1)+ (1 — o)
typical values for A\g = 0.99 (|A\g| must be less than 1) and A(0) = 0.95
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Kalman Filter interpretation

consider a state-space of a time-varying system

where v(t),n(t) are independent white noise with covariances Ri, Ro

Kalman filter:

T(t+1) = A()z(t) + B(t)u(t) + K()|y(t) — C()z(t)]
K(t) = A@®)PHCHT[CH)PH)C(H)" + Ry~
P(t+1) = ABOPHARDT + R,
—A()P(t)C(t) [CH)PH)C()" + Ro] " C (1) P(1) A(t)"
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the linear regression model
y(t) = H(t)0 + v(t)

can be written as a state-space equation

when Ry = I, it will give precisely the basic RLS algorithm in page 14-5

the tracking capability is affected by Rs

Recursive Identification Methods

14-17



Recursive instrument variable method

the IV estimate of a scalar linear system

y(t) = H(1)0 + v(t)

is given by

E:Z%VHQJ
k=1

the IV estimate can be computed recursively as

E:Z%V@%i

k=1

6(t) = 6(t—1)+K(®)[y(t) — HB)O(t - 1)]
K(t) = Pt)Z(t)) = Pt-1)Z0O)"'[I+HW)P(t-1)Z(t)"]
P(t) = P(t—1)-Pt-1Zt)" [I+HO)Pt-1)Z(t)" ] H)P(t—1)

(analogous proof to RLS by using P(t) = (2221 Z(k)TH (k)™
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Recursive prediction error method

we will use the cost function
|
F(£,0) =2 X Fe(k,0)"We(k,0)

2
k=1

where W > 0 is a weighting matrix

o for A\ =1, f() =tr(WR(0)) where R(0) = %2221 e(k,0)e(k,0)"
e the off-line estimate of § cannot be found analytically (except for the LS case)

e it is not possible to derive an exact recursive algorithm

e some approximation must be used, and they hold exactly for the LS case
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main idea: assume that

e O(t — 1) minimizes f(t —1,0)

e the minimum point of f(¢,0) is close to 0(t — 1)

using a second-order Taylor series approximation around 6(¢t — 1) gives

f(t,0) = f(t,0(t = 1))+ VF(£, 00t —1)"(0 —0(t — 1))

A

+ 16— 00— DIV £ (60— 1))[0 — O(t — 1)

minimize the RHS w.r.t. @ and let the minimizer be 6(t):

A

O(t) = 0(t — 1) = [V2f(t,0(t = )] 7'V f(t,6(t - 1))

(Newton-Raphson step)
we must find V£(¢,0(¢t — 1)) and P(t) = [V2f(t,0(t — 1))] "}
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details: to proceed, the gradients of f(¢,0) w.r.t 6 are needed

F(E.0) = Af(t—1,0) + %e(t, 0T We(t, 0)

VIt,0)=AVFit—1,0)+e(t,0) ' WVe(t,6)
V2f(t,0) = A\V2f(t — 1,0) + Ve(t,0)' WVe(t,0) + e(t,0)" WV?e(t, 0)

first approximations:

A

o Vf(t—1,0(t—1))=0 (0(t — 1) minimizes f(t —1,0)
o V2f(t—1,0(t—1))=V2f(t—1,0(t—2)) (V2f varies slowly with )
o e(t,0)TWV32e(t,0) is negligible

after inserting the above equations to

O(t) = 0(t — 1) = [V2f(t,0(t = )] 7'V f(t,6(t - 1))
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we will have

0(t) = 0(t — 1) — [V2f(L,0(t — 1] Ye(t, 0(t — 1)TWVe(t, 0)(t — 1)]
V2,00t —1)) = AV2f(t—1,0(t —2)) + Ve(t,0(t — 1) TWVe(t,0(t — 1))

(still not suited well as an online algorithm due to the term e(t,0(t — 1))

second approximations: let
e(t) ~e(t,0(t — 1)), H(t)~—Ve(t,0(t—1))
(the actual way of computing these depends on model structures), then
Ot) =0t —1)+ P HT(t)We(t)
where we denote P(t) = [V2f(t,0(t — 1))]~* which satisfies

Plt)=AP 't-1)+HU)'WH(t)
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apply the matrix inversion lemma to the recursive formula of P~1(¢)
we arrive at recursive prediction error method (RPEM)

algorithm:

O(t) =0(t —1) + K(t)e(t)

where the approximations

A A

e(t) ~e(t,0(t—1)), H(t)~ —Vel(t,0(t—1))

depend on the model structure
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Example of RPEM: ARMAX models

consider the scalar ARMAX model
A(g " y(t) = B(g~")u(t) + Clg~"v(t)
where all the polynomials have the same order

A(q_l) = 1+ alq_1 + - Fapq "
BlgY) = bigt 4 +bpg "
Clg™) = 1+ag '+ teag "

Recursive Identification Methods
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define

_E(t—1,0),...,—&(t —n,0))

to compute e(t,0), we need to process all data up to time ¢
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we use the following approximations

e(t,0) & e(t) = y(t) + a1 (t — Dy(t — 1) + -+ + an(t — 1yt —n)

— b1t —Du(t —1) — -+ —bp(t — Du(t — n)

— &t —De(t—1) — - —én(t — et —n)
— Ve(t,0) =~ H(t) = (—y(t —1),..., —y(t —n),
a(t—1),...,a(t—n)e(t—1),...,e(t —n))
where

y(t) =yt) =)yt —1) — - = Eu(D)y(t — n)

a(t) = u(t) — é1(t)a(t — 1) — -+ — &, ()a(t — n)

e(t) =e(t) —ér1(t)e(t —1) — -+ — é,(t)e(t — n)
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Comparison of recursive algorithms

we simulate the following system

B 1.0g71
1—-10.9¢7!

y(t) u(t) +v(t)

e u(t),v(t) are indepentdent white noise with zero mean and variance 1

e we use RLS,RIV, RPEM to identify the system
model structure for RLS and RIV:

y(t) +ay(t—1)=bu(t—1)+v(t), 6= (a,b)
model structure for RPEM:

y(t) +ay(t—1)=bu(t—1)+v(t)+cv(t—1), 0= (a,b,c)
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Numerical results
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e RLS does not give consistent estimates for systems with correlated noise
e this is because RLS is equivalent to an off-line LS algorithm
e in contrast to RLS, RIV gives consistent estimates

e this result follows from that RIV is equivalent to an off-line IV method
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RPEM
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e RPEM gives consistent estimates of a, b, c
e the estimates G and b converge more quickly than ¢
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Common problems for recursive identification

e excitation
e estimator windup

e P(t) becomes indefinite

excitation it is important that the input is persistently excitation of sufficiently
high order
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Estimator windup
some periods of an identification experiment exhibit poor excitation
consider when H(t) = 0 in the RLS algorithm, then
. ~ 1
Ot)=0(t—1), P(t)= XP(t —1)

e 0 becomes constant as ¢ increases
e P increases exponentially with time for A <1

e when the system is excited again (H(t) # 0), the gain

will be very large and causes an abrupt change in 0

Recursive Identification Methods
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e this is referred to as estimator windup

Solution: do not update P(t) if we have poor excitation
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Indefinite P(t)

P(t) represents a covariance matrix

therefore, it must be symmetric and positive definite
rounding error may accumulate and make P(t) indefinite
this will make the estimate diverge

the solution is to note that any positive definite matrix can be factorized as

and rewrite the algorithm to update S(¢) instead
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