
EE531 - System Identification Jitkomut Songsiri

3. Input signals

• common input signals in system identification

– step function
– sum of sinusoids
– ARMA sequences
– pseudo random binary sequence (PRBS)

• persistent excitation
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System description

given a system with the frequency response
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Bode Diagram

Frequency  (rad/s)

System: Gc

Frequency (rad/s): 144

Magnitude (dB): -3.2

the bandwidth (BW) is around 144 rad/s

the system does not respond to input containing higher frequency than BW
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System responses to various inputs
the system responds to inputs differently
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the responses to step and mixed sine contain a limited no. of frequency components
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Step function

Inflection point

Time

output

Slope = 

a step function: u(t) = ∆U for t ≥ 0

a typical step response of a process

• a step response can be related to rise time, overshoots, static gain
• useful for systems with a large signal-to-noise ratio
• for a simple first-order-plus-time-delay model

G(s) =
Ke−Ls

τs + 1

one can consider the reaction curve to estimate K, τ and L from the response
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Sum of sinusoids

the input signal u(t) is given by

u(t) =

m∑
k=1

ak sin(ωkt + ϕk)

where the angular frequencies {ωk} are distinct,

0 ≤ ω1 < ω2 < . . . < ωm ≤ π

and the amplitudes and phases ak, ϕk are chosen by the user
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Characterization of sinusoids

let SN be the average of a sinusoid over N points

SN =
1

N

N∑
t=1

a sin(ωt + ϕ)

Let µ be the mean of the sinusoidal function

µ = lim
N→∞

SN =

{
a sinϕ, ω = 2nπ, n = 0,±1,±2, . . .

0, otherwise

• u(t) =
∑m

k=1 ak sin(ωkt + ϕk) has zero mean if ω1 > 0

• WLOG, assume zero mean for u(t) (we can always subtract the mean)
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Spectrum of sinusoidal inputs

the autocorrelation function can be computed by

R(τ ) = lim
N→∞

1

N

N∑
t=1

u(t + τ )u(t) =

m∑
k=1

Ck cos(ωkτ )

with Ck = a2k/2 for k = 1, 2, . . . ,m

if ωm = π, the coefficient Cm is modified to

Cm = a2m sin2(ϕm)

therefore, the spectrum is

S(ω) =

m∑
k=1

(Ck/2) [δ(ω − ωk) + δ(ω + ωk)] , −π < ω ≤ π
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autocorrelation and spectrum of sum of sinusoids

u(t) = sin(0.4t) + 2 sin(0.8t)2 sin(2t)
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White noise
a white noise input has zero mean and E[u(t)u(s)T ] = 0 for t ̸= s

-4

-2

0

2

White noise sequence

0 50 100 150 200 250 300 350 400 450 500

Time

0

0.5

1
Autocorrelation

-10 -8 -6 -4 -2 0 2 4 6 8 10

-3 -2 -1 0 1 2 3

-20

-10

0

10

20

S
p

e
c
tr

u
m

 (
d

B
)

Spectrum

a white noise has autocorrelation as delta function and has a flat spectrum
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Autoregressive moving average sequence

let e(t) be a pseudorandom sequence similar to white noise in the sense that

1

N

N∑
t=1

e(t)e(t + τ ) → 0, as N → ∞

a general input u(t) can be obtained by linear filtering

u(t) + c1u(t− 1) + · · · + cpu(t− p) = e(t) + d1e(t− 1) + · · · + dqe(t− q)

• u(t) is called ARMA (autoregressive moving average) process

• when all ci = 0 it is called MA (moving average) process

• when all di = 0 it is called AR (autoregressive) process

• the user gets to choose ci, di and the random generator of e(t)
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the transfer function from e(t) to u(t) is

U (z) =
D(z)

C(z)
E(z)

where

C(z) = 1 + c1z
−1 + c2z

−2 + · · · cpz−p

D(z) = 1 + d1z
−1 + d2z

−2 + · · · dqz−q

• the distribution of e(t) is often chosen to be Gaussian

• ci, di are chosen such that C(z), D(z) have zeros outside the unit circle

• different choices of ci, di lead to inputs with various spectral characteristics
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Spectrum of ARMA process

let e(t) be a white noise with unit variance

G1(z) =
1 + 0.3z−1

1− 0.7z−1 − 0.2z−2
, G2(z) =

1− 0.5z−1

1− 1.4z−1 + 0.8z−2
, G3(z) = 1−1.4z−1+0.8z−2
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the poles and zeros of Gi explain the waveform of autocorrelation and spectrum
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Pseudo Random Binary Sequence (PRBS)

PRBS is generated from a vector autoregressive equation

x(t + 1) =


x1(t + 1)
x2(t + 1)

...
xn(t + 1)

 =


a1 a2 · · · an
1 0 · · · 0
... . . . ...
0 · · · 1 0



x1(t)
x2(t)...
xn(t)


y(t) =

[
0 · · · 0 1

]
x(t)

Clock

State State State
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Characteristics of PRBS

• every initial state is allowed except the all-zero states

• the feedback coefficients a1, a2, . . . , an are either 0 or 1

• all additions are modulo-two operations (XOR)

• the sequences are two-state signals (binary)

• there are possible 2n − 1 different state vectors x (all-zero state is excluded)

• a PRBS of period equal to M = 2n − 1 is called a maximum length PRBS
(ML PRBS)

• for maximum length PRBS, its characteristic resembles white random noise
(pseudorandom)
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Influence of the Feedback Path

let n = 3 and initialize x with x(0) = (1, 0, 0)

• with a = (1, 1, 0), the state vectors x(k), k = 1, 2, . . . are10
0

 11
0

 01
1

 10
1

 11
0


the sequence has period equal to 3

• with a = (1, 0, 1), the state vectors x(k), k = 1, 2, . . . are10
0

 11
0

 11
1

 01
1

 10
1

 01
0

 00
1

 10
0


the sequence has period equal to 7 (the maximum period, 23 − 1)
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Maximum length PRBS

denote q−1 the unit delay operator and let

A(q−1) = 1⊕ a1q
−1 ⊕ a2q

−2 ⊕ · · · ⊕ anq
−n

the PRBS y(t) satisfies the homogeneous equation:

A(q−1)y(t) = 0

this equation has only solutions of period M = 2n − 1 if and only if

1. the binary polynomial A(q−1) is irreducible, i.e., there do not exist any two
polynomials A1(q

−1) and A2(q
−1) such that

A(q−1) = A1(q
−1)A2(q

−1)

2. A(q−1) is a factor of 1⊕ q−M but is not a factor of 1⊕ q−p for any p < M
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Generating Maximum length PRBS

examples of polynomials A(z) satisfying the previous two conditions on page 3-16

n A(z)

3 1⊕ z ⊕ z3 1⊕ z2 ⊕ z3

4 1⊕ z ⊕ z4 1⊕ z3 ⊕ z4

5 1⊕ z2 ⊕ z5 1⊕ z3 ⊕ z5

6 1⊕ z ⊕ z6 1⊕ z5 ⊕ z6

7 1⊕ z ⊕ z7 1⊕ z3 ⊕ z7

8 1⊕ z ⊕ z2 ⊕ z7 ⊕ z8 1⊕ z ⊕ z6 ⊕ z7 ⊕ z8

9 1⊕ z4 ⊕ z9 1⊕ z5 ⊕ z9

10 1⊕ z3 ⊕ z10 1⊕ z7 ⊕ z10
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Properties of maximum length PRBS

let y(t) be an ML PRBS of period M = 2n − 1

• within one period y(t) contains (M + 1)/2 = 2n−1 ones and
(M − 1)/2 = 2n−1 − 1 zeros

• For k = 1, 2, . . . ,M − 1,

y(t)⊕ y(t− k) = y(t− l)

for some l ∈ [1,M − 1] that depends on k

moreover, for any binary variables x, y,

xy =
1

2
(x + y − (x⊕ y))

these properties are used to compute the covariance function of maximum length
PRBS
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Covariance function of maximum length PRBS

the mean is given by counting the number of outcome 1 in y(t):

m =
1

M

M∑
t=1

y(t) =
1

M

(
M + 1

2

)
=

1

2
+

1

2M

the mean is slightly greater than 0.5

using y2(t) = y(t), we have the covariance function at lag zero as

C(0) =
1

M

M∑
t=1

y2(t)−m2 = m−m2 =
M 2 − 1

4M 2

the variance is therefore slightly less than 1/4
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Covariance function of maximum length PRBS

for τ = 1, 2, . . .,

C(τ ) = (1/M )

M∑
t=1

y(t + τ )y(t)−m2

=
1

2M

M∑
t=1

[y(t + τ ) + y(t)− (y(t + τ )⊕ y(t))]−m2

= m− 1

2M

M∑
t=1

y(t + τ − l)−m2 = m/2−m2

= −M + 1

4M 2
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Asymptotic behavior of the covariance function of PRBS

Define ỹ(t) = −1 + 2y(t) so that its outcome is either −1 or 1

if M is large enough,

m̃ = −1 + 2m = 1/M ≈ 0

C̃(0) = 4C(0) = 1− 1/M 2 ≈ 1

C̃(τ ) = 4C(τ ) = −1/M − 1/M 2 ≈ −1/M, τ = 1, 2, . . . ,M − 1

with a large period length M

• the covariance function of PRBS has similar properties to a white noise

• however, their spectral density matrices can be drastically different
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Spectral density of PRBS
the output of PRBS sequence is shifted to values −a and a with period M

the autocorrelation function is also periodic and given by

R(τ ) =

{
a2, τ = 0,±M,±2M, . . .

−a2

M , otherwise

since R(τ ) is periodic with period M , it has a Fourier representation:

R(τ ) =

M−1∑
k=0

Cke
i2πτk/M , with Fourier coefficients Ck

therefore, the spectrum of PRBS is an impulse train:

S(ω) =

M−1∑
k=0

Ckδ

(
ω − 2πk

M

)
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Spectral density of PRBS

hence, the Fourier coefficients

Ck =
1

M

M−1∑
τ=0

R(τ )e−i2πτk/M

are also the spectral coefficients of S(ω)

using the expression of R(τ ), we have

C0 =
a2

M 2
, Ck =

a2

M 2
(M + 1), k = 1, 2, . . .

therefore,

S(ω) =
a2

M 2

[
δ(ω) + (M + 1)

M−1∑
k=1

δ(ω − 2πk/M )

]
it does not resemble spectral characteristic of a white noise (flat spectrum)
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autocorrelation and spectrum of PRBS (n = 5 and M = 31)
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R(τ ) = a2 for τ = 0,±M,±2M, . . . and R(τ ) = −a2/M otherwise

S(ω) = a2

M2δ(ω) +
a2(M+1)

M2

∑M−1
k=1 δ(ω − 2πk/M )
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Comparison of the covariances between filtered inputs

• define y1(t) as the output of a filter:

y1(t)− ay1(t− 1) = u1(t),

with white noise u(t) of zero mean and variance λ2

• define y2(t) be the output of the same filter:

y2(t)− ay2(t− 1) = u2(t),

where u2(t) is a PRBS of period M and amplitude λ

what can we say about the covariances of y1(t) and y2(t) ?
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Comparison of the correlations between filtered inputs

the correlation function of y1(t) is given by

R1(τ ) =

(
λ2

1− a2

)
aτ , τ ≥ 0

the correlation function of y2(t) can be calculated as

R2(τ ) =

∫ π

−π

Sy2(ω)e
iωτdω

=

∫ π

−π

Su2(ω)

∣∣∣∣ 1

1− aeiω

∣∣∣∣2 eiτωdω

=
λ2

M

[
1

(1− a)2
+ (M + 1)

M−1∑
k=1

cos(2πτk/M )

1 + a2 − 2a cos(2πk/M )

]
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Plots of the correlation functions
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• the filter parameter is a = 0.8

• R(τ ) of white noise and PRBS inputs are very close when M is large
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Persistent excitation

let ∆G = G2 −G1 be the difference between two models with θ1 and θ2

∆MSE = 0 ⇒ |∆G(ω))|2Su(ω) = 0 almost all frequencies

• when two models yield no difference in MSE, there are two possibilities
– the two models are not different, or
– the input spectrum is zero

• we should choose u such that ∆MSE = 0 implies ∆G = 0

• choose u to be sufficiently informative to identify the model

definition: a quasi-stationary process with spectral density Su(ω) is said to be
persistently exciting of order n if

|H(ω)|2Su(ω) ≡ 0 ⇒ H(ω) ≡ 0 almost all frequencies

for any filter H(z) = a1z
−1 + a2z

−2 + · · · + anz
−n
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Conditions for checking persistent excitation

corollary: if the spectral density matrix of u(t) is positive definite at least at n
distinct frequencies in (−π, π] then u(t) has the persistent excitation of order n

lemma: a quasi-stationary signal u(t) is persistently exciting of order n if

1. the limit R(τ ) = limN→∞
1
N

∑N
t=1 u(t + τ )u(t)T exists

2. the following matrix is positive definite

R(n) =


R(0) R(1) . . . R(n− 1)
R(−1) R(0) . . . R(n− 2)

... ... . . . ...
R(1− n) R(2− n) . . . R(0)


if u(t) is from an ergodic stochastic process, then R(n) is the usual covariance matrix
(assume zero mean)
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Examining the order of persistent excitation

• white noise input of zero mean and variance λ2

R(τ ) = λ2δ(τ ), =⇒ R(n) = λ2In

thus, white noise is persistently exciting of all orders

• step input of magnitude λ

R(τ ) = λ2, ∀τ =⇒ R(n) = λ21n

a step function is persistently exciting of order 1

• impulse input: u(t) = 1 for t = 0 and 0 otherwise

R(τ ) = 0, ∀τ =⇒ R(n) = 0

an impulse is not persistently exciting of any order
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Example : FIR models

a (scalar) FIR model of order M − 1: y(t) =
∑M−1

k=0 h(k)u(t− k)

can estimated using a correlation analysis

Ryu(τ ) = E[y(t + τ )u(t)] =

M−1∑
k=0

h(k)Ru(τ − k)

setting τ = 0, 1, . . . ,M − 1 gives a set of linear equations in h(k)
Ryu(0)
Ryu(1)...

Ryu(M − 1)

 =


Ru(0) Ru(1) · · · Ru(M − 1)
Ru(−1) Ru(0) · · · Ru(M − 2)

... ... . . . ...
Ru(1−M ) Ru(2−M ) · · · Ru(0)




h(0)
h(1)

...
h(M − 1)


• the equations has a unique solution iff R(M ) is nonsingular (u is p.e. of order M)

• need more p.e. order if the model is more complex
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Properties of persistently exciting signals

assumptions:

• u(t) is a multivariable ergodic process

• Su(ω) is positive in at least n distinct frequencies within (−π, π)

we have the following two properties

Property 1 u(t) is persistently exciting of order n

Property 2 if H(z) is an asymptotically stable linear filter and detH(z) has no zero
on the unit circle then the filtered signal y(t) = H(q−1)u(t) is persistently exciting
of order n

we can imply an ARMA process is persistently exciting of any finite order
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Examining the order of PRBS

consider a PRBS of period M and magnitude a,−a

the matrix containing n-covariance sequences (where n ≤ M) is

R(n) =


a2 −a2/M . . . −a2/M

−a2/M a2 . . . −a2/M
... ... . . . ...

−a2/M −a2/M . . . a2


for any x ∈ Rn,

xTR(n)x = xT

[(
a2 +

a2

M

)
I − a2

M
11T

]
x

≥ a2
(
1 +

1

M

)
xTx− a2

M
xTx1T1 = a2∥x∥2

(
1 +

(1− n)

M

)
≥ 0

a PRBS with period M is persistently exciting of order M
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Examining the order of sum of sinusoids

consider the signal u(t) =
∑m

k=1 ak sin(ωkt + ϕk)

where 0 ≤ ω1 < ω2 < . . . < ωm ≤ π

the spectral density of u is given by

S(ω) =

m∑
k=1

Ck

2
[δ(ω − ωk) + δ(ω + ωk)]

therefore S(ω) is nonzero (in the interval (−π, π]) in exactly n points where

n =


2m, 0 < ω1, ωm < π

2m− 1, 0 = ω1, or ωm = π

2m− 2, 0 = ω1 and ωm = π

it follows from Property 1 that u(t) is persistently exciting of order n
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Summary

• the choice of input is imposed by the type of identification method

• the input signal should be persistently exciting of a certain order to ensure that the
system of a certain order can be identified

• some often used signals include PRBS and ARMA processes
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