
EE531 (Semester II, 2010)

6. Spectral analysis

• power spectral density

• periodogram analysis

• window functions
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Power Spectral density

Wiener-Khinchin theorem:

if a process is wide-sense stationary, the autocorrelation function and the
power spectral density form a Fourier transform pair:

Continuous

S(ω) =

∫ ∞

−∞

e−iωτR(τ)dτ ⇐⇒ R(t) =
1

2π

∫ ∞

−∞

S(ω)eiωtdω

Discrete

S(ω) =
k=∞
∑

k=−∞

R(k)e−iωk ⇐⇒ R(k) =
1

2π

∫ π

−π

S(ω)eiωkdω

(under a condition for the existence of the Fourier transform, e.g., R(t) is
absolutely integrable or R(k) is absolutely summable)
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Properties of PSD

• S(ω) is self-adjoint, i.e., S(ω) = S∗(ω), ∀ω

• S(ω) � 0 for all ω

•
∫∞

−∞
S(ω)dω = R(0) = Ex(t)x(t)∗ � 0 (average power)

• for real processes, S(−ω) = S(ω)T

• for discrete-time processes, S(ω) is a periodic function of period 2π
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Cross-power spectral density

the cross-power spectrum of x(t) and y(t) is the Fourier transform of the
cross correlation Rxy(τ):

Continuous

Sxy(ω) =

∫ ∞

−∞

e−iωτRxy(τ)dτ ⇐⇒ Rxy(t) =
1

2π

∫ ∞

−∞

Sxy(ω)e
iωtdω

Discrete

Sxy(ω) =
k=∞
∑

k=−∞

Rxy(k)e
−iωk ⇐⇒ Rxy(k) =

1

2π

∫ π

−π

Sxy(ω)e
iωkdω

It follows from Rxy(−τ) = R∗
yx(τ) that

Sxy(ω) = S∗
yx(ω)
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LTI systems with random inputs

u
H

y

Fact: if u(t) is wide-sense stationary, y(t) is also wide-sense stationary

• the mean is constant for all t

E y(t) =

∞
∑

s=−∞

h(s)Eu(t− s) = µu

∞
∑

s=−∞

h(s)

• Ry(t1, t2) depends only on the time shift t1 − t2

Ry(t1, t2) =
∞
∑

s=−∞

∞
∑

v=−∞

h(s)E[u(t1 − s)u(t2 − v)∗]h∗(v)

=

∞
∑

s=−∞

∞
∑

v=−∞

h(s)Ru(t1 − t2 + v − s)h∗(v)
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Fact: y(t), u(t) are jointly wide-sense stationary

the input-output cross correlation is

Ryu(t1, t2) = E

∞
∑

k=−∞

h(k)u(t1 − k)u(t2)
∗

=
∞
∑

k=−∞

h(k)Ru(t1 − t2 − k)

Ryu(τ) =
∞
∑

k=−∞

h(k)Ru(τ − k)

it also follows that

Ry(τ) =
∞
∑

k=−∞

h(k)Ruy(τ − k)

conclusion: the correlations are in the form of convolution sum
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Spectral relations for LTI systems

Using the convolution property of the Fourier transform of Ryu(τ), Ry(τ),
we have the relations:

Syu(ω) = H(ω)Su(ω), Sy(ω) = H(ω)Suy(ω)

With Suy(ω) = S∗
yu(ω), we have

Sy(ω) = H(ω)Su(ω)H(ω)∗

In terms of z-transform, this could be written as

Sy(z) = H(z)Su(z)H(z)∗

where H(z)∗ = H(z̄)T and we should be aware that z = eiω in the analysis
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Example 1

suppose the covariance function of a staionary process is given by

R(k) =
λ2a|k|

1− |a|2, |a| < 1, λ ∈ R

the spectral density can be obtained via z-transform

S(z) =
λ2

1− |a|2
∞
∑

k=−∞

a|k|z−k =
λ2

1− |a|2





−1
∑

k=−∞

a−kz−k +
∞
∑

k=0

akz−k





=
λ2

1− |a|2
(

az

1− az
+

z

z − a

)

=
λ2

(1− az)(1− az−1)

substituting z = eiω gives

S(ω) =
λ2

(1− aeiω)(1− ae−iω)
=

λ2

1 + a2 − 2a cosω
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Example 2

a linear system given in a state-space form

y(t) = ay(t− 1) + e(t)

where e(t) is a white noise with variance λ2

the transfer function is given by

H(z) =
1

1− az−1

therefore the spectral density of y is

Sy(ω) =
λ2

(1− ae−iω)(1− aeiω)
=

λ2

1 + a2 − 2a cosω
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Spectral analysis

use the same model as in correlation analysis:

Ryu(τ) =
∞
∑

k=0

h(k)Ru(τ − k)

taking DFT gives the spectral representation

Syu(ω) = H(ω)Su(ω)

if Su(ω) ≻ 0 for all ω, then we can estimate

Ĥ(ω) = Ŝyu(ω)Ŝu(ω)
−1,

where Ŝyu, Ŝu can be computed via DFT
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Periodogram analysis

an infinite-length discrete-time signal y(t) is windowed by a length-N
window w(t), 1 ≤ t ≤ N

ỹ(t) = w(t)y(t)

define a function YN(ω) given by

YN(ω) =
1√
N

N
∑

t=1

w(t)y(t)e−iωt

the periodogram, an estimate of Sy(ω), is defined by

Ŝy(ω) =
1

C
|YN(ω)|2,

where C = 1
N

∑N

t=1 |w(t)|2 is a normalization factor
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Periodogram analysis

Ŝy(ω) is called periodogram when w(t) is rectangular, and modified

periodogram for other types of windows, e.g., Hamming, Barlett, etc.

in practice, the periodogram is evaluated at a finite number of frequencies

ωk = 2πk/R, 0 ≤ k ≤ R− 1

by replacing Ŝy(ω) with the length-R DFT Y [k] of the length-N
sequences y[k]:

Ŝy(ωk) = Ŝy[k] =
1

C
|Y [k]|2

• usually R > N to provide a finer resolution of the periodogram

• C = (1/N)
∑N

t=1 |w(t)|2 is a normalization factor
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Window functions

suppose we use a rectangular window of length N

Ŝy(ω) =
1

N

N
∑

n=1

N
∑

m=1

y(m)y∗(n)e−iω(m−n)

=
1

N

N−1
∑

k=−N+1

N−k
∑

n=1−k

y(n+ k)y∗(n)e−iωk

=
N−1
∑

k=−N+1

R̂y(k)e
−iωk

• the periodogram is the Fourier transform of R̂y(k)

• a few samples of y(n) is used in estimating R̂y(k) when k is large,
yielding a poor estimate of Ry(k)
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Window functions

use the window functions that vanish for |τ | > M to weight out the
estimated correlation for large τ

• Rectangular
w(τ) = 1, |τ | ≤ M

• Barlett
w(τ) = 1− |τ |/M, |τ | ≤ M

• Hamming

w(τ) = 0.54 + 0.46 cos

(

2πτ

2M + 1

)

, |τ | ≤ M

M should be small compared to N to reduce the fluctuations of the
periodogram
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Example
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Window length = 301

• y(t) = cos(400πt) + ν(t), with N = 301
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