6. Spectral analysis

- power spectral density
- periodogram analysis
- window functions

Power Spectral density

Wiener-Khinchin theorem:

if ^a process is wide-sense stationary, the autocorrelation function and the power spectral density form ^a Fourier transform pair:

Continuous

$$
S(\omega) = \int_{-\infty}^{\infty} e^{-i\omega\tau} R(\tau) d\tau \quad \Longleftrightarrow \quad R(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S(\omega) e^{i\omega t} d\omega
$$

Discrete

$$
S(\omega) = \sum_{k=-\infty}^{k=\infty} R(k)e^{-i\omega k} \quad \Longleftrightarrow \quad R(k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} S(\omega)e^{i\omega k} d\omega
$$

(under a condition for the existence of the Fourier transform, e.g., $R(t)$ is absolutely integrable or $R(k)$ is absolutely summable)

Properties of PSD

- $\bullet \ \ S(\omega)$ is self-adjoint, i.e., $S(\omega) = S^*(\omega), \forall \omega$
- $\bullet \ \ S(\omega) \succeq 0 \text{ for all } \omega$

•
$$
\int_{-\infty}^{\infty} S(\omega) d\omega = R(0) = \mathbf{E} x(t) x(t)^* \succeq 0
$$
 (average power)

- for real processes, $S(-\omega) = S(\omega)^T$
- $\bullet\,$ for discrete-time processes, $S(\omega)$ is a periodic function of period 2π

Cross-power spectral density

the cross-power spectrum of $x(t)$ and $y(t)$ is the Fourier transform of the cross correlation $R_{xy}(\tau)$:

Continuous

$$
S_{xy}(\omega) = \int_{-\infty}^{\infty} e^{-i\omega\tau} R_{xy}(\tau) d\tau \iff R_{xy}(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{xy}(\omega) e^{i\omega t} d\omega
$$

Discrete

$$
S_{xy}(\omega) = \sum_{k=-\infty}^{k=\infty} R_{xy}(k)e^{-i\omega k} \quad \Longleftrightarrow \quad R_{xy}(k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} S_{xy}(\omega)e^{i\omega k} d\omega
$$

It follows from $R_{xy}(\phi)$ $\tau) = R_y^*$ $_{yx}^{\ast}(\tau)$ that

$$
S_{xy}(\omega) = S_{yx}^*(\omega)
$$

LTI systems with random inputs

Fact: if $u(t)$ is wide-sense stationary, $y(t)$ is also wide-sense stationary

 $\bullet\,$ the mean is constant for all t

$$
\mathbf{E} y(t) = \sum_{s=-\infty}^{\infty} h(s) \mathbf{E} u(t-s) = \mu_u \sum_{s=-\infty}^{\infty} h(s)
$$

 \bullet $R_{{y}}(t_1,t_2)$ depends only on the time shift t_1-t_2

$$
R_y(t_1, t_2) = \sum_{s=-\infty}^{\infty} \sum_{v=-\infty}^{\infty} h(s) \mathbf{E}[u(t_1 - s)u(t_2 - v)^*]h^*(v)
$$

=
$$
\sum_{s=-\infty}^{\infty} \sum_{v=-\infty}^{\infty} h(s)R_u(t_1 - t_2 + v - s)h^*(v)
$$

Spectral analysis 6-5

Fact: $y(t), u(t)$ are jointly wide-sense stationary

the input-output cross correlation is

$$
R_{yu}(t_1, t_2) = \mathbf{E} \sum_{k=-\infty}^{\infty} h(k)u(t_1 - k)u(t_2)^*
$$

$$
= \sum_{k=-\infty}^{\infty} h(k)R_u(t_1 - t_2 - k)
$$

$$
R_{yu}(\tau) = \sum_{k=-\infty}^{\infty} h(k)R_u(\tau - k)
$$

it also follows that

$$
R_y(\tau) = \sum_{k=-\infty}^{\infty} h(k) R_{uy}(\tau - k)
$$

conclusion: the correlations are in the form of convolution sum

Spectral analysis 6-6

Spectral relations for LTI systems

Using the convolution property of the Fourier transform of $R_{yu}(\tau), R_y(\tau)$, we have the relations:

$$
S_{yu}(\omega) = H(\omega)S_u(\omega), \quad S_y(\omega) = H(\omega)S_{uy}(\omega)
$$

With $S_{uy}(\omega) = S^*_y$ $_{yu}^{\ast }(\omega)$, we have

$$
S_y(\omega) = H(\omega)S_u(\omega)H(\omega)^*
$$

In terms of z -transform, this could be written as

$$
S_y(z) = H(z)S_u(z)H(z)^*
$$

where $H(z)^{\ast}$ $\epsilon^*=H(\bar{z})^T$ and we should be aware that $z=e^{\mathrm{i}\omega}$ in the analysis

Example ¹

suppose the covariance function of ^a staionary process is ^given by

$$
R(k) = \frac{\lambda^2 a^{|k|}}{1 - |a|^2}, \quad |a| < 1, \quad \lambda \in \mathbf{R}
$$

the spectral density can be obtained via z -transform

$$
S(z) = \frac{\lambda^2}{1 - |a|^2} \sum_{k=-\infty}^{\infty} a^{|k|} z^{-k} = \frac{\lambda^2}{1 - |a|^2} \left(\sum_{k=-\infty}^{-1} a^{-k} z^{-k} + \sum_{k=0}^{\infty} a^k z^{-k} \right)
$$

$$
= \frac{\lambda^2}{1 - |a|^2} \left(\frac{az}{1 - az} + \frac{z}{z - a} \right) = \frac{\lambda^2}{(1 - az)(1 - az^{-1})}
$$

substituting $z=e^{\mathrm{i}\omega}$ gives

$$
S(\omega) = \frac{\lambda^2}{(1 - ae^{i\omega})(1 - ae^{-i\omega})} = \frac{\lambda^2}{1 + a^2 - 2a\cos\omega}
$$

Example ²

^a linear system ^given in ^a state-space form

$$
y(t) = ay(t-1) + e(t)
$$

where $e(t)$ is a white noise with variance λ^2

the transfer function is ^given by

$$
H(z) = \frac{1}{1 - az^{-1}}
$$

therefore the spectral density of y is

$$
S_y(\omega) = \frac{\lambda^2}{(1 - ae^{-i\omega})(1 - ae^{i\omega})} = \frac{\lambda^2}{1 + a^2 - 2a\cos\omega}
$$

Spectral analysis

use the same model as in correlation analysis:

$$
R_{yu}(\tau) = \sum_{k=0}^{\infty} h(k) R_u(\tau - k)
$$

taking DFT ^gives the spectral representation

$$
S_{yu}(\omega) = H(\omega)S_u(\omega)
$$

if $S_u(\omega) \succ 0$ for all ω , then we can estimate

$$
\hat{H}(\omega) = \hat{S}_{yu}(\omega) \hat{S}_u(\omega)^{-1},
$$

where \hat{S}_{yu},\hat{S} $\boldsymbol{\mathit{u}}$ ϵ_u can be computed via DFT

Periodogram analysis

an infinite-length discrete-time signal $y(t)$ is windowed by a length- N window $w(t)$, $1 \le t \le N$

$$
\tilde{y}(t) = w(t)y(t)
$$

define a function $Y_N(\omega)$ given by

$$
Y_N(\omega) = \frac{1}{\sqrt{N}} \sum_{t=1}^{N} w(t) y(t) e^{-i\omega t}
$$

the *periodogram*, an estimate of $S_{y}(\omega)$, is defined by

$$
\hat{S}_y(\omega) = \frac{1}{C}|Y_N(\omega)|^2,
$$

where $C = \frac{1}{N} \sum_{t=1}^{N} |w(t)|^2$ is a normalization factor

Periodogram analysis

 $\hat{S}_y(\omega)$ is called *periodogram* when $w(t)$ is rectangular, and *modified* periodogram for other types of windows, e.g., Hamming, Barlett, etc.

in practice, the periodogram is evaluated at ^a finite number of frequencies

$$
\omega_k = 2\pi k/R, \quad 0 \le k \le R - 1
$$

by replacing $\hat{S}_y(\omega)$ with the length- R DFT $Y[k]$ of the length- N sequences $y[k]\hspace{-0.1cm}:$

$$
\hat{S}_y(\omega_k) = \hat{S}_y[k] = \frac{1}{C}|Y[k]|^2
$$

- $\bullet\,$ usually $R>N$ to provide a finer resolution of the periodogram
- $\bullet \ \ C = (1/N)\sum_{t=1}^N |w(t)|^2$ is a normalization factor

Window functions

suppose we use a rectangular window of length N

$$
\hat{S}_y(\omega) = \frac{1}{N} \sum_{n=1}^N \sum_{m=1}^N y(m) y^*(n) e^{-i\omega(m-n)} \n= \frac{1}{N} \sum_{k=-N+1}^{N-1} \sum_{n=1-k}^{N-k} y(n+k) y^*(n) e^{-i\omega k} \n= \sum_{k=-N+1}^{N-1} \hat{R}_y(k) e^{-i\omega k}
$$

- $\bullet\,$ the periodogram is the Fourier transform of $\hat R_y(k)$
- $\bullet\,$ a few samples of $y(n)$ is used in estimating $\hat{R}_y(k)$ when k is large, yielding a poor estimate of $R_y(k)$

Window functions

use the window functions that vanish for $|\tau|>M$ to weight out the
estimated correlation for large τ estimated correlation for large τ

• Rectangular

$$
w(\tau) = 1, \quad |\tau| \le M
$$

• Barlett

$$
w(\tau) = 1 - |\tau|/M, \quad |\tau| \le M
$$

• Hamming

$$
w(\tau) = 0.54 + 0.46 \cos\left(\frac{2\pi\tau}{2M+1}\right), \quad |\tau| \le M
$$

 M should be small compared to N to reduce the fluctuations of the
periodogram periodogram

Example

•
$$
y(t) = \cos(400\pi t) + \nu(t)
$$
, with $N = 301$

References

Chapter 2,6 inL. Ljung, *System Identification: Theory for the User*, Prentice Hall, Second edition, ¹⁹⁹⁹

Chapter ³ inT. Söderström and P. Stoica, *System Identification*, Prentice Hall, 1989

Chapter ¹¹ in R.D. Yates, D.J. Goodman, Probability and Stochastic Processes: ^a friendly introduction for Electrical and Computer engineers, John Wiley &Sons, Inc., Second edition, ²⁰⁰⁵

Chapter ⁹ in A. Papoulis and S. U. Pillai, Probability Random Variables and Stochastic Processes, McGraw-Hill, Fourth edition, ²⁰⁰²

Chapter 3,15 in S. K. Mitra, Digital Signal Processing, McGraw-Hill, International edition, 2006