EE531 - System ldentification

3. Input signals

e common input signals in system identification

— step function
— sum of sinusoids

— ARMA sequences
— pseudo random binary sequence (PRBS)

e persistent excitation
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System description

given a system with the frequency response
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the bandwidth (BW) is around 144 rad/s

the system does not respond to input containing higher frequency than BW
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System responses to various inputs

the system responds to inputs differently
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the responses to step and mixed sine contain a limited no. of frequency components
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Step function

output
A

Slope = R

a step function: u(t) = AU fort >0
KAU

| Inflection point
\ ]
a typical step response of a process

Time

e a step response can be related to rise time, overshoots, static gain
e useful for systems with a large signal-to-noise ratio

e for a simple first-order-plus-time-delay model

KG_LS

G<S) - 7s + 1

one can consider the reaction curve to estimate K, 7 and L from the response
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Sum of sinusoids
the input signal u(t) is given by
™m
u(t) = Z ax sin(wit + @)
k=1

where the angular frequencies {wy} are distinct,
D<w <w <. ...<wy, <

and the amplitudes and phases a, ¢ are chosen by the user
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Characterization of sinusoids

let Sn be the average of a sinusoid over IV points

N
NZasm wt + @)

Let 1+ be the mean of the sinusoidal function

'u_N—>oo

_ asing, w=2nm, n=0+1,+£2, ...
lim Sy = _
0, otherwise

o u(t)=> ", arsin(wit + @x) has zero mean if wy > 0

e WLOG, assume zero mean for u(t) (we can always subtract the mean)
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Spectrum of sinusoidal inputs

the autocorrelation function can be computed by

R(7) = lim —ZutJr’r ZC’kcoswkT

N—)oo

with Cy = a3 /2 for k =1,2,...,m

if w,, = m, the coefficient C,,, is modified to
Cpn = a? sin®(¢y,)

therefore, the spectrum is

ZCk/Z 0w —wg) +0(w+wg)], —7mT<w<m
k=1
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autocorrelation and spectrum of sum of sinusoids

u(t) = sin(0.4t) + 2sin(0.8¢)2 sin(2t)
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White noise

a white noise input has zero mean and E[u(t)u(s)!] =0 for t # s

White noise sequence
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a white noise has autocorrelation as delta function and has a flat spectrum
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Autoregressive moving average sequence

let e(t) be a pseudorandom sequence similar to white noise in the sense that

1

N
NZe(t)e(tJrT)%O, as N — o0

t=1

a general input u(t) can be obtained by linear filtering

u(t) +cu(t —1)+ -+ cpu(t —p) =e(t) + die(t — 1) + - - - + dge(t — q)

e u(t) is called ARMA (autoregressive moving average) process
e when all ¢; =0 it is called MA (moving average) process
e when all d; = 0 it is called AR (autoregressive) process

e the user gets to choose ¢;, d; and the random generator of e(t)
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the transfer function from e(t) to u(t) is

where

Clz)=1+cz ' ez 2+ cpz?
D(z)=1+ diz b+ doz™ 24 - - dgz™ 1

e the distribution of e(t) is often chosen to be Gaussian

e c;,d; are chosen such that C(z), D(z) have zeros outside the unit circle

e different choices of ¢;, d; lead to inputs with various spectral characteristics
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Spectrum of ARMA process

let e(t) be a white noise with unit variance
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the poles and zeros of (G; explain the waveform of autocorrelation and spectrum
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Pseudo Random Binary Sequence (PRBS)

PRBS is generated from a vector autoregressive equation

xi(t+ 1) a;  as an | |x1(t)
T (t+ 1)) | 0 1 0] [za(t)]
y(t) = [O 0 1} x(t)
|
Stite Stite Stfte y (t)

Il e T n [ = a z(t) x(t+1)

ay as Ap—1 a 1 0 1

> < 0| |1 0

v v v 1 1 1

P D
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Characteristics of PRBS

e every initial state is allowed except the all-zero states

e the feedback coefficients ay,as, ..., a, are either 0 or 1

e all additions are modulo-two operations (XOR)

e the sequences are two-state signals (binary)

e there are possible 2" — 1 different state vectors x (all-zero state is excluded)

e a PRBS of period equal to M = 2" — 1 is called a maximum length PRBS
(ML PRBS)

e for maximum length PRBS, its characteristic resembles white random noise
(pseudorandom)
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Influence of the Feedback Path
let n = 3 and initialize z with z(0) = (1,0, 0)

e with a = (1,1,0), the state vectors x(k),k =1,2,... are

the sequence has period equal to 3

e with a = (1,0, 1), the state vectors x(k),k =1,2,... are

the sequence has period equal to 7 (the maximum period, 2° — 1)
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Maximum length PRBS

denote ¢! the unit delay operator and let
Al =10a1g ' Dayg > ® - Dag "
the PRBS y(t) satisfies the homogeneous equation:
Algy(t) =0
this equation has only solutions of period M = 2" — 1 if and only if

1. the binary polynomial A(¢™?) is irreducible, i.e., there do not exist any two
polynomials A;(¢g™!) and As(g™!) such that

Alg™) = Ailg™HAx(a™Y)
2. A(q™1) is a factor of 1 ® ¢~ but is not a factor of 1 ® ¢q~P for any p < M
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Generating Maximum length PRBS

examples of polynomials A(z) satisfying the previous two conditions on page 3-16

n A(z)

3 1®zd 2° 122 P 2°

4 1z 2t 1230t

5} 1222 e

§ 1®zd 2 122 P 2"

7 1Pz 1236 2"

S 1020220202 102020276 28
9 1@zt 2 1622 @2

10 1e22aW 1® 2" 20
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Properties of maximum length PRBS

let y(¢) be an ML PRBS of period M = 2" — 1

e within one period (t) contains (M +1)/2 = 2"~! ones and
(M —1)/2=2""1 —1 zeros

e Fork=1,2,....M — 1,

y(t) @yt — k) =yt —1)

for some [ € [1, M — 1] that depends on k

moreover, for any binary variables x, vy,

1

ry =5 +y—(z8y))

these properties are used to compute the covariance function of maximum length

PRBS
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Covariance function of maximum length PRBS

the mean is given by counting the number of outcome 1 in y(t):

M
1 1 (M+1 1 1
— t pr— [ — _—
m =572 vt =57 ( ) ) > oM
the mean is slightly greater than 0.5

using 3°(t) = y(t), we have the covariance function at lag zero as

M? -1
 4M?

the variance is therefore slightly less than 1/4
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Covariance function of maximum length PRBS

fort=1,2,...

C(r) = (/M) ylt+71)y(t) —m’

= o St T) Fyl) — (ylt + ) @ y(t))] - m?
= m—LZytnLT—l —m*=m/2 —m?
M +1

AM?
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Asymptotic behavior of the covariance function of PRBS

Define (t) = —1 + 2y(t) so that its outcome is either —1 or 1

if M is large enough,

C(r)=—-1/M —-1/M*~ —-1/M, 7=12,...,M—1
with a large period length M

e the covariance function of PRBS has similar properties to a white noise

e however, their spectral density matrices can be drastically different
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Spectral density of PRBS

the output of PRBS sequence is shifted to values —a and a with period M

the autocorrelation function is also periodic and given by

R(T) =

2

{a2, 7T =0,+M, +2M, ...
_CLM’

otherwise

since R(7) is periodic with period M, it has a Fourier representation:
M—1
R(T) = Z Cre2™™8/M — \yith Fourier coefficients Cl,
k=0

therefore, the spectrum of PRBS is an impulse train:

Input signals

3-22



Spectral density of PRBS

hence, the Fourier coefficients
M—1
_ —i2nTk/M
Cr = A7 Z R(T)e

7=0

are also the spectral coefficients of S(w)

using the expression of R(7), we have

a’ a’
CO:W’ Ok:W<M‘|—1), k:1,2,
therefore,
2 M—1
S(w) =175 [0w) + (M +1) > 8w —2rk/M)

k=1
it does not resemble spectral characteristic of a white noise (flat spectrum)
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autocorrelation and spectrum of PRBS (n =5 and M = 31)

PRBS sequence
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Comparison of the covariances between filtered inputs

e define y;(t) as the output of a filter:

y1(t) —ayr(t — 1) = uy(t),
with white noise u(t) of zero mean and variance \*

e define y5(t) be the output of the same filter:

Ya(t) — aya(t — 1) = ua(t),

where usy(t) is a PRBS of period M and amplitude A

what can we say about the covariances of y;(t) and yo(t) 7
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Comparison of the correlations between filtered inputs

the correlation function of y() is given by

)\2

1 —a?

R = (12 ) an 720

the correlation function of y,(¢) can be calculated as

RQ(T)z/ Sy (w)e“T dw

2

1 ITw
— - Suy(W) | © dw
A2 1 - cos(2mTk /M)
= M+1
M (l—a,)2+< 1) ; 1+ a? — 2a cos(2wk /M)
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Plots of the correlation functions

Autocorrelation of y(t) with M=15
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e the filter parameter is a = 0.8

e R(7) of white noise and PRBS inputs are very close when M is large
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Persistent excitation

let AG = GGy — G be the difference between two models with 6 and 65

AMSE=0 = |AG(w))[*Su(w)=0 almost all frequencies

e when two models yield no difference in MSE, there are two possibilities

— the two models are not different, or
— the input spectrum is zero

e we should choose u such that AMSE = 0 implies AG =0

e choose u to be sufficiently informative to identify the model

definition: a quasi-stationary process with spectral density S, (w) is said to be
persistently exciting of order n if

|H(w)]*Sy(w)=0 = H(w)=0 almost all frequencies
for any filter H(z) = a1z '+ asz 2+ + apz™"
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Conditions for checking persistent excitation

corollary: if the spectral density matrix of u(t) is positive definite at least at n
distinct frequencies in (—m, 7| then w(t) has the persistent excitation of order n

lemma: a quasi-stationary signal u(t) is persistently exciting of order n if

1. the limit R(7) = limy_00 Zi\il u(t + 7)u(t)! exists

2. the following matrix is positive definite

R(0) R1) ... R(n—1)
R(n) — R(E—l) REO) R(ni— )
R(1-n) R2-n) ... RO) |

if u(t) is from an ergodic stochastic process, then R(n) is the usual covariance matrix
(assume zero mean)
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Examining the order of persistent excitation

e white noise input of zero mean and variance \?
R(T) =X%6(1), = R(n)= NI,
thus, white noise is persistently exciting of all orders
e step input of magnitude A
R(t)=), Vr = R(n)=2>1,
a step function is persistently exciting of order 1
e impulse input: u(t) =1 for t = 0 and 0 otherwise
R(t)=0, Vr = R(n)=0

an impulse is not persistently exciting of any order

Input signals

3-30



Example : FIR models

a (scalar) FIR model of order M — 1: y(t) = 24:51 h(k)u(t — k)

can estimated using a correlation analysis

Ry (1) =Ely(t+ 7)u h(k — k)
k=0
setting 7 = 0,1,..., M — 1 gives a set of linear equations in h(k)
i Ryu<0> | I Ru<0> Ru<1> T Ru<M o 1>_ | h<0) |
Ryuu) _ Ru(_l) Ru(()) T Ru<M o 2) h(1>
R -1 |R1-M) R2-M) o R(0) | [pM-1)

e the equations has a unique solution iff R(M ) is nonsingular (u is p.e. of order M)

e need more p.e. order if the model is more complex
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Properties of persistently exciting signals

assumptions:

e wu(t) is a multivariable ergodic process

e S,(w) is positive in at least n distinct frequencies within (—m, 7)
we have the following two properties

Property 1 u(t) is persistently exciting of order n

Property 2 if H(z) is an asymptotically stable linear filter and det H(z) has no zero
on the unit circle then the filtered signal y(t) = H(q ')u(t) is persistently exciting
of order n

we can imply an ARMA process is persistently exciting of any finite order
y y
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Examining the order of PRBS

consider a PRBS of period M and magnitude a, —a

the matrix containing n-covariance sequences (where n < M) is

[ a? —a*/M ... —a*/M]

_ 2 2 2
R(n) = a:/M a: a,:/M

_—a2/M —a’/M ... a? ]

for any x € R",

2 2
t'R(n)r =2t [(a2 + a_) I — a—llT] x

M M

1 a’ (1—n)
S 2 T T171 — 212112 (1 S
_a(1+M)wx 7" rl'1 a,||a:\|(+ A )_O

a PRBS with period M is persistently exciting of order M
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Examining the order of sum of sinusoids

consider the signal u(t) = >"," | ag sin(wit + P
where 0 < wj <wr < ... < Wy, < T

the spectral density of u is given by

= C
2716 (W —wk) + 0w + wg)]
k=1

therefore S(w) is nonzero (in the interval (—m, 7]) in exactly n points where

(Qm, O<wi,wy, <

n=<2m—1, O0=wy, orw,, =7

2m —2, O0=wjandwy, =7

it follows from Property 1 that u(t) is persistently exciting of order n
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Summary

e the choice of input is imposed by the type of identification method

e the input signal should be persistently exciting of a certain order to ensure that the
system of a certain order can be identified

e some often used signals include PRBS and ARMA processes
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