
EE531 - System Identification Jitkomut Songsiri

11. Subspace methods

• introduction

• geometric tools

• PO-MOESP algorithm

1. input and output equation
2. remove input and noise effects
3. estimation of system matrices

• N4SID algorithm

• MATLAB examples

11-1

Introduction

consider a stochastic discrete-time linear system

x(t + 1) = Ax(t) +Bu(t) + w(t), y(t) = Cx(t) +Du(t) + v(t)

where x ∈ Rn, u ∈ Rm, y ∈ Rp and E
[
w(t)
v(t)

] [
w(t)
v(t)

]T
=

[
Q S
ST R

]
δ(t, s)

problem statement: given input/output data {u(t), y(t)} for t = 0, . . . , N

• find an appropriate order n

• estimate the system matrices (A,B,C,D)

• estimate the noice covariances: Q,R, S

Subspace methods 11-2

Overall scheme

the overall scheme has essential elements

Remove
input effect

Remove
noise

Data equation

EstimateEstimate

SVD

Estimate

• extended observability matrix: Os =


C
CA

...
CAs−1

 ∈ Rps×n

• input and output data equation

• geometrical tools (projection) to remove input and noise effects

Subspace methods 11-3

RQ factorization

= =

RQ factorization: R is lower triangular, Q has orthonormal rows

a fat matrix A ∈ Rn×m has a RQ factorization: A = RQ

• Q ∈ Rn×m has orthonormal rows (QiQ
T
j = 0 and QiQ

T
i = I)

• R ∈ Rn×n is lower triangular with non-negative diagonals
• if rank(A) = n then the diagonals of R are all positive and

A =
[
R1 0

] [Q1

Q2

]
= RQ (where Q = Q1 and R = R1)

Subspace methods 11-4

Orthogonal projection

for U ∈ Rr×N , the orthogonal projection onto the row space of U (row(U)) is

Πu = UT (UUT)−1U (of size N ×N)

• when Πu is right-multiplied to a matrix M

MΠu = MUT (UUT)−1U

is the matrix in row(U) that is closest to M (in Frobenius norm)

• the residual after projection is

M −MUT (UUT)−1U = M (I − UT (UUT)−1U)

• the matrix Π⊥
u = I − UT (UUT)−1U is then called the orthogonal projection onto

the orthogonal complement of row(U)

Subspace methods 11-5

• row space and column space are related by

row(U)⊥ = R(UT)⊥ = R(U)

• in other words, Π⊥
u is the orthogonal projection to the range space of U and

UΠ⊥
u = 0

(we will use this property to remove U from the data equation)

Subspace methods 11-6

RQ factorization for least-squares

an RQ factorization relates to a least-squares problem of the form

minimize
Θ

∥Y − ΘH∥2F with solution Θls = Y HT (HHT)−1

this is to project Y to row space of H (since Θ is left-multiplied to H)

the LS solution can be obtained via RQ factorization

[
H
Y

]
=

[
R11 0
R21 R22

] [
Q1

Q2

]
=

[
R11Q1

R21Q1 +R22Q2

]

define the orthogonal projection matrix (to row space of H)

ΠH = HT (HHT)−1H and Π⊥
H = I −HT (HHT)−1H

Subspace methods 11-7

we can verify that

Θls = Y HT (HHT)−1 = R21R
−1
11

ΘlsH = Y ΠH = R21Q1

Y − ΘlsH = Y Π⊥
H = R22Q2

• all quantities in LS problem can be computed from RQ factors

• Y ΠH is the projection of Y onto the row space of H

• Y Π⊥
H is the residual after projection (which is the orthogonal complement of row

space of H)

• the residual is the projection of Y onto the column space of H

Subspace methods 11-8

Data equation

the state response to the system on page 11-2 is

x(t) = Atx(0) +

t−1∑
τ=0

At−1−τ [Bu(τ) + w(τ)]

we can arrange y as a function of u and noise as

Yi,s,N = OsXi,N + TsUi,s,N + Vi,s,N (1)

where the matrices containing signals are

Xi,N =
[
x(i) x(i + 1) · · · x(i +N − 1)

]
(2)

Yi,s,N =


y(i) y(i + 1) · · · y(i +N − 1)

y(i + 1) y(i + 2) · · · y(i +N)
...

y(i + s− 1) y(i + s) · · · y(i +N + s− 2)

 (3)

Subspace methods 11-9

(Ui,s,N has the same block Henkel structure, and Vi,s,N contains w and v)

the matrices Os and Ts contain system matrices

Os =


C
CA
CA2

...
CAs−1

 , Ts =


D 0 0 · · · 0
CB D 0 · · · 0
CAB CB D 0

...
CAs−2B CAr−3B · · · CB D


• from data equation, only Yi,s,N and Ui,s,N are available

• if we can approximate Os, we can estimate (A,C) first

• the effects of Ui,s,N and Vi,s,N on Yi,s,N should be removed – this can be done
using an orthogonal projection

Subspace methods 11-10

Remove input from data equation

from the concept of orthogonal projection, define

Π⊥
u = I − UT

i,s,N(Ui,s,NUT
i,s,N)−1Ui,s,N

and right-mutiply to the data equation (1)

Yi,s,NΠ⊥
u = OsXi,NΠ⊥

u + TsUi,s,NΠ⊥
u + Vi,s,NΠ⊥

u

= OsXi,NΠ⊥
u + Vi,s,NΠ⊥

u

(use the fact that Ui,s,NΠ⊥
u = 0)

Subspace methods 11-11

Remove noise from data equation

definition: a matrix ZN ∈ Rsz×N with n < s ≪ N is said to be an instrument
variable if it has the following properties

lim
N→∞

1

N
Vi,s,NΠ⊥

uZ
T
N = 0

rank
(

lim
N→∞

1

N
Xi,NΠ⊥

uZ
T
N

)
= n

• ZN should be uncorrelated with noise Vi,s,N

• ZN should be correlated with state variables since Xi,NΠ⊥ZT
N still has full rank

• an example of instrument variable is the past input/output sequences

ZN =

[
U0,s,N

Y0,s,N

]
≜
[
Zs(0) Zs(1) · · · Zs(N − 1)

]

Subspace methods 11-12

from the data equation (after the input was removed), set i = s

Yi,s,NΠ⊥
u = OsXi,NΠ⊥

u + Vi,s,NΠ⊥
u

lim
N→∞

1

N
Ys,s,NΠ⊥

uZ
T
N = lim

N→∞

1

N
OsXs,NΠ⊥

uZ
T
N + lim

N→∞

1

N
Vi,s,NΠ⊥

uZ
T
N︸ ︷︷ ︸

=0

= Os lim
N→∞

1

N
Xs,NΠ⊥

uZ
T
N︸ ︷︷ ︸

rank=n when ZN is IV

this can be expressed as
G = OsT

where G and T are generally fat matrices (if N is large)

• G contain measured input/output data
• T is generally unknown, as it contains state variables
• generally, R(G) ⊆ R(Os)

Subspace methods 11-13

Performing SVD to estimate Os

main equation:

lim
N→∞

1

N
Ys,s,NΠ⊥

uZ
T
N = Os lim

N→∞

1

N
Xs,NΠ⊥

uZ
T
N ≜ G = OsT

• generally, rank(AB) ≤ min(rank(A), rank(B)) – Sylvester rank inequality

• if rank(G) = rank(Os) = n we conclude that R(G) = R(Os) and performing
SVD on G gives

UnΣnV
T
n = OsT ⇒ Un = OsTVnΣ

−1
n = OsT̃ ≜ Õs

Un relates to the extended observability matrix in another coordinate

• once Õs is estimated, the system matrices (A,C) can be estimated

Subspace methods 11-14

Performing SVD on RQ factor

it is more numerically efficient to compute SVD of RQ factor of G

• when G is fat with M columns, SVD matrix has size of M ×M (not cheap to
compute)

• finding the inverse of Π⊥
u of size N ×N is also computationally expensive

• we should perform RQ factor of G before performing SVD
• if G = RQ and rank(G) = n then the diagonals of R are positive and

rank(G) = rank(R)

• consider RQ factorization for G (without the limit when N → ∞)Us,s,N

ZN

Ys,s,N

 =

R11 0 0
R21 R22 0
R31 R32 R33

Q1

Q2

Q3

 ⇒ Ys,s,NΠ⊥
uZ

T
N = R32R

T
22

where R32 ∈ Rsp×sp and R22 ∈ Rsz×sz when using ZN as on page 11-12

Subspace methods 11-15

Theorem: [Verhegan, Thm 9.4] if u is persistently exciting of a certain order then

rank
(

lim
N→∞

1

N
Ys,s,NΠ⊥

uZ
T
N

)
= rank

(
lim

N→∞

1√
N
R32

)
= n

and that R22 is invertible; hence, with this result, we can conclude that

R(lim
N→∞

1√
N
R32) = R(Os)

• for finite N , we may not see exactly n nonzero SVD of R32

• in practice, user gets to choose the model order, so when performing SVD

R32 =
[
U1 U2

] [Σ1 0
0 Σ2

] [
V T
1

V T
2

]
⇒ Σ1 has size ñ× ñ, neglected Σ2

• with R32 = U1Σ1V
T
1 we have U1 = OsTR

−T
22 V −T

1 Σ−1
1 ≜ Õs ∈ Rsp×ñ

Subspace methods 11-16

Estimation of A and C

using definition of Os on page 11-3 that contains s blocks, each of size p× ñ

• Ĉ is obtained by extracting the first row block of Õs

• to get Â, notice that 
C
CA

...
CAs−2

CAs−1

 ���


C
CA

...
CAs−2

CAs−1


(but the estimated Õs may not have the above structure exactly)

• estimate A by matching the top block on LHS with the bottom block on RHS in
least-squares sense

Õs(1 : p(s− 1), :)Â = Õs(p + 1 : ps, :)

Subspace methods 11-17

Estimation of B and D

consider the predicted output of state-space equation

ŷ(t) = C(qI −A)−1Bu(t) +Du(t) = CAtx(0) + C

t−1∑
τ=0

At−τ−1Bu(τ) +Du(t)

when (A,C) is known, ŷ(t) is linear in (B,D), so we can use LS

to do so, we re-arrange the equation by vectorizing B and D

ŷ(t) = CAtx(0) +

(
t−1∑
τ=0

u(τ)T ⊗ CAt−τ−1

)
vec(B) +

(
u(t)T ⊗ Ip

)
vec(D)

≜ H(t)θ ⇒ solve θ in least-squares sense

all previously described procedures constitute the Past Outputs Multivariable
Output-Error State-Space or PO-MOSEP method

Subspace methods 11-18

N4SID algorithm

• innovation form of state-space and data equation

• estimation of state variables from input/output data

• performing SVD

• estimation of noise covariances and Kalman gain

Subspace methods 11-19

Overall scheme of N4SID

from state-space equation, if x(t), y(t), u(t) are known, we can use an LS problem:

minimize
A,B,C,D

∥∥∥∥[x̂(t + 1)
y(t)

]
−
[
A B
C D

] [
x̂(t)
u(t)

]∥∥∥∥2
F

to estimate (A,B,C,D)

• recall notation of Yi,s,N in (3) on page 11-9 (using i as a starting index)
• (Y0,s,N , U0,s,N) are past data and (Ys,s,N , Us,s,N) are future data
• y(t) is a function of state x (which includes effect of past u) and the present u

Ys,s,N = Gain · input + Gain ·X0,s,N + Gain ·Xs,s,N + noise

• effect of X0,s,N on Ys,s,N dies out if s is large, so we focus on the relation
between Ys,s,N and Xs,s,N to estimate the states

Subspace methods 11-20

Data equation

we use state-space in innovation form (notation of x,X here are estimated states)

x(t+1) = (A−KC)x(t)+ (B−KD)u(t)+Ky(t), y(t) = Cx(t)+Du(t)+ e(t)

• e is called innovation which has white noise properties; K is the Kalman gain
• using AK = (A−KC) and BK = B −KD we can write block Hankel Xs,N as

Xs,N = As
KX0,N

+
[
As−1

K BK As−2
K BK · · · BK As−1

K K As−2
K K · · · K

] [U0,s,N

Y0,s,N

]
≜ As

KX0,N + FsZN (future states are function of past input/output)
Ys,s,N = OsFsZN + TsUs,s,N + SsEs,s,N +OsA

s
KX0,N (proof as exercise)

future output is described by past input/output (ZN), future output (Us,s,N),
noise, and initial states

Subspace methods 11-21

Estimation of states

we aim to estimate Xs,N from past input/output data

• consider a regression of Ys,s,N on Us,s,N and ZN

minimize
(Lu,Lz)

∥∥∥∥Ys,s,N −
[
Lu Lz

] [Us,s,N

ZN

]∥∥∥∥2
2

• it can be shown that part of Ys,s,N that is explained by ZN has a connection with
Xs,N (Verhegan Theorem 9.5)

Ys,s,N = Lu · Us,s,N + Lz · ZN ⇒ lim
N→∞

LzZN ≈ OsFsZN ≜ OsX̂s,N

(using properties of innovation e, AK; see more details in J. Songsiri book)

• onces Lz is estimated, we form LzZN = OsX̂s,N

Subspace methods 11-22

Performing SVD to estimate states
main equation: LzZN = OsX̂s,N

• use RQ to solve LS problem and to find LzZN Us,s,N

ZN

Ys,s,N

 =

 R11 0 0
R21 R22 0
R31 R32 R33

 Q1

Q2

Q3


LzZN = (Ys,s,NΠ⊥

uZ
T
N)(ZNΠ⊥

uZ
T
N)−1ZN = R32R

−1
22 (R21Q1 +R22Q2)

• the expression of LzZN is called the oblique projection of future y along the
future input onto past data in Overshee book

• in N4SID algorithm, use RQ factor of LzZN to perform SVD

LzZN = UnΣ
1/2
n Σ1/2

n V T
n = OsX̂s,N ⇒ Õs = UnΣ

1/2
n , X̂s,N = Σ1/2

n V T
n

(now estimated x are obtained and hence, (A,B,C,D) is estimated using LS)

Subspace methods 11-23

Noise covariance estimation

after we obtained X̂s,N and (Â, B̂, Ĉ, D̂), compute residuals[
Ŵs,1,N−1

V̂s,1,N−1

]
=

[
X̂s+1,N

Ys,1,N−1

]
−
[
Â B̂

Ĉ D̂

] [
X̂s,N−1

Us,1,N−1

]
and the sample covariance of noises is[

Q̂ Ŝ

ŜT R̂

]
= lim

N→∞

1

N

[
Ŵs,1,N−1

V̂s,1,N−1

] [
Ŵs,1,N−1

V̂s,1,N−1

]T
the Kalman gain for the innovation form can be obtained by solving Riccati equation

P = APAT +Q− (S +APCT)(CPCT +R)−1(S +APCT)T

K = (S +APCT)(R + CPCT)−1

(use estimated system matrices in Riccati equation)

Subspace methods 11-24

Numerical examples

• model of DC motor

• choosing model order with n4sid

• mass-spring model

Subspace methods 11-25

State-space equation of DC motor
a discrete-time (ZOH) state-space representation of DC motor is

ẋ(t) =

[
0 1
0 −1/τ

]
x(t) +

[
0

b1/τ

]
u(t) +

[
0

b2/τ

]
τl(t), y(t) =

[
1 0

]
x(t) + v(t)

x(t + T) =

[
1 τ (1 − e−T /τ)

0 e−T /τ

]
x(t) +

[
b1(τe

−T /τ − τ + T)

b1/(1 − e−T /τ)

]
u(t)

+

[
b2(τe

−T /τ − τ + T)

b2/(1 − e−T /τ)

]
τl(t)

y(t) =
[
1 0

]
x(t) + v(t)

• u is voltage input, y is motor angle
• τl(t) (or load torque) can be regarded as state noise and v is sensor noise
• the model is 2nd-order (by neglecting L in armature circuit)
• parameters τ, b1, b2 involves model parameters (J,R,Ka,Kv)

Subspace methods 11-26

Results of fitting DC motor

0 1 2 3 4 5 6

Time (sec)

-2

-1

0

1

2

M
o

to
r

in
p

u
t

(V
)

Input

0 1 2 3 4 5 6

Time (sec)

-1

-0.5

0

0.5

1

M
o

to
r

s
p

e
e

d
 (

V
)

Motor speed

5 10 15 20 25 30 35
-1

-0.5

0

0.5

1

1.5

2

y
1

Motor data (y1)

Order 1: 32.99%

Order 2: 74.38%

Order 3: 77.52%

Order 4: 79.99%

Simulated response comparison

Time (seconds) (seconds)

A
m

p
lit

u
d
e

• u is a square pulse; the measured output y is the motor speed

• varying model order n = 1, 2, . . . , 10

• Fit Percent values are not significantly different when n ≥ 2

Subspace methods 11-27

Model order selection in N4SID

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

From: u1 To: y1

Model order = 1

Time (seconds)

A
m

p
lit

u
d

e

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
From: u1 To: y1

Model order = 2

Time (seconds)

A
m

p
lit

u
d

e

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
From: u1 To: y1

Model order = 3

Time (seconds)

A
m

p
lit

u
d

e

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
From: u1 To: y1

Model order = 4

Time (seconds)

A
m

p
lit

u
d

e

• call n4sid to estimate the model of order 1, 2, . . . , 10
• it suggests to pick the order that the log of SVD value (of the matrix OX) is

significant (indicating the rank of such matrix)
• the model equation suggests n = 2 (output is motor speed, including armature

circuit in the model dynamics)
• impule response of first-order model is significantly different from the rest

Subspace methods 11-28

example of MATLAB codes

load data-dcmotor-pulse

N = length(dat.y); Ts = dat.Ts; vect = (0:Ts: Ts*(N-1))' ;

ssmodel =cell(4,1); figure(1)
for k=1:4

ssmodel{k} = n4sid(dat,k); ssmodel{k}.Name = ['Order ',num2str(k)];
end

figure(2); % compare fitting
compare(dat,ssmodel{1},ssmodel{2},ssmodel{3},ssmodel{4});

mss = n4sid(dat,[1:10],'InputDelay',0) ;

Subspace methods 11-29

Mass-spring model

consider a mass-spring model with u as an applied force and y is the displacement

ẋ =

[
0 1

−k/m −c/m

]
x +

[
0

1/m

]
u, y =

[
1 0

]
x

• CT model has a structure in A and B

• ssest initializes a model estimated by a subspace approach and then refines the
parameter using PEM

• we can compare four models:

1. DT-n4sid: DT model estimated by n4sid
2. DT-ssest: DT model estimated by ssest (using DT-n4sid as the initial model)
3. CT-ssest: CT model estimated by ssest directly
4. CT-structured: CT model estimated ssest with the pre-defined structure

Subspace methods 11-30

Results of fitting mass-spring system

-2

-1.5

-1

-0.5

0

0.5

1

y1

2 4 6 8 10 12 14 16 18 20
-4

-3

-2

-1

0

1

2

3

4
u1

Input-Output Data

Time (seconds)

A
m

p
lit

u
d

e

2 4 6 8 10 12 14 16 18 20
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

y
1

dat (y1)

DT-n4sid: 5.225%

DT-ssest: 92.79%

CT-ssest: 92.81%

CT-structured: 92.84%

Simulated response comparison

Time (seconds)

A
m

p
lit

u
d
e
s

• DT-n4sid has the lowest Fit Percent because the other models esimated by ssest
(that refines the parameters using PEM for a better performance)

• the system matrices in CT-ssest are dense, while those of CT-structured model has
the structure as desired

• pole locations of both CT-ssest and CT-structured are close – leading the models
to have similar time responses

Subspace methods 11-31

results:
Continuous-time transfer function.

trueTF =
0.5

s^2 + 0.25 s + 1.5

cTF =
0.002356 s + 0.4979

s^2 + 0.2513 s + 1.505

fTF =
0.5011

s^2 + 0.2519 s + 1.505

CT poles (True system, CT-ssest, CT-structured) are

-0.1250 + 1.2183i -0.1256 + 1.2203i -0.1259 + 1.2205i
-0.1250 - 1.2183i -0.1256 - 1.2203i -0.1259 - 1.2205i

Subspace methods 11-32

example of MATLAB codes:
% Estimation
load data-mass-spring dat

Ts = dat.Ts;
kk = 2; % model order
mn4 = n4sid(dat,kk); mn4.Name = 'DT-n4sid'; % DT model estimated by n4sid
mssest = ssest(dat,kk,'Ts',Ts); mssest.Name = 'DT-ssest'; % DT model estimated by ssest

csys = ssest(dat,kk); csys.Name = 'CT-ssest'; % CT model estimated by ssest

% Initialize a model structure
init_sys = idss([0 1;-1 -1],[0 1]',[1 0],0,[0 0]',[0 0]',0);
init_sys.Structure.A.Free = [false false; true true];
init_sys.Structure.B.Free = [false; true];
init_sys.Structure.C.Free = false;

% CT model where some structure is given
fsys = ssest(dat,init_sys); fsys.Name = 'CT-structured';

Subspace methods 11-33

References

Chapter 9 in
M. Verhaegen and V. Verdult, Filtering and System Identification: A Least-square
Approach, Cambridge University Press, 2007.

Chapter 7 in
L. Ljung, System Identification: Theory for the User, 2nd edition, Prentice Hall, 1999

System Identification Toolbox demo
Building Structured and User-Defined Models Using System Identification Toolbox™

P. Van Overschee and B. De Moor, Subspace Identification for Linear Systems,
KLUWER Academic Publishers, 1996

K. De Cock and B. De Moor, Subspace identification methods, 2003

Subspace methods 11-34

