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Introduction

consider a stochastic discrete-time linear system

r(t+1)=Ax(t) + Bu(t) + w(t), y(t)=Cx(t)+ Du(t)+ v(t)

where z € R™,u € R™,y € R? and E [2‘;8_5))] [w<t>] L [b% f%] 5(t, )

problem statement: given input/output data {u(t),y(t)} fort =0,..., N

e find an appropriate order n
e estimate the system matrices (A, B, C, D)

e estimate the noice covariances: (), R, S
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Overall scheme

the overall scheme has essential elements

Data equation

Remove Remove .
Y=0,X+T,U+V — input effect  ~ noise — G=0,T
l SvD
Estimate - Estimate - Estimate
(B,D) (4,C) Os
X
_ C _
N | CA o
e extended observability matrix: O = _ c R?
C A

e input and output data equation

e geometrical tools (projection) to remove input and noise effects

Subspace methods
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RQ factorization

RQ factorization: Ris lower triangular, Q has orthonormal rows

nxm nxn nxm nxn nx(m—mn)

A R Q B 0] | @ |mooe
&
Q2

a fat matrix A € R™*™ has a RQ factorization: A = R(Q)

e () € R"™ ™ has orthonormal rows ( QZQ;*F — 0 and Q,LQZT _

e R € R™™ ™ is lower triangular with non-negative diagonals

e if rank(A) = n then the diagonals of R are all positive and

A=[R, 0] [gj = RQ (where Q = Q; and R = R,)

Subspace methods
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Orthogonal projection

for U € R"™*¥, the orthogonal projection onto the row space of U (row(U)) is
I, =U"UU")™'U  (of size N x N)
e when II,, is right-multiplied to a matrix M
MIl, = MUY (DU U

is the matrix in row(U) that is closest to M (in Frobenius norm)

e the residual after projection is

M- MUY (UUDY U = MM -UT(UUT) ")

e the matrix [I:- = I — UT(UU?)7!U is then called the orthogonal projection onto
the orthogonal complement of row(U)

Subspace methods 11-5



e row space and column space are related by

row(U)t = R(UT)* = R(U)

e in other words, II:- is the orthogonal projection to the range space of U and
UllE =0

(we will use this property to remove U from the data equation)
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RQ factorization for least-squares

an RQ factorization relates to a least-squares problem of the form

mini@mize Y —©H|% with solution ©=YH"(HH")™!

this is to project Y to row space of H (since O is left-multiplied to H )

the LS solution can be obtained via RQ factorization

[H] _ [Rn 0 ] [Ql] _ [ Ri1G1 ]
Y Ry Ryl |Q2 Ro1Q1 + R Q)2

define the orthogonal projection matrix (to row space of H)

Mg =H"(HH")Y'H and Il =1—-H"(HH")'H
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we can verify that

O, = YHT(HHT)"' =RyR;
O H Yilg = R4
Y -6 H Y14 = R0

e all quantities in LS problem can be computed from RQ factors
e Yl is the projection of Y onto the row space of H

e YII3 is the residual after projection (which is the orthogonal complement of row
space of H)

e the residual is the projection of Y onto the column space of H
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Data equation

the state response to the system on page 11-2 is

z(t) = Alz(0) + z_: AT Bu(r) 4 w(T))]

7=0

we can arrange y as a function of u and noise as
Yi,s,N — OSX’i,N + 7-8Uz',s,N + ‘/TI:,S,N (1)

where the matrices containing signals are

Xin=[z(i) z(i+1) - z(i+N-—1)] (2)
C y(d) y(i+1) y(i+N—1)

Vigw=| WD Wyl ) 3)
_y(i+$—1) y(i#s) y(i+N.+s—2)_
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(Ui.s. N has the same block Henkel structure, and V; 4 n contains w and v)

the matrices O, and 7, contain system matrices

O] [ D 0 0 --- 0]
CA CB D 0 -+ 0
O,=| CA*> |, T.=| CAB CB D 0
CAS! CA**B CA"*B ... CB D|

e from data equation, only Y; ; x and U; 5 n are available
e if we can approximate O, we can estimate (A, C) first

o the effects of U; s v and V; s n on Y; s n should be removed — this can be done
using an orthogonal projection
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Remove input from data equation

from the concept of orthogonal projection, define

My =1 - U;,FS,N(U@S,NU?S,M_1Ui,s,N

1 1

and right-mutiply to the data equation (1)

-Y;:,S,NHQJL_ — Oin,NHi_ + ﬁUi,s,NHQJZ =+ ‘/i,s,NHqi_
— Oin,NHi_ + Vti,s,NHi_

(use the fact that U; ; nIT- = 0)

Subspace methods
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Remove noise from data equation

definition: a matrix Zny € R***Y with n < s < N is said to be an instrument
variable if it has the following properties

1

S VeI ZR = ¢
1
rank ( ngnooNXi,NH,jZﬁ) = n

e Z should be uncorrelated with noise V; 5 n
e /v should be correlated with state variables since X,L-,NHLZ?\; still has full rank

e an example of instrument variable is the past input/output sequences

m:[ﬁiﬁ:jﬂé[@(@) Z1) - ZN - 1)]
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from the data equation (after the input was removed), set i = s

Y;',s,NHqJJ,_ — Oin,NHi_—i_Vji,s,NHQJ;
. 1 1L 7T L . 1 1L 7T . 1 1L 7T
W eI = g ORIt g Vel I
~
1
= O, lim —X, NII+2ZL
O é\fgnooN AN ]\i

rank=n w\hren Zn is IV

this can be expressed as
G =0,T
where G and T are generally fat matrices (if IV is large)

e (G contain measured input/output data

e T’ is generally unknown, as it contains state variables

e generally, R(G) C R(Os)
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Performing SVD to estimate O,

main equation:

1 1
lim N}g,s,NHjZJE:OS lim NXS,NH,jZ}Q = G=0,T

N — o0 N — o0

e generally, rank(AB) < min(rank(A), rank(B)) — Sylvester rank inequality

e if rank((G) = rank(Q,) = n we conclude that R(G) = R(O;) and performing
SVD on G gives

~

U2, VI =0, = U,=0,TV, > '=0,T £ 0,

U,, relates to the extended observability matrix in another coordinate

e once O, is estimated, the system matrices (A, C') can be estimated
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Performing SVD on RQ factor

it is more numerically efficient to compute SVD of RQ factor of G

e when G is fat with M columns, SVD matrix has size of M x M (not cheap to
compute)

e finding the inverse of II:- of size N x NN is also computationally expensive
e we should perform RQ factor of G before performing SVD

e if G = R(Q and rank(G) = n then the diagonals of R are positive and
rank(G) = rank(R)

e consider RQ factorization for G (without the limit when N — o0)

Uss.N| ‘Ri1 0 01 [@1
Zny | = | R Ry O Q2 = Y,.n~lsZ5% = RpRy,
| Yss, N R31 Rsz Rs3| [Q3]

where R3y € R*P**P and Ry € R**”%% when using Zx as on page 11-12
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Theorem: [Verhegan, Thm 9.4] if u is persistently exciting of a certain order then

] , 1
rank( lim NEQ,S,NHjZ]{,) = rank( lim —NR32> =n

N — o0 N — o0

and that Rsy is invertible; hence, with this result, we can conclude that

1

e for finite IV, we may not see exactly n nonzero SVD of R3
e in practice, user gets to choose the model order, so when performing SVD

0 0] [vlT

Rs = Uy U2][O | |V

] = X has size n X n, neglected >

~

o with I3 = U121V1T we have U; = OSTRQ_ZTVl_Tzl_l 2 (O, € Rspxn
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Estimation of A and C

using definition of O, on page 11-3 that contains s blocks, each of size p X n

e C is obtained by extracting the first row block of O,

e to get fl notice that

C C
CA CA
CA°— C A
- CAT | CA°

(but the estimated O, may not have the above structure exactly)

e estimate A by matching the top block on LHS with the bottom block on RHS in
least-squares sense

@s<1 : p<8 _ 1)7 )A — @S<p + 1 : ps, :>
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Estimation of B and D

consider the predicted output of state-space equation

y(t) = C(qI — A)"'Bu(t) + Du(t) = CA*z(0) + C z_: AT Bu(7) 4+ Du(t)

7=0
when (A, C') is known, g(t) is linear in (B, D), so we can use LS
to do so, we re-arrange the equation by vectorizing B and D

4(t) = CA'z(0) + <Z u(t)' ® CAtTl> vec(B) + (u(t)" @ I,) vec(D)

7=0

2 H(t)0 = solve § in least-squares sense

all previously described procedures constitute the Past Outputs Multivariable
Output-Error State-Space or PO-MOSEP method
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N4SID algorithm

e innovation form of state-space and data equation
e estimation of state variables from input/output data
e performing SVD

e estimation of noise covariances and Kalman gain
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Overall scheme of N4SID

from state-space equation, if x(t), y(t), u(t) are known, we can use an LS problem:
minimize z(E+1) _|4 B x(t) 2
A,B,C,D y(t) C D] |u(?)

F

to estimate (A, B,C, D)

e recall notation of Y; 5 x in (3) on page 11-9 (using ¢ as a starting index)
o (Yosn,Uys n) are past data and (Ys 5 v, Us s ) are future data

e y(t) is a function of state x (which includes effect of past u) and the present u

Y, s.~v = Gain - input + Gain - X s v + Gain - X, 5 ; + noise

o effect of X s v on Y, s n dies out if s is large, so we focus on the relation
between Y, s n and X s v to estimate the states

Subspace methods 11-20



Data equation
we use state-space in innovation form (notation of x, X here are estimated states)
r(t+1)=(A—KC)x(t)+ (B—KD)u(t)+ Ky(t), y(t)=Cx(t)+ Du(t)+e(t)

e ¢ is called innovation which has white noise properties; K is the Kalman gain

o using Ax = (A — KC) and B = B — KD we can write block Hankel X  as
XS,N - A%XO,N
+ [A‘;f_lBK A‘;(_Q By -+ Bg A;{—IK A;{—QK o K] [gO,S,N]
0,s,N

£ A% Xon+ FsZn (future states are function of past input/output)
YosN=0sFZn+TsUs s N+ SsEs s N + Os A Xo N (proof as exercise)

future output is described by past input/output (Zy), future output (Us s ),
noise, and initial states
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Estimation of states

we aim to estimate X n from past input/output data

e consider a regression of Y, s ny on Us s n and Zy

minimize
(L’LLJL,Z)

Yts,s,N - [Lu Lz] [U};N]

e it can be shown that part of Y s v that is explained by Zx has a connection with
Xs. N (Verhegan Theorem 9.5)

YS,S,N — Lu ’ US,S,N + Lz ’ ZN - lim LzZN ~ OSFSZN = OSXS,N

N — o0

(using properties of innovation e, A ; see more details in J. Songsiri book)

e onces L, is estimated, we form L,Z N = OSXS,N
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Performing SVD to estimate states

main equation: L,Zy = O, X, y

e use RQ to solve LS problem and to find L, Zp

Us.s. N  R;; 0 0 [ Q1 ]
AN, = | Roy Ry | O Q2
| Y sn | | R31 R | Rsz | | @3 |

L.Zn = (YS,S,NHqi_Z]j\;)(ZNHi_ZJI\;)_lZN = R Ry (R Q1 + Ror@s)

e the expression of L, Zy is called the oblique projection of future y along the
future input onto past data in Overshee book

e in N4SID algorithm, use RQ factor of L.Zx to perform SVD
L.Zy =U SV =0 X,y = O,=USY% X, n=3Y2VT

(now estimated x are obtained and hence, (A, B, C, D) is estimated using LS)
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Noise covariance estimation

AN A

after we obtained X, v and (A, B,C, D), compute residuals

B,
[ s, 1,N— 1] [ s—l—lN]_[fé:1 B;] [XS,N—II
VsiN—1 Ysi1nN-1 C D| |Usin-1

and the sample covariance of noises is

T

A

[Q S] o] [WS,I,N—1] [Ws,l,N—1]

Vean—1] [ Vsi,nN=1

the Kalman gain for the innovation form can be obtained by solving Riccati equation

P=APAT + Q — (S + APCT)(CPCT + R)~\(S + APCT)T
= (S + APCT)(R+CPCT)™!

(use estimated system matrices in Riccati equation)
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Numerical examples

e model of DC motor
e choosing model order with n4sid

® mass-spring model
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State-space equation of DC motor

a discrete-time (ZOH) state-space representation of DC motor is

i(t) = {8 B /T} x(t) + [bl(}Ti| u(t) + [b;)/T: n(t), ye)=[1 0]zt +v(t)

7_<1_€—T/7-)
T ]x(t”_ /(1 — =TIy | MY

e

x(t+T) = [(1)

bQ(TG_T/T —7+T)
* [ bo/(1 — e~ T/7) ] )

y(t) = [1 O} x(t) + v(t)

e w is voltage input, y is motor angle
e 7;(t) (or load torque) can be regarded as state noise and v is sensor noise
e the model is 2nd-order (by neglecting L in armature circuit)

e parameters T, by, by involves model parameters (J, R, K, K,)

Subspace methods
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Results of fitting DC motor

5 Input 5 Simulated response comparison
T T T T T
——Motor data (y1)
SRS —Order 1: 32.99%
= 15 —Order 2: 74.38% i
3ol : Order 3: 77.52%
£ —Order 4: 79.99%
§ 1
S 1
= 1 7
-2
0 1 3 i y
Time (sec) i 05| | /“ il
g | | I
. Motor speed = 1R V ‘ I i [ | f\H 1‘ NN e\‘M‘
‘ (Nl \ I ‘ Wb (e
[ Hﬂv\ Il ”v”w‘ TR MR AT
— 0 I “ AW M I | il [ A “ W \“ I il | | (i |
> 051 il “‘\ Il il | R | | Q\“ (A | T
o i I (R ?‘ (| I r
@ | | /Y I| !
g or ! il ||
@ -0.5 H \ I\ | !
[e}
505
2 i
- | | q | 1 | |
0 1 3 5 15 20 25
Time (sec) Time (seconds) (seconds)

e u is a square pulse; the measured output ¥ is the motor speed

e varying model order n =1,2,...,10

e Fit Percent values are not significantly different when n > 2
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Model order selection in N4SID

vl ool [ ModelOrderselection €00
] . , ,

. 1 4 B Red: Default Choice (3)
El ] g ] 2 N4Horizon used: [15 19 19] |
£l 1 Zos 1 o

o _
0l 1 1 E
HHH ) o] HHN g
. L HTHH ........... | NTTTM ........... L
0 02 04 06 08 2 4 6 8 2 0 02 0.4 06 08 1 12 14 16 8 2 )
Time (seconds) . Time(seconds) o
=
=
Model order = 3 Model order = 4 5 |
——femutoy omul Toy ol
-
-2 \
-3
) ] 0 2 4 6 8 10 12
Soal 1 g
ol H i 06 H ] Model Order
nz: ] Chosen Ordt3 - Apply
. I _ HAH‘NTTT??HHUQ-q‘oooﬁ { EREE HIHTT?H...."_F““‘
' o ! e ‘”El'wme(sel:nnds] ‘ ‘ " ) : ° e o o0 OaTlﬂ'\e‘se‘ cccccc " " ° ¢ ‘

e call n4sid to estimate the model of order 1,2,...,10

e it suggests to pick the order that the log of SVD value (of the matrix OX) is
significant (indicating the rank of such matrix)

e the model equation suggests n = 2 (output is motor speed, including armature
circuit in the model dynamics)

e impule response of first-order model is significantly different from the rest
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example of MATLAB codes

load data-dcmotor-pulse
N = length(dat.y); Ts = dat.Ts; vect = (0:Ts: Tsx(N-1))' ;
ssmodel =cell(4,1); figure(1)
for k=1:4
ssmodel{k} = ndsid(dat,k); ssmodel{k}.Name = ['Order ',num2str(k)];

end

figure(2); % compare fitting
compare(dat,ssmodel{1},ssmodel{2}, ssmodel{3}, ssmodel{4});

mss = n4sid(dat, [1:10], 'InputDelay',0) ;
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Mass-spring model

consider a mass-spring model with u as an applied force and y is the displacement

T = [_ko/m _Cl/m] T+ L/Om] u, y=|1 0]z

e CT model has a structure in A and B

e ssest initializes a model estimated by a subspace approach and then refines the

parameter using PEM

e we can compare four models:

1. DT-n4sid: DT model estimated by n4sid
2. DT-ssest: DT model estimated by ssest (using DT-n4sid as the initial model)

3. CT-ssest: CT model estimated by ssest directly
4. CT-structured: CT model estimated ssest with the pre-defined structure
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Results of fitting mass-spring system

Simulated response comparison

dat (y1)
—DT-n4sid: 5.225%
1.5 H—DT-ssest: 92.79% —
CT-ssest: 92.81%

—CT-structured: 92.84%

Amplitudes
y1

2 4 6 8 10 12 14 16 18 20
Time (seconds)

e DT-n4sid has the lowest Fit Percent because the other models esimated by ssest
(that refines the parameters using PEM for a better performance)

e the system matrices in CT-ssest are dense, while those of CT-structured model has
the structure as desired

e pole locations of both CT-ssest and CT-structured are close — leading the models
to have similar time responses
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results:
Continuous-time transfer function.

trueTF =

s72 + 0.26 s + 1.5

cTF =
0.002356 s + 0.4979

fTF =

s72 + 0.2519 s + 1.505
CT poles (True system, CT-ssest, CT-structured ) are

-0.1250 + 1.2183i -0.1256 + 1.2203i -0.1259 + 1.2205i1
-0.1250 - 1.2183i -0.1256 - 1.2203i -0.12569 - 1.2205i1
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example of MATLAB codes:

% Estimation
load data-mass-spring dat

Ts dat.Ts;

kk = 2; % model order

mn4 = ndsid(dat,kk); mn4.Name = 'DT-n4dsid'; % DT model estimated by nésid

mssest = ssest(dat,kk,'Ts',Ts); mssest.Name = 'DT-ssest'; 7% DT model estimated by ssest

csys = ssest(dat,kk); csys.Name = 'CT-ssest'; % CT model estimated by ssest

% Initialize a model structure

init_sys = idss([0O 1;-1 -1],([0 1]',[1 O0],0,[0 O]',[0 0]',0);
init_sys.Structure.A.Free = [false false; true true];
init_sys.Structure.B.Free [false; true];
init_sys.Structure.C.Free = false;

% CT model where some structure is given
fsys = ssest(dat,init_sys); fsys.Name = 'CT-structured';
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